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Conformational changes drive protein function, including catalysis, allostery and

signaling. X-ray diffuse scattering from protein crystals has frequently been

cited as a probe of these correlated motions, with significant potential to

advance our understanding of biological dynamics. However, recent work has

challenged this prevailing view, suggesting instead that diffuse scattering

primarily originates from rigid-body motions and could therefore be applied to

improve structure determination. To investigate the nature of the disorder

giving rise to diffuse scattering, and thus the potential applications of this signal,

a diverse repertoire of disorder models was assessed for its ability to reproduce

the diffuse signal reconstructed from three protein crystals. This comparison

revealed that multiple models of intramolecular conformational dynamics,

including ensemble models inferred from the Bragg data, could not explain the

signal. Models of rigid-body or short-range liquid-like motions, in which

dynamics are confined to the biological unit, showed modest agreement with the

diffuse maps, but were unable to reproduce experimental features indicative of

long-range correlations. Extending a model of liquid-like motions to include

disorder across neighboring proteins in the crystal significantly improved

agreement with all three systems and highlighted the contribution of

intermolecular correlations to the observed signal. These findings anticipate a

need to account for intermolecular disorder in order to advance the

interpretation of diffuse scattering to either extract biological motions or aid

structural inference.

1. Introduction

X-ray diffraction images from macromolecular crystals

frequently exhibit a diffuse background between and beneath

the Bragg peaks (Wall, Adams et al., 2014; Welberry & Weber,

2016). In contrast to the Bragg reflections, which arise from

coherent diffraction across the crystal, this diffuse signal

results from disorder-induced incoherent diffraction. The

uncorrelated disorder of solvent and macromolecular atoms

yields a trivial diffuse scattering pattern that is radially

symmetric (Moore, 2009). On the other hand, correlated

disorder produces anisotropic diffuse scattering features

whose spacing and intensity in reciprocal space are respec-

tively determined by the length scale and amplitudes of the

correlated atomic displacements involved (Benoit & Doucet,

1995).

Correlated displacements in macromolecules underlie many

biological functions, such as allostery, signaling and enzyme

catalysis. However, methods for directly measuring such

motions with high spatial resolution are rare. Diffuse scat-

tering has routinely been cited as one such method that could

provide unique insights into the collective motions responsible

for biological functions (Wall, Adams et al., 2014; Benoit &
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Doucet, 1995). Indeed, this has motivated the majority of

studies of diffuse scattering from macromolecular crystals

(Wall et al., 1997; Héry et al., 1998; Kolatkar et al., 1994;

Chacko & Phillips, 1992; Meinhold & Smith, 2005a,b, 2007;

Wall, Van Benschoten et al., 2014; Van Benschoten et al.,

2016), despite the technical challenges of measuring and the

computational cost of modeling this signal (Wall, Adams et al.,

2014).

Recently, the application of diffuse scattering to comple-

ment and improve (static) structure inference from crystal

diffraction has also been proposed. Chapman and colleagues

have suggested that in cases where measurable diffuse scat-

tering extends to higher resolution than the Bragg data, it may

be employed for structural inference at that higher resolution

(Ayyer et al., 2016). Further, the ability to oversample the

diffraction pattern by measuring the continuous diffuse signal

raises the possibility of solving the phase problem directly,

without resorting to anomalous or isomorphic methods. This

approach, however, assumes that diffuse scattering primarily

originates from specific types of disorder, such as rigid-body

motions, which are unlikely to inform on biological function.

Identifying the physical origins of diffuse scattering, and

thus its potential for probing biological motions or advancing

methods, remains a challenge for the field. Many types of

disorder involve small motions that can be conveniently

described by a matrix, the elements of which give the covar-

iation between the displacements of any two atoms from their

mean positions. Such a covariance matrix can directly, but not

uniquely, predict diffuse scattering. If the covariance matrix

could be inferred directly from experiment, the diffuse signal

could be analyzed to determine which regions of the macro-

molecule move together. There is a fundamental problem with

direct inference, however: while the number of observed

independent variables is quite large (say V voxels for a given

unit-cell volume, assuming that the maximum resolution of

diffraction is fixed), the number of unknowns is even larger (of

the order of V2 matrix elements, one for each atom pair,

assuming that the number of atoms scales linearly with

volume). Thus, to infer a covariance matrix one must make

simplifying assumptions about the nature of protein motions: a

parsimonious model for the protein physics is required.

In this work, we analyze the parsimonious models that have

been suggested previously (reviewed in Meisburger et al.,

2017) and variations of these models to critically examine the

types of disorder underlying the diffuse scattering observed in

a range of systems. The three protein systems analyzed here

represent both diverse crystalline properties and biological

functions: cyclophilin A (CypA), a monomeric proline

isomerase (Van Benschoten et al., 2016); WrpA, a flavodoxin-

like protein (Peck et al., 2016); and a dimeric enzyme, alkaline

phosphatase (AP), bound to its transition-state analog

(Herrou et al., 2016). Despite this diversity, we found that

multiple models of intramolecular conformational dynamics

were unable to explain the observed diffuse scattering in all

three systems. By contrast, models of simpler dynamics,

including rigid-body and liquid-like motions, consistently

showed modest correlation with the experimental signal when

correlations were confined to the biological unit. The

conventional form of the liquid-like motions model, in which

correlations span neighboring protein molecules in the crystal,

significantly improved the agreement both quantitatively and

qualitatively, but still did not fully account for the observed

signal. This comprehensive comparison both reconciles

opposing viewpoints about the principal physical origins of

diffuse scattering and specifically identifies intermolecular

correlations as a critical component of the underlying

disorder. Further, these findings anticipate that deconvolving

the intermolecular contribution from the signal will be

required to enable the future application of diffuse scattering

to probe biological motions or to improve static structure

inference.

2. Methods

2.1. Reconstruction of three-dimensional diffuse scattering
maps

For each experimental data set, the Bragg reflections were

indexed by XDS (Kabsch, 2010b). Refined parameters from

XDS were then used to determine the reciprocal-space co-

ordinates of each pixel in every diffraction image. Measured

intensities were corrected for polarization of the X-ray beam

(Hura et al., 2000) and the difference in solid angle subtended

by pixels at different scattering angles (Wall, 2009). Per-image

scale factors from XDS were applied to correct for differences

in overall intensity across the rotation range (Kabsch, 2010b).

For data sets collected on a PILATUS detector, parallax

broadening was also accounted for, as implemented in DIALS

(Waterman et al., 2016; Winter et al., 2018). No Lorentz

correction was applied, as pixel intensities were averaged

rather than integrated, and the diffuse features were observed

to vary gradually in reciprocal space. Under these conditions,

the volume of reciprocal space integrated by each pixel only

needs to be corrected for the solid angle subtended, and not

the arc length that the pixel traverses owing to rotation of the

crystal (Boysen & Adlhart, 1987).

After correcting for geometrical distortions, Bragg peaks

were removed by implementing the spot-prediction algorithm

described in Kabsch (2010a). Pixels predicted to be spanned

by a Bragg reflection were masked if their intensity exceeded

three standard deviations above the mean intensity of neigh-

boring pixels outside the predicted reflection region in a

30 � 30 pixel window centered on the reflection. Prior studies

have replaced masked pixel intensities by the intensities from

adjoining pixels (Polikanov & Moore, 2015) or pre-filtered

images (Ayyer et al., 2016), but the strategy of masking

without replacement was found to maintain an adequate

signal-to-noise ratio for map voxels that coincided with Miller

indices (Supplementary Fig. S1, solid and dashed lines). To

ensure the complete removal of Bragg contaminants, an

additional step of masking was performed to eliminate pixels

whose intensities exceeded the median radial intensity by

more than five times the median absolute deviation of that

resolution shell. In the case of WrpA, pixels were additionally
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masked if they fell within a region contaminated by scattering

from the cryo-loop and exceeded the median radial intensity

by more than 2.5 times the median absolute deviation of the

resolution shell. Supplementary Fig. S2 shows the results of

this Bragg masking procedure for a representative image from

CypA.

The radial intensity profiles of the images were then

compared for uniformity to ensure that independent

measurements of equivalent positions in reciprocal space were

on the same scale prior to merging. As noted above, variation

in the total protein scattering across the rotation range, owing

to fluctuations in the illuminated crystal volume and incident

beam intensity for instance, was corrected by applying XDS

scale factors used to similarly normalize the Bragg intensities.

We assumed that large, radially symmetric changes in the

measured scattering as the crystal is rotated originate from

sources of noncrystalline scattering instead, such as solvent or

coating oil. Based on this assumption, the largest variance

components between the radial intensity profiles were deter-

mined and removed from each image. This approach was

validated by comparing symmetry-equivalent positions in the

corrected maps, which were found to be consistent. This

observation supports our initial assumption that large-

variance components were indeed caused by scattering from

sources other than the protein crystal.

In the case of CypA, a radially symmetric peak at |q| =

1.3 Å�1 was variably observed, consistent with scattering from

the Paratone oil in which the crystal was coated prior to data

collection. In images without visible Paratone contamination,

the experimental radial intensity profiles approximately

followed a second-degree polynomial in the neighboring

region of 0.63 < |q| < 1.88 Å�1. Based on this observation, the

radial intensity profile for each image was fitted in this region

of |q| to the sum of a second-degree polynomial and a scaled

Paratone profile: a|q|2 + b|q| + c + mIref,Paratone(|q| � q0). The

reference Paratone profile, Iref,Paratone(|q|), was derived from

the computed structure factors for noncrystalline Paratone N

(Holton, 2016). Fitted parameters associated with the Para-

tone profile were a multiplicative scale factor, m, and an offset

in |q|, q0. The latter parameter accounts for anisotropy in the

distribution of the Paratone coating the crystal; optimized

values of q0 were small, with a mean of q0 = 0.007 Å�1 across

the 360 images in the CypA data set. The resulting Paratone

profile was then subtracted from each image. Principal

component analysis was performed to remove residual radial

variance from the corrected images, and a background profile

for each image was generated from the sum of the first two

principal components, which were scaled by their associated

eigenvalues and projected onto the radial intensity profile of

the image. The intensity correction for each pixel was then
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Table 1
Data collection, model and map statistics.

CypA AP WrpA

Data-collection and Bragg statistics†
Space group P212121 P6322 P4222
Unit-cell parameters

a, b, c (Å) 42.9, 52.4, 89.1 161.3, 161.3, 139.4 61.3, 61.3, 128.7
�, �, � (�) 90.0, 90.0, 90.0 90.0, 90.0, 120.0 90.0, 90.0, 90.0

Wavelength (Å) 0.9795 0.9795 0.9787
Oscillation range (�) 0.5 0.15 1.0
Data-collection temperature (K) 273 100 100
Beam divergence SD (�) 0.0417 0.0285 0.0339
Mosaicity (�) 0.106 0.136 0.197
Resolution range (Å) 44.57–1.20 (1.24–1.20) 49.36–2.00 (2.07–2.00) 44.38–2.51 (2.60–2.51)
Multiplicity 5.8 (4.8) 6.3 (6.5) 12.7 (12.7)
Completeness (%) 93.6 (85.8) 94.0 (92.7) 99.6 (98.5)
hI/�(I)i 11.3 (3.9) 26.2 (3.6) 25.5 (4.6)
Rmerge 0.113 (0.504) 0.045 (0.348) 0.061 (0.520)
Rmeas 0.123 (0.564) 0.049 (0.375) 0.063 (0.542)
CC1/2 0.989 (0.872) 1.000 (0.972) 0.999 (0.962)
Wilson B (Å2) 16.1 31.4 64.7
Detector PILATUS 6M PILATUS 6M MAR Mosaic 300
SBGrid ID 68 456 203

Structure-refinement statistics
Resolution range (Å) 44.57–1.20 49.36–2.00 44.37–2.50
No. of non-H atoms 1419 6731 1237
Average B factor (Å2) 21.4 46.2 77.0
Solvent content (%) 56 62 52
Rwork/Rfree 0.169/0.177 0.192/0.231 0.235/0.277

Diffuse scattering statistics
Resolution range (Å) 93.4–1.5 75.2–2.5 69.3–2.1
CCFriedel pairs‡ 0.979 (0.623) 0.954 (0.695) 0.988 (0.689)
CCunsym, Friedel-sym‡§ 0.996 (0.915) 0.994 (0.957) 0.997 (0.930)
CCunsym, Laue-sym‡§ 0.993 (0.862) 0.984 (0.887) 0.994 (0.827)
Completeness (%) 98.7 96.1 100.0

† Values in parentheses are for the highest resolution shell. ‡ For values in parentheses, the average radial intensity was subtracted prior to applying symmetry
operations. § Correlation coefficient between the unsymmetrized map and the map after applying the indicated symmetry operations.



estimated by linear interpolation from these background

profiles and subtracted from each image. In the case of WrpA,

the first principal component was similarly used to remove

variance in the radial intensity distributions across the rotation

range. No further corrections were applied to the AP

diffraction images.

Diffuse scattering maps were constructed as three-

dimensional grids in reciprocal space whose nodes oversample

Miller indices by a factor of three along each lattice direction.

Corrected intensities were binned into voxels centered on

these nodes, and the mean pixel intensity of each voxel was

used to estimate the intensity at each node. The signal-to-noise

ratio was estimated as the mean divided by the standard

deviation of the intensities binned into each voxel and is

shown across resolution shells in Supplementary Fig. S1. Maps

were symmetrized by averaging the intensities of Laue- and

Friedel-equivalent voxels, followed by subtraction of the

interpolated radial intensity. If symmetrization is justified, this

order of operations will provide a better estimate of the

intensities used to compute the radial average profile; if not, it

will introduce bias. However, reversing the symmetrization

and radial average subtraction steps was not observed to affect

the results, with all correlation coefficients (CCs) observed to

be within 0.01 of their prior values. A constant value was then

added uniformly to each symmetrized, radial average-

subtracted map to ensure that all intensities were positive. The

code used to generate the maps is available at https://

github.com/apeck12/diffuse.

2.2. Bragg data processing

Refined structural models from the analysis of the Bragg

component of these data sets have previously been reported

(Van Benschoten et al., 2016; Peck et al., 2016; Herrou et al.,

2016). However, because the diffuse maps were generated

using refined parameters and a modified version of the spot-

prediction algorithm from XDS, the Bragg data were repro-

cessed to maximize consistency between the treatment of the

Bragg and diffuse signals. The Bragg data were indexed,

integrated and scaled with XDS (Kabsch, 2010b); statistics are

shown in Table 1. For CypA, molecular replacement was

performed with Phaser (McCoy et al., 2007) using PDB entry

2cpl (Ke, 1992) as a search model. This was followed by five

macrocycles of refinement in PHENIX (Adams et al., 2010) as

previously described (Van Benschoten et al., 2016). For AP,

molecular replacement was performed with Phaser using wild-

type AP (PDB entry 3tg0; Bobyr et al., 2012) stripped of

nonprotein atoms as the search model. As in Peck et al. (2016),

zinc ions at full occupancy and a tungstate ion and water

molecules at partial occupancy were manually modeled into

the residual electron density in each active site. Automated

refinement was performed using REFMAC5 (Murshudov et

al., 2011). For WrpA, molecular replacement was performed

with Phaser using PDB entry 5f51 as a search model (Herrou

et al., 2016). This was followed by alternating rounds of

manual refinement in Coot (Emsley et al., 2010) to model a

sulfate ion and water molecules, and automated refinement in

Phenix. The Rwork/Rfree values of the final refined models were

similar to those deposited previously (Van Benschoten et al.,

2016; Peck et al., 2016; Herrou et al., 2016). Diffraction images

for the CypA, AP and WrpA data sets are available in the

SBGrid Data Bank, with accession Nos. 68 (Fraser, 2015), 456

(Peck et al., 2017) and 203 (Herrou & Crosson, 2015),

respectively.

2.3. Diffuse scattering predictions from real-space models of
disorder

Experimental diffuse scattering maps were compared with

the following disorder models.

(i) A Gaussian elastic network model, a commonly used

normal-mode decomposition of the protein motions based on

the structure. Normal modes were computed using a uniform

spring constant for all atom pairs within a given distance (Bray

et al., 2011), and the predicted interatomic correlations were

renormalized by the B factors from the refined models of the

Bragg data.

(ii) Conformational ensemble models, which model config-

urational disorder as a discrete set of probability-weighted

states (Guinier, 1963). Conformational states were inferred by

analyzing the crystal electron density from the Bragg data.

(iii) Rigid-body rotations, in which the atoms in an asym-

metric unit rotate as a unit around a random, isotropically

oriented axis with a normally distributed rotation angle

(Moore, 2009).

(iv) Rigid-body translations, in which the atoms in an

asymmetric unit translate as a unit. Translations sample an

isotropic Gaussian distribution (Moore, 2009; Ayyer et al.,

2016).

(v) Liquid-like motions, in which correlations between

atoms decay exponentially as a function of interatomic

distance (Wall et al., 1997; Clarage et al., 1992). Two forms of

this model were considered: a variant in which correlations

were confined within the boundaries of the asymmetric unit

and the conventional form of this model, in which correlations

extend between neighboring protein molecules, thereby

crossing asymmetric unit and unit-cell boundaries.

For all models except for the conventional liquid-like

motions model, correlations were assumed to be confined

within the boundaries of the asymmetric unit, with no coher-

ence between neighboring molecules in the crystal lattice. For

the systems considered here, the chosen asymmetric unit

contained a single copy of the biological unit.

Diffuse scattering maps were simulated using Thor (Lane,

2017), a software package for simulating and analyzing X-ray

scattering experiments. For consistency with the experimental

maps, the average radial intensity was subtracted from the

predicted maps. Best-fit parameters for each model were

determined by scanning over the disorder parameter(s) to

maximize the CC with the experimental map. Agreement was

assessed by the CC between the predicted and experimental

maps, with each voxel downweighted by its multiplicity. For

visual comparisons, a multiplicative scale factor and constant

platform were applied to place the predicted maps on the

research papers

214 Ariana Peck et al. � Diffuse scattering from protein crystals IUCrJ (2018). 5, 211–222



research papers

IUCrJ (2018). 5, 211–222 Ariana Peck et al. � Diffuse scattering from protein crystals 215

Figure 1
Reciprocal-space maps from experimental diffuse scattering. The diffuse scattering in diffraction images collected for (a) CypA, (b) AP and (c) WrpA
was reconstructed into a reciprocal-space map for each system. These maps take the form of three-dimensional grids that are oversampled by a factor of
three relative to the Miller indices along each lattice axis. Left: an example diffraction image from each data set. Right: central slices through reciprocal
space are visualized for each unsymmetrized map in the top panels. The lower panels show these slices after symmetrization of Friedel- and Laue-
equivalent voxels, followed by subtraction of the average radial intensity profile to highlight anisotropic features. For the symmetrized maps, the color
scales do not span the entire range of voxel intensities; this saturates a subset of voxels but improves the overall contrast.



same intensity scale as the experimental maps, unless other-

wise noted. Disorder models are described in more mathe-

matical detail in the Supporting Information.

3. Results

3.1. The experimental maps exhibit Laue symmetry and
significant anisotropic features

We analyzed three crystallographic data sets collected by

the rotation method for which diffuse scattering was visible in

the raw diffraction images (Fig. 1, left). The Bragg data were

separated and processed using standard protocols, yielding

refined structural models similar to those published previously

(Van Benschoten et al., 2016; Peck et al., 2016; Herrou et al.,

2016). The diffuse scattering was isolated and processed to

generate three-dimensional maps in reciprocal space (Fig. 1,

upper right panels). The maps oversample the diffuse

scattering signal along each lattice direction by a factor of

three relative to the Miller indices, which enables these maps

to resolve correlations that extend across multiple unit cells.

Overall statistics for the diffuse scattering maps are shown

in Table 1 and statistics by resolution shell are shown in

Supplementary Fig. S1. The intensities of voxels related by

Friedel’s law and Laue symmetry showed significant correla-

tion in all cases, supporting symmetrization of the maps by

averaging the intensities of these symmetry-equivalent voxels.

Currently there is no established convention for determining

when the symmetrization of diffuse maps is justified, so we

considered the CC between symmetry-related voxels to be

significant based on the threshold value of CC1/2 used to

determine resolution cutoffs for the Bragg data (Karplus &

Diederichs, 2012). Although these cases are not precisely

analogous, this enhances the consistency between Bragg and

diffuse data-processing techniques. To remove the intensity

contributions from uncorrelated disorder, which includes

solvent and air scattering in addition to uncorrelated protein

disorder, the average radial intensity was subtracted from each

map. The resulting maps were characterized by significant

anisotropic features indicative of correlated disorder (Fig. 1,

lower right panels).

3.2. Models of conformational dynamics do not correlate
with the experimental maps

Models of intramolecular disorder that predict idiosyncratic

configurational dynamics, the type of motions that are most

likely to be related to biological function, were assessed for

their ability to reproduce the experimental signal. A general

class of these models assumes that interatomic displacements

are small and sample a Gaussian distribution, and can thus be

described by a covariance matrix. Here, covariance matrices

were predicted from normal-mode analysis of each protein

structure in torsion-angle space, using a standard form of the

elastic network model that has been validated against Bragg-

derived crystal structures (Bray et al., 2011). Interatomic

covariances were renormalized by the refined B factors such

that the predicted amplitudes of motion were consistent with

the structural models of the Bragg data. These elastic network

models predicted distributions of strongly covarying atom

pairs that were non-uniform and often spatially localized in

the protein (Fig. 2, left, and Supplementary Fig. S3). For all

three systems, the diffuse scattering predicted by these

network models was unable to reproduce the observed signal,

which was apparent both in the low CC and by visual

comparison of the predicted and experimental 0kl planes

(Fig. 2).

Non-Gaussian ensemble models inferred from the Bragg

data were also evaluated to determine whether such confor-

mational heterogeneity contributes measurably to the diffuse

signal. In the case of CypA, multiconformer modeling of the
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Figure 2
Elastic network models of Gaussian disorder. The highest and lowest
magnitude entries in the covariance matrix are overlaid as blue and red
cylinders, respectively, on the refined atomic coordinates for (a) CypA,
(b) AP and (c) WrpA. The 0kl slices of the predicted diffuse scattering
maps are shown on the right, with the overall CC noted in black. The
color scales differ from Fig. 1 to enhance visualization of the features.



electron-density map revealed a minor population of alter-

native rotamers for a series of residues that radiate from the

active site (Fig. 3a, left; van den Bedem et al., 2009). This

observation of a correlated rotameric switch is consistent with

prior analysis of CypA crystal structures (van den Bedem et

al., 2009; Fraser et al., 2009, 2011; Keedy et al., 2015). Another

ensemble was generated from the loop conformations popu-

lated by residues 79–83 in CypA crystals from which data were

collected at or below 180 K (Fig. 3b, left; Keedy et al., 2015).

Although only one of these conformations is populated in the

data set analyzed here (which was collected at 273 K), this

model offers a distinct example of a type of

configurational disorder that is prevalent in

proteins. A third ensemble model was

suggested by the occupancy disorder

observed in AP, for which the Bragg coor-

dinates were refined with a half-occupied

tungstate ion in each active site. However,

the Bragg data cannot distinguish between

this model of partial occupancy and a model

of correlated occupancy in which only one

AP monomer is tungstate-bound at a given

time (Fig. 3c, left). Whereas partial occu-

pancy contributes to radially symmetric

diffuse scattering, correlated occupancy

yields anisotropic features.

Diffuse scattering maps were predicted

for each two-state model by Guinier’s

equation (Guinier, 1963); the 0kl planes are

shown in Fig. 3. The predicted maps from

the CypA ensemble models are distinct from

one another, but both exhibit features

spread over much broader regions of reci-

procal space (owing to the short length scale

of the disorder in real space) than observed

experimentally (Fig. 1a versus Figs. 3a and

3b). The map predicted by the correlated

occupancy model shows a unique checkered

pattern (Fig. 3c), but these regular features

are similarly larger than the features

observed in the experimental map for AP

(Fig. 1c). Although diffuse scattering has

been suggested as a route for validating

conformational heterogeneity modeled

during Bragg refinement (Moore, 2009;

Wilson, 2013), these ensemble models do

not appreciably account for the diffuse

signal in these data sets (Table 2).

3.3. Short-range rigid-body and liquid-like
motions models show modest agreement
with the observed signal

The inability of these elastic network and

ensemble models to reproduce the experi-

mental maps prompted us to evaluate other

disorder models which predict simpler
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Table 2
Correlation coefficients between predicted and experimental maps.

Model

Rigid-body
rotations

Rigid-body
translations

Liquid-like
motions†

Elastic
network Ensemble

CypA 0.46 0.44 0.48 | 0.71 0.17 �0.02, �0.04‡
AP 0.26 0.32 0.32 | 0.67 0.09 0.00§
WrpA 0.44 0.41 0.48 | 0.67 0.21 —

† Values before and after the vertical bar indicate the asymmetric unit-confined and
‘with neighbors’ models, respectively. ‡ Rotamer switch and disordered loop models,
respectively. § Correlated occupancy model.

Figure 3
Ensemble models inferred from the Bragg data. (a) Multi-conformer modeling of the CypA
electron-density map predicts a minor population of alternate conformers (purple) that radiate
from the active site. (b) CypA data sets collected at 180 K and below show two loop
conformations between residues 79 and 83; the visualized loop conformations are those
modeled in the 100 K data set. Above 180 K, the conformation shown in white is not
populated. (c) Model of AP assuming that one active site is tungstate-bound (left) while the
other is occupied by water molecules that coordinate the active-site metal ions (right). The 0kl
plane of the predicted map from each ensemble model is shown on the right, with a different
color scale from Fig. 1 to enhance visual contrast. The overall CC between the experimental
map and each predicted map is noted in black.



dynamics of rigid-body or liquid-like motions. As in the

previous section, the models described below assume that

correlations do not extend beyond the boundaries of indivi-

dual asymmetric units. Additionally, the models evaluated in

this section share the symmetrized molecular transform –

specifically, the Fourier transform of the individual protein

molecule, incoherently summed over its orientations in the

unit cell – as their basis, which, as discussed below, raises the

possibility of using the diffuse scattering signal for static

structural inference.

The diffuse scattering predicted by rigid-body rotational

disorder is related to the variance of an ensemble of rotated

structure factors. Visually, this type of disorder has the effect

of blurring features of the molecular transform in concentric

shells of reciprocal space. An isotropic version of this model

showed modest correlation with the CypA and WrpA maps

(Fig. 4). For both maps, the best-fit values for the standard

deviation of the angle of rotation were of the order of 2–3�

(Table 3), consistent with a blurring effect that spans a few

voxels of these reciprocal-space maps. The best-fit value for

the AP map was smaller (0.9�), yielding minimal radial blur-

ring that could be resolved by the coarseness of the map’s

voxels, which along with the modest correlation suggested that

rotational disorder was inconsistent with the observed signal.

Relative to CypA and WrpA, AP has more crystal contacts

that may inhibit this type of disorder. It is also possible that

the finer slicing during the collection of the AP data mini-

mized blurring, but radial blurring owing to data collection

versus as a result of rotational disorder in the crystal cannot be

distinguished by the isotropic model considered here.

By contrast, the diffuse scattering produced by rigid-body

translational disorder is the molecular transform scaled by the

Debye–Waller factor (Moore, 2009; Ayyer et al., 2016). For all
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Table 3
Refined model parameters.

Model

Bragg
Wilson B†

Rigid-body
translations

Liquid-like
motions‡

Rigid-body
rotations

� (Å) � (Å) � (Å) �§ (Å) � (�)

CypA 0.45 0.68 0.36 | 0.39} 18 | 18 2.9
AP 0.63 0.63 0.40 | 0.48 118 | 53 0.9
WrpA 0.90 1.05 0.54 | 0.61 15 | 18 3.4

† The Bragg � was computed from the Wilson B factor. ‡ The values to the left and
right of the vertical bar indicate the asymmetric unit-confined model and conventional
model ‘with neighbors’, respectively. § The correlation length affects the volume in
reciprocal space across which intensities of the crystal transform are blurred.
Consequently, this parameter may be sensitive to how finely the diffuse signal is
sampled. However, fitting the LLM to experimental maps constructed with oversampling
by a factor of five relative to the Miller indices yielded similar values of �, suggesting that
the experimental features are sufficiently resolved with oversampling by a factor of
three. } Prior analysis of this data set found best-fit parameters of � = 0.38 Å and
� = 7.1 Å for the model with neighbors (Van Benschoten et al., 2016). However, in that
study the diffuse signal was sampled at integral Miller indices and diffuse halos around
Bragg peaks were suppressed.

Figure 4
Comparison of models of rigid-body and liquid-like motions. For the indicated model, parameters that tune the disorder were fitted to maximize overall
correlation with the experimental map. The predicted 0kl planes for the best-fit maps are shown, with the experimental 0kl planes displayed in the
rightmost column for comparison. The overall CC between the experimental map and each predicted map is noted in black. As with Fig. 1, the color
scales span a partial range of the voxel intensities to improve visual contrast.



three maps, this disorder model showed nontrivial correlation

with the experimental maps. Further, the best-fit values of the

isotropic displacement parameter �, which reports on the scale

of displacement, were within twofold of the value predicted by

the Bragg Wilson B factor (Fig. 4, Table 3), suggesting that the

diffuse signal is consistent with scattered intensity missing in

the Bragg data owing to disorder. The fit was modestly

improved by imposing exponential decay on interatomic

covariances, thereby switching from a rigid-body to a liquid-

like description of correlated dynamics (Fig. 4). This model of

asymmetric unit-confined liquid-like motions predicted similar

though consistently smaller values for the isotropic displace-

ment parameter and, in the case of CypA and WrpA, a

correlation length roughly one third to one half the dimen-

sions of the protein molecule (Table 3). In the case of AP, the

best-fit correlation length spanned the longest dimension of

the protein, consistent with the lack of improvement in CC: in

the regime of correlation lengths longer than the protein unit,

the diffuse scattering predictions of the liquid-like motions

and rigid-body translational disorder models converge.

3.4. Speckles indicate long-range correlated disorder that
crosses unit-cell boundaries

Of the models considered above, in no case does the

correlation coefficient between the predicted and experi-

mental map exceed 0.5 (Table 2, Supplementary Fig. S4).

Visual inspection suggests that a feature that these models

systematically fail to reproduce is the observed ‘speckles’:

periodic spikes in intensity that appear superimposed on

diffuse scattering features that span larger volumes in recip-

rocal space (Figs. 5a and 5b, insets). Such speckles arise from
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Figure 5
Speckled features of the experimental maps. The insets highlight the characteristic speckles for the 0kl planes of the (a) CypA and (b) AP maps. In (c)–
( f ), maps were reconstructed or computed with oversampling by a factor of five along each lattice direction relative to integral Miller indices. Data were
binned into 20 resolution shells, and the median profile for the intensity as a function of �q, the distance from reciprocal-lattice sites, is shown for each
shell. Intensity profiles were normalized such that the intensity value for voxels that coincided with reciprocal-lattice sites (�q = 0) was unity. For each
experimental map, curves with a 1/�q2 (dashed blue) or a 8��3/(1 + �2�q2)2 (dashed red) dependence, as predicted by the phonon and liquid-like motions
models, respectively, were fitted to the intensity profile in the lowest resolution shell (red points). For comparison with models whose basis is the
molecular transform, intensity profiles for the CypA molecular-transform map are shown in (c).



enhanced scattering at reciprocal-lattice positions, i.e. the

estimated diffuse intensity underneath Bragg peaks, and have

previously been noted in studies that analyzed the diffuse

scattering signal at fractional Miller indices (Glover et al.,

1991; Polikanov & Moore, 2015; Meinhold et al., 2007).

Because the length scale of disorder in real space determines

the spacing of diffuse features in reciprocal space, the need to

oversample the diffuse signal relative to integral Miller indices

to observe these speckles indicates that they arise from

correlations that extend beyond the boundaries of a single unit

cell. The models examined in prior sections assumed corre-

lated disorder confined within asymmetric units and so were

unable to generate this type of signal.

We therefore considered two models of disorder in which

correlations extend across unit-cell boundaries to determine

whether accounting for intermolecular correlations improved

predictions of the total diffuse signal, including these speckled

features. The first of these models is the traditional liquid-like

motions model, in which the basis is the crystal rather than the

molecular transform. For each system, this model of long-

range liquid-like motions showed considerable agreement

with the experimental signal, qualitatively reproducing the

speckled features and quantitatively yielding the highest CC

of the models considered here (Fig. 4, Table 2). This improved

correlation is observed not just at the reciprocal-lattice sites

where the speckles are centered, but also at the map voxels

farthest from integral Miller indices (Supplementary Fig. S4b).

The refined model parameters for the two liquid-like motions

models were similar in most cases (Table 3), indicating that the

consistent increase in CC between the short-range and long-

range models resulted almost exclusively from taking into

account correlations across neighbors in the crystal, which

contribute to the diffuse signal throughout reciprocal space.

Further support for this liquid-like motions model comes from

a comparison of the predicted and experimental autocorrela-

tion functions, from which correlation lengths in real space can

be inferred. Peaks consistent with the unit-cell dimensions,

and thus indicative of correlations extending across unit-cell

boundaries, were observed in the autocorrelation function of

each experimental map and the long-range liquid-like motions

model. By contrast, models in which correlations were

confined within the boundaries of the asymmetric unit did not

reproduce these characteristic peaks (Supplementary Fig. S5).

An alternative model proposed to account for speckled

features invokes acoustic lattice vibrations from phonon-

induced inelastic scattering (Glover et al., 1991; Polikanov &

Moore, 2015; Meinhold et al., 2007). One prediction of this

model is that the diffuse intensity will decrease proportional to

the square of the distance from reciprocal-lattice positions, �q.

Such a trend is absent from the molecular transform and its

derivative models (Fig. 5c), in which disorder is confined

within the boundaries of asymmetric units. Although quali-

tatively the phonon model accounts for the observed halos

around Bragg peaks, quantitatively the experimental fall-off in

intensity differs from the 1/�q2 dependence predicted for

single-phonon interactions and is better fitted by the depen-

dence predicted by the liquid-like motions kernel (Figs. 5d, 5e

and 5f, dashed blue versus red; Glover et al., 1991; Meinhold et

al., 2007). More complex phonon models, either from

extending the spectrum to include optical modes or from

accounting for multiple-phonon effects, are predicted to cause

the diffuse intensity to vary more slowly with distance from

reciprocal-lattice sites (Glover et al., 1991). However, there is

currently no robust method for predicting the diffuse scat-

tering produced by phonons in macromolecular crystals. In the

absence of such a method and an established procedure for

simulating competing acoustic modes, let alone optical modes

or the effects of multiple-phonon interactions, we cannot fully

assess agreement with the phonon model versus other types of

long-range disorder.

4. Discussion

Here, we present a unified framework of the principal disorder

models that have previously been used to interpret diffuse

scattering, and compare their ability to reproduce the signal

observed in three experimental data sets. Consistent with

previous work, the above analysis finds that rigid-body and

liquid-like motions models exhibit modest correlation with the

experimental maps when correlated disorder is confined to the

asymmetric unit (Ayyer et al., 2016). Multiple models that

predict more complex intramolecular dynamics were also

considered, but showed minimal agreement with experiment

(Table 2). Experimentally observed speckles did not fit the

profile for phonon-induced lattice dynamics but, in agreement

with prior results, could largely be reproduced by the

conventional form of the liquid-like motions model, in which

disorder extends across neighboring asymmetric units and

thus unit-cell boundaries (Wall et al., 1997; Doucet & Benoit,

1987; Van Benschoten et al., 2016). None of the models

assessed here fully explained the experimental signal in these

data sets, which represent a range of crystallographic prop-

erties and biological functions. However, all three protein

systems were globular proteins, and it is possible that distinct

types of disorder underlie the diffuse scattering from crystals

of membrane and fibrous proteins.

Past interest in diffuse scattering has primarily stemmed

from the premise that these data probe dynamics related to

biological function (Wall, Adams et al., 2014; Héry et al., 1998;

Kolatkar et al., 1994; Chacko & Phillips, 1992; Meinhold &

Smith, 2005a,b, 2007; Wall, Van Benschoten et al., 2014; Van

Benschoten et al., 2016). However, the experimental maps

showed minimal correlation with the elastic network and

ensemble models assessed here. These specific models repre-

sent a limited subspace of possible models of conformational

dynamics that are consistent with the Bragg data, and it is

likely that refining the parameters of the models could

improve agreement with the diffuse signal. However, the

observation of experimental features indicative of correlations

that span neighboring molecules in the crystal cautions against

the assumption that the dominant signal originates from the

same protein motions that occur under physiological condi-

tions, which these models attempt to capture. Models of

disorder that account for both intermolecular and intramole-
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cular correlations will thus be needed to resolve the contri-

butions of each to the observed signal, a prerequisite in

determining whether diffuse scattering is a useful method for

studying dynamics associated with biological function.

On the other hand, the ability of rigid-body and liquid-like

motions models to reproduce many experimental features

suggests that diffuse scattering data could in some cases be

useful for resolution extension or phase retrieval. These

models share the molecular or crystal transform as their basis,

and thus yield a scaled or blurred image of this transform in

the diffuse scattering map. The general observation that the

diffuse scattering does not directly reflect the molecular or

crystal transform, but at the very least the convolution of the

transform with some blurring function, must be better

understood and taken into account.

Extracting the molecular-transform signal will be particu-

larly challenging for maps that exhibit enhanced scattering at

reciprocal-lattice sites, as observed here. The conventional

liquid-like motions model, in which correlations are not

confined to the asymmetric unit but rather extend between

neighboring units in the crystal, best accounted for this

feature. However, in the linear approximation, this model is a

convolution of the disorder-free diffraction with a kernel that

is the Fourier representation of the disorder. Thus, this model

reports on the crystal transform, which is nonzero only at

integral Miller indices. It does not contain information about

the value of the molecular transform at fractional Miller

indices. Iterative phase-retrieval algorithms, such as those

recently used by Ayyer et al. (2016), require these non-integral

oversampled measurements to uniquely determine un-

measured phases (Sayre, 1952). Thus, the information present

in the liquid-like motions model could in principle be

employed for resolution extension, but not phase retrieval.

However, the liquid-like motions model is approximate, and a

more rigorous treatment of crystalline disorder may enable

measurement of an oversampled molecular transform from

the diffuse scattering. Despite this possibility, our results call

into question the practice of directly using a diffuse scattering

map for either resolution extension or iterative phasing in

cases that exhibit enhanced scattering at reciprocal-lattice

positions, a feature observed in all three systems we studied

and one that we have no physical or theoretical grounds to

mask or model separately from the remainder of the diffuse

signal. Precisely how to deconvolve useful signals from such

maps remains an open area of investigation.

The above analysis highlights the need for new models of

diffuse scattering, either to interpret biologically relevant

disorder or improve structure determination. If different

sources of disorder are largely uncoupled, their contributions

to the diffuse scattering will be approximately additive.

However, the absence of coupling between distinct types of

motions is not guaranteed, particularly in the context of a

crystal lattice. Thus, challenges lie ahead both in jointly

modeling distinct sources of disorder and in deconvolving

weak signals from dominant features. The search space for

such models is intractably large, so the number of acceptable

free parameters and constraints will require careful treatment.

Ideally, it would be possible to assert a model that is sophis-

ticated enough to report interesting and idiosyncratic disorder

in different systems (such as functional motions), but simple

enough (i.e. with few independent parameters) to infer

directly from the observed data.

An alternative route is detailed forward modeling, such as

molecular dynamics, which has previously been used to

analyze diffuse scattering (Faure et al., 1994; Héry et al., 1998;

Wall, Van Benschoten et al., 2014). Molecular dynamics

concurrently simulates multiple types of disorder, but this

method does not lend itself to refining the contributions of

different kinds of disorder to fit experimental data. In the

common case where such simulations do not satisfactorily

reproduce experimental observations, it is challenging to

modify them in a principled manner so that they do.

Combined with the computational expense of these methods,

it seems prudent to seek simple explanations and models for

analyzing diffuse scattering before comparing with atomic

simulation. The incisive test of any model will come from its

predictive power: confirming that a specific physical pertur-

bation of a crystal system results in the predicted change to the

diffuse signal.

5. Conclusions

Here, we investigated the physical origins of the diffuse scat-

tering observed from three protein crystals. A comprehensive

comparison of previously proposed models critically

addressed the nature and length scale of the disorder under-

lying this signal. Multiple models of intramolecular confor-

mational dynamics, including ensemble models inferred from

the Bragg data, were unable to explain the observed diffuse

scattering. While models of rigid-body and liquid-like motions

of individual proteins consistently showed modest agreement

with experiment, a model of extended liquid-like motions

across the crystal achieved high correlations with the three

data sets analyzed (CC ’ 0.7). This analysis indicates that

accounting for the intermolecular component of the disorder

will be critical to successfully model this signal, which in turn is

necessary to interpret diffuse scattering in order to either

probe conformational dynamics or enhance static structure

inference.
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