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For many years, quasicrystals were observed only as solid-state metallic alloys,

yet current research is now actively exploring their formation in a variety of soft

materials, including systems of macromolecules, nanoparticles and colloids.

Much effort is being invested in understanding the thermodynamic properties of

these soft-matter quasicrystals in order to predict and possibly control the

structures that form, and hopefully to shed light on the broader yet unresolved

general questions of quasicrystal formation and stability. Moreover, the ability

to control the self-assembly of soft quasicrystals may contribute to the

development of novel photonics or other applications based on self-assembled

metamaterials. Here a path is followed, leading to quantitative stability

predictions, that starts with a model developed two decades ago to treat the

formation of multiple-scale quasiperiodic Faraday waves (standing wave

patterns in vibrating fluid surfaces) and which was later mapped onto systems

of soft particles, interacting via multiple-scale pair potentials. The article

reviews, and substantially expands, the quantitative predictions of these models,

while correcting a few discrepancies in earlier calculations, and presents new

analytical methods for treating the models. In so doing, a number of new stable

quasicrystalline structures are found with octagonal, octadecagonal and higher-

order symmetries, some of which may, it is hoped, be observed in future

experiments.

1. Introduction and outline

The scope of research on quasicrystals1 has greatly expanded

in the last decade, owing mainly to the advent of a host of new

experimental systems exhibiting aperiodic structures with

long-range order. The ever-growing variety of stable solid-

state quasicrystals (Tsai, 2003, 2008; Janssen et al., 2007;

Steurer & Deloudi, 2009), where quasiperiodic long-range

order occurs on the atomic scale, has been joined in recent

years by a host of exciting new soft-matter systems that exhibit

this quasiperiodicity on a larger mesoscopic scale – typically

from a few nanometres to a few micrometres (Zeng et al., 2004;

Ungar & Zeng, 2005; Takano et al., 2005; Hayashida et al.,

2007; Percec et al., 2009; Talapin et al., 2009; Ungar et al., 2011;

Dotera, 2011, 2012; Fischer et al., 2011; Xiao et al., 2012; Zhang

& Bates, 2012; Bodnarchuk et al., 2013; Chanpuriya et al.,

2016). In addition to having promising applications, particu-

larly as metamaterials in the optical domain, these substances

give us the opportunity to study quasicrystals in ways that

were impossible before. The obvious reason for this is indeed

the fact that their building blocks – rather than being indivi-

dual atoms – are composed of large synthesized particles such

1 For definitions, basic terminology and some background on the symmetry-
breaking transition from a liquid phase to a quasicrystal see, for example,
Lifshitz (2003, 2007, 2011).
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as macromolecules, nanoparticles and colloids. At these

dimensions it may be possible to track the dynamics of indi-

vidual particles, manipulate their positions or possibly design

the interaction between them. If so, an obvious question to ask

is how to design this interaction to obtain a particular desired

quasicrystal. To answer this question, one clearly requires an

understanding of the spontaneous formation and subsequent

stability of such materials.

Phenomenological Landau theories based on ad hoc free

energies have been widely applied to study the thermo-

dynamics of phase transitions (Alexander & McTague, 1978)

and to explain the stability of different phases, including

quasicrystals (Mermin & Troian, 1985; Bak, 1985; Kalugin et

al., 1985; Jaric, 1985; Gronlund & Mermin, 1988; Narasimhan

& Ho, 1988). In such models, one identifies an order para-

meter field – which is often a simple scalar function �(r) that

describes the relative deviation ½cðrÞ � c�=c of a coarse-grained

density c(r) of a material from its average value c – and uses

generic symmetry arguments to formulate a free-energy

functional F½�ðrÞ�, expressed in powers of the order para-

meter and its gradients. One assumes that the equilibrium

phase is the one that minimizes F , and then all that remains is

to find out which structures could minimize such a free energy,

or conversely, how to tweakF to obtain the desired structures.

For a textbook introduction see, for example, chapter 4 of the

book by Chaikin & Lubensky (1995). These models are

particularly attractive for soft-matter systems (de Gennes &

Prost, 1993; Gompper & Schick, 1994) owing to their meso-

scopic building blocks, which render the long-wavelength

gradient expansion and the truncation at low order a more

valid approximation than in the atomic case, especially when

the transition is only weakly first-order.

Important insight into the stability question emerged when

Edwards & Fauve (1993) discovered that parametrically

driven liquid surfaces, exhibiting standing-wave patterns

known as Faraday waves, can become quasiperiodic when

driven by a superposition of two temporal frequencies [see

also Kudrolli et al. (1998), Gollub & Langer (1999) and Arbell

& Fineberg (2002)]. The realization that these temporal

frequencies impose two spatial length scales on the stable

structures that form prompted Lifshitz & Petrich (1997),

henceforth LP, to generalize the Swift–Hohenberg equation

(Swift & Hohenberg, 1977) and introduce a rather simple

Landau free-energy expansion (or a Lyapunov functional) of a

scalar field �(r) in two dimensions of the form

FLP ¼
c

2

Z
r

2
þ 1

� �
r

2
þ q2

� �
�ðrÞ

� �2
dr

þ

Z
�
�

2
�ðrÞ2 �

�

3
�ðrÞ3 þ

1

4
�ðrÞ4

� �
dr: ð1Þ

In Section 2 we carefully review the basic features of this

free energy. Here, we only wish to point out its two main

features:

(i) The first integral in FLP, containing the non-local

gradient expansion, is responsible for selecting two length

scales, whose ratio is given by the parameter q. This is because

density modes with wavenumbers differing from unity or q

increase its value.

(ii) The second integral, containing the local expansion in

powers of the order parameter field, contains an odd, cubic,

power that breaks the Z2 symmetry of �!��. It is this term

that is responsible for stabilizing structures with two length

scales, depending on the value of q, as it has the ability to

lower the free energy if there exist triplets of density modes

with wavevectors that add up to zero. These are known in the

Faraday wave literature as triad resonances, and amount to

effective three-body interaction in the coarse-grained density

context.

In particular, by setting the value of the wavenumber ratio q

to

kn ¼ 2 cos
�

n
; ð2Þ

one can form triplets or ‘triangles’ containing two unit wave-

vectors separated by 2�/n and a third wavevector of length kn.

This may sufficiently lower the free energy of structures with

N-fold rotational symmetry (where N is equal to n or 2n for

even or odd n, respectively), making them the absolute

minimum of F LP . In Section 3 we repeat and extend the

calculations of LP of the free energies of candidate structures,

setting q = kn for different values of n and assuming LP’s limit

of c!1, which leads to exact length-scale selectivity. In

doing so we provide a more complete and definitive calcula-

tion, while correcting a few discrepancies in their results that

have caused some confusion over the years.

Owing to its simplicity and clarity in explaining the stability

of the decagonal (10-fold) and dodecagonal (12-fold) quasi-

crystals that it exhibits, as well as the ease with which one can

numerically simulate the dynamical equation that it generates

via simple relaxation @t� = ��FLP=��, the LP model has been

studied in depth since its original publication and extended in

a number of different ways (Wu et al., 2010; Mkhonta et al.,

2013; Achim et al., 2014; Jiang & Zhang, 2014; Jiang et al.,

2015, 2016, 2017; Subramanian et al., 2016).

Here we further extend the LP model as follows:

(i) Jiang & Zhang (2014) and Jiang et al. (2015) improved

on the free-energy calculations of LP by relaxing the exact

length selection imposed by the c!1 limit, using a high-

dimensional numerical evaluation scheme which they call the

‘projection method’. In Section 4 we introduce an approx-

imation scheme for calculating the LP free energy (1) with

finite c that allows competing structures to contain two length

scales that are roughly, rather than exactly, equal to unity or q,

thus improving their competitiveness and reducing the regions

in parameter space where the quasicrystalline structures are

stable. This qualitatively captures the importance of length-

scale selectivity, but is quantitatively accurate only in the

dodecagonal case. Nevertheless, it is much simpler to evaluate

and provides further analytical insight about the model.

(ii) The only quasicrystals which can be stabilized by the

original LP model, which allows for two length scales in the

structures, are the decagonal and dodecagonal phases. In

Section 5, we show that increasing the number of allowed
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length scales from two to four allows for the stabilization of

octagonal (8-fold) and octadecagonal (18-fold) quasicrystals.

One can improve on the Landau expansions by using a

density functional mean-field theory (Ramakrishnan &

Yussouff, 1979), which is valid for all orders, by rigorously

coarse-graining a system of interacting discrete particles. For a

textbook introduction see, for example, chapter 5 of the book

by Fredrickson (2006). Such theories were also considered in

the early studies of quasicrystals (Sachdev & Nelson, 1985). A

particularly simple coarse-grained free-energy functional of

the form

FCG ¼
1

2

Z Z
cðrÞ U ðr� r0Þ cðr0Þ dr dr0

þ

Z
kB T cðrÞ ½ln cðrÞ � 1� � �cðrÞ
� 	

dr; ð3Þ

containing the familiar mean-field terms of pair interaction

and ideal entropy, was used by Barkan, Diamant & Lifshitz

(2011), henceforth BDL, as an extension of the LP model,

to study the stability of soft-matter quasicrystals, initially in

two dimensions. Again, one assumes that the equilibrium

density field is the one that minimizes FCG for the given

thermodynamic parameters – such as temperature T and

chemical potential � – and is then left with the question of

how to design the pair potential U ðrÞ to obtain the desired

structures, giving us the ability to address our starting ques-

tion.

To do so, BDL followed an earlier conjecture of Lifshitz &

Diamant (2007), who attributed the stability of certain soft

quasicrystals to the same mechanism that stabilizes the

Faraday wave structures, namely the existence of two length

scales in the pair potential, combined with effective many-

body interactions. That stable quasicrystals may require the

existence of two length scales in their effective interaction

potentials U ðrÞ is not a new idea (Olami, 1990; Smith, 1991).

Many two-length-scale potentials have been investigated

numerically over the years and found to exhibit stable quasi-

periodic phases (Dzugutov, 1993; Jagla, 1998; Skibinsky et al.,

1999; Quandt & Teter, 1999; Roth & Denton, 2000; Engel &

Trebin, 2007; Keys & Glotzer, 2007; Archer et al., 2013; Dotera

et al., 2014; Engel et al., 2015; Pattabhiraman & Dijkstra,

2017a; Damasceno et al., 2017). The novelty and emphasis of

BDL was in their quantitative understanding of the stabili-

zation mechanism – comparing the nonlocal pairwise inter-

action and the local entropy terms of FCG to the nonlocal

gradient expansion and local power expansion terms of FLP,

respectively. This allowed them to pinpoint regions of stability

in the parameter spaces of different potentials instead of

performing exhaustive searches. Indeed, Barkan et al. (2014)

confirmed these predictions by employing molecular dynamics

simulations with particles that interact through pair potentials

that were designed according to the principles of BDL. By

properly setting the two length scales in these potentials, they

were able to generate periodic crystals with square and

hexagonal symmetry, quasicrystals with decagonal and do-

decagonal symmetry, and a lamellar (or striped) phase.

The inclusion of a second length scale in U ðrÞ, imitating the

gradient term of F LP, provides greater control over the self-

assembly of desired structures than can be achieved with just a

single scale, and turns out to be the key to obtaining stable

quasicrystals and other novel structures. Yet, calculating the

exact value of the coarse-grained free energy FCG turned out

to be a challenge. Instead, BDL expanded the logarithmic

entropy term in a power series to fourth order in �(r) =

½cðrÞ � c�=c and mapped the resulting approximate free energy

onto the LP free energy, thus obtaining a rough estimate of the

physical parameters that stabilize the different structures

using the results known for the LP model.

Here we present new insight into the stability of soft-matter

quasicrystals, by significantly improving upon the original

BDL analysis as follows:

(i) In Section 6, we introduce the ‘density distribution

method’ for evaluating the free energy of candidate structures

with non-polynomial local free-energy terms.

(ii) Section 7 applies this technique to the coarse-grained

free energy FCG and uses it to point out the differences in the

stabilities of different structures between the BDL and LP

models, and in particular to explain the previously surprising

robustness of decagonal structures in the BDL model.

(iii) Finally, equipped with this new understanding of the

effect of the local free-energy term, we again use the density

distribution method in Section 8 to generate an artificial local

free-energy term that can stabilize quasicrystals with 6n-fold

symmetry, with arbitrarily large n, using only two length scales.

Note that the vast majority of the stable two-dimensional

quasicrystals that have been discovered to date have

symmetry orders no greater than 12-fold. Possible explana-

tions for this have been suggested by Levitov (1988) and

Mikhael et al. (2010). Exceptions are the octadecagonal

quasicrystal discovered by Fischer et al. (2011), those found

numerically (Dotera et al., 2014; Engel & Glotzer, 2014;

Pattabhiraman & Dijkstra, 2017b) and the one discussed in

Section 5, as well as the numerically discovered icositetragonal

(24-fold) quasicrystals (Dotera et al., 2014; Engel & Glotzer,

2014).

For completeness, we should note three additional exten-

sions of the LP and BDL models that we do not discuss here.

First, in the present work we focus solely on the question of

thermodynamic stability (or metastability), searching for the

minimum free-energy states, without considering any actual

dynamics. LP used purely relaxational dynamics, also known

as Model A of Hohenberg & Halperin (1977)

@�

@t
¼ �

�FLP

��

¼ ��� c r2
þ 1

� �2
r

2
þ q2

� �2
�þ ��2

� �3; ð4Þ

starting with random initial conditions to confirm numerically

that the steady states were indeed the targeted ones. This also

established that quasicrystals were not as difficult to obtain as

solutions of simple partial differential equations as one may

have thought. Recent authors have been using conserved

dynamics of the form @t� = Dr2ð�F=��Þ, also known as Model
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B of Hohenberg & Halperin (1977), or slight variations of

Model B, known as dynamic density functional theory

(DDFT) or phase-field crystal (PFC) models (Archer et al.,

2013; Achim et al., 2014, 2015; Subramanian et al., 2016).2

Interestingly, the PFC model of Achim et al. (2014) uses

FLP without the cubic term, but still genrates the same

structures. At first sight, this seems to contradict LP’s expla-

nation of the stability of their quasicrystals. However, it turns

out that this apparent restoration of the Z2 symmetry �!��
in the local term of the free energy is destroyed by the

conservation of mass condition, which constrains the average

density � to be a positive constant. This, in turn, generates an

effective cubic term in the local free energy, with �eff / �
(Barkan, 2015).

Extensions of the LP and BDL models, which we intend to

pursue elsewhere, include:

(i) The application of these models in three dimensions.

This has already been shown by some authors to produce

stable icosahedral quasicrystals using two length scales

(Subramanian et al., 2016; Jiang et al., 2017).3

(ii) The generalization to two (or more) interacting densi-

ties or order-parameter fields. The use of two coupled fields or

two coupled Swift–Hohenberg equations, where each field

carries one of the length scales, was considered very early on

(Mermin & Troian, 1985; Sachdev & Nelson, 1985; Nara-

simhan & Ho, 1988; Müller, 1994) and has been resumed

recently in the context of binary and ternary soft-matter

systems (Dotera, 2007; Barkan, 2015; Jiang et al., 2016), with

new insight gained from results of the LP and BDL models.

Soft-matter quasicrystals provide rich and versatile plat-

forms for the realization of relatively simple theoretical

models as classical particles interacting via pre-designed pair

potentials, treated either by molecular dynamics simulations

or by coarse-grained mean-field theories and their Landau

expansions. Such theoretical tools may be inadequate for

treating atomic-scale quasicrystals, yet perfect for the funda-

mental study of the basic notions of the physics of quasi-

crystals as they appear in soft condensed matter. Armed with

renewed insight from soft-matter systems and the potential to

realize them directly in the laboratory, some of the

outstanding fundamental questions in the field can be treated

afresh, allowing one to get closer than ever to their resolution.

Admittedly, our discussion here may apply only to soft

condensed matter, but intriguing new analogies between soft-

matter and solid-state systems continue to emerge (Lee et al.,

2014; Lifshitz, 2014), possibly enlarging our scope.

2. The Lifshitz–Petrich model and its immediate
generalizations

Following the original analysis by Lifshitz & Petrich (1997), we

define a scalar field �(r) on the two-dimensional Cartesian

plane. The Swift–Hohenberg free energy of this field (Swift &

Hohenberg, 1977) can be written as

F SH½�ðrÞ� ¼

Z
1

2
r2 þ 1
� �

�ðrÞ
� �2

þf ð�ðrÞÞ

� �
dr; ð5Þ

where f ð�Þ is a local contribution to the free energy, which

may or may not be symmetric under the operation that

replaces � by �� (Cross & Greenside, 2009). In what follows,

we use �(r) to refer to the field and � for specific scalar values

the field can take on at a given point.

The LP free energy (1) changes this to

FLP ¼

Z
c

2
r

2
þ 1

� �
r

2
þ q2

� �
�ðrÞ

� �2
þf ð�ðrÞÞ

n o
dr; ð6Þ

and sets

f ð�Þ ¼ �
�

2
�2
�

1

3
�3
þ

1

4
�4; ð7Þ

explicitly breaking the �!�� symmetry, where c is assumed

positive and q is the ratio of the two selected length scales,

which generally satisfies 1< q � 2 . Note that the coefficient �
of the cubic term in equation (1) has been scaled to unity by

measuring the field amplitude � in units of � and consequently

measuring energy in units of �4. The parameter c, which sets

the length-scale selectivity of the system, and the control

parameter � are then measured in units of �2.

By substituting the Fourier transform

�ðrÞ ¼

Z
exp ðik � rÞ ~��ðkÞ dk; ð8Þ

into the first terms of free energies like the ones in equations

(5) and (6), they can be written as

F ¼

Z
~VVðkÞ j ~��ðkÞ j2 dkþ

Z
f ð�ðrÞÞ dr; ð9Þ

where in F LP the function ~VVðkÞ is given by the octic poly-

nomial,
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Figure 1
~VVLPðkÞ for c = 1 and q = k5 and k12: note that ~VVLPðkÞ is positive for all k
except k = 1 or q, where it is zero. Also note that the barrier between the
minima when q = k12 is significantly larger than the barrier when q = k5.
This disparity is important for the study of the finite-c case discussed in
Section 4.

2 For a comparison of some of the different approaches see, for example, van
Teeffelen et al. (2009).
3 Additionally, we have found that, for the single-length-scale case in
arbitrarily high dimensions, the set of potential minimal free-energy candidate
phases corresponds to the ADE Lie algebra root lattices. The minimal free-
energy states are precisely the laminated lattices in no more than eight
dimensions.



~VVLPðkÞ ¼
c

2
k2 � 1
� �

k2 � q2
� �� �2

; ð10Þ

which is sketched in Fig. 1.4 The (horizontally stretched) local

quartic free-energy density (7) is plotted as the solid colored

lines in Fig. 2 for different values of its single parameter �. The

reader should note that all the position- and momentum-space

integrals are implicitly normalized to give a free energy per

unit area.

After rescaling, the LP model is left with only three free

parameters, q, c and �. Given specific values for these, we seek

the configurations �(r) that minimizeF LP. This is easiest in the

limit where c is taken to infinity. Because this infinite-c limit is

also generally favorable for the formation of quasicrystals, we

adopt it throughout this paper, with the exception of Section 4.

In this limit, ~VVLPðkÞ = 0 if k belongs to the set ~VV0 = {1, q} and is

otherwise infinite. Thus, we immediately conclude that

lim
c!1

~��ðkÞ ¼ 0 unless k ¼ jkj 2 ~VV0; ð11Þ

restricting the support of ~��ðkÞ to lie entirely on two concentric

circles of radii unity and q, centered about the origin. Given

this restriction, the free energy is simply

F ¼

Z
f ð�ðrÞÞ dr: ð12Þ

Upon substituting the Fourier transform (8) of the field –

which for quasiperiodic density fields is supported on a

countable set of wavevectors, changing the integral into a sum

– this becomes

F ¼ �
�

2

X�

k
~��ðkÞ ~��ð�kÞ

�
1

3

X�

k1;k2

~��ðk1Þ ~��ðk2Þ ~��ð�k1 � k2Þ

þ
1

4

X�

k1;k2;k3

~��ðk1Þ ~��ðk2Þ ~��ðk3Þ ~��ð�k1 � k2 � k3Þ; ð13Þ

where the tilde indicates the restriction that the magnitude of

all the wavevectors and their sum must belong to the set ~VV0.

The products of Fourier coefficients on wavevectors that add

up to zero, appearing in this expression for the free energy, are

known in crystallography as ‘structure invariants’. The sums

can easily be evaluated on a computer using symbolic algebra.

A wise choice of q can make use of the triplets, or wavevector

triangles, on the second line for stabilizing the desired two-

scale structures, as mentioned earlier. The benefit of adding

such triplets usually comes at the cost of more quadruplets on

the third line that generally increase the free energy. In

Section 3, essentially by counting triplets and quadruplets, we

repeat the calculation of Lifshitz & Petrich (1997) and show

that this simple free energy is able to stabilize periodic square

and hexagonal crystals, decagonal and dodecagonal quasi-

crystals, and lamellae, also called stripes.

In addition to the obvious generalization to three dimen-

sions, the free energy in equation (9) can immediately be

generalized by modifying ~VVðkÞ, f ð�Þ or both, in a number of

ways:

(i) While remaining in the infinite-c limit, ~VVLPðkÞ can be

changed by modifying the set ~VV0. We show in Section 5 that

doubling the cardinality of ~VV0, i.e. going from two to four

concentric circles, allows us to stabilize octagonal and octa-

decagonal quasicrystals.

(ii) Subramanian et al. (2016) modify ~VVLPðkÞ in a particular

way in order to gain control of the relative heights of the two

minima (see Fig. 1), while leaving c finite.

(iii) ~VVðkÞ, as indicated by its notation, can be thought of as

the radial Fourier transform (also known as the Hankel

transform) of an isotropic interaction potential UðrÞ of a pair

of particles in real space, possibly scaled and shifted by a

constant. This, along with a replacement of f ð�Þ by the local

entropy term from FCG in equation (3), forms the basis of the

BDL model, which we consider and expand our understanding

of in Section 7. A comparison of these two choices for f ð�Þ is

shown in Fig. 2.

(iv) In Section 8 we show that an artificial yet judicious

choice of f ð�Þ can actually stabilize 6n-fold quasicrystals for

any n � 2, with just two length scales.
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Figure 2
Local free-energy densities f ð�Þ used in this work: solid colored lines
show the scaled (� = 1) quartic local free-energy function (7) used by LP,
for values of � above, equal to and below the spinodal value of � = 0. The
full logarithmic local free-energy function fCG in equation (49), as used by
BDL, is shown with dashed lines for temperatures above, below and
equal to the spinodal temperature, which is scaled to T = 1. The values of
� and T are related by T = 4=ð3�þ 4Þ, as explained in Section 7. In order
to demonstrate visually the resulting fourth-order agreement, the solid
lines have been stretched horizontally by 50% while the dashed lines have
been compressed vertically by a factor of 27T/16. Note that the LP quartic
free-energy density penetrates into the �< � 1 region and diverges from
the BDL logarithmic free-energy density for �> 1. Finally, the solid black
line shows the free-energy density used in Section 8 to stabilize 6n-fold
quasicrystals with arbitrary n.

4 The particular form of the function ~VVLPðkÞ, with its octic ultraviolet
divergence, comes from duplicating the gradient term of the Swift–Hohenberg
equation (5), which possesses a quartic divergence, and whose purpose is to
favor modes with wavenumbers approximately equal to unity or q.
Conveniently, after taking the infinite-c limit, as we do everywhere outside
of Section 4, it diverges almost everywhere, and its only remaining features are
its minima at k = 1 and k = q where ~VVLPðkÞ = 0. On the other hand, when
viewed as the Fourier transform of a real-space interaction potential, it is
incompatible with the kind of soft-matter particles we have in mind, as it
introduces a strongly diverging interaction at the origin. One may, technically,
tame this interaction by multiplying it with a Gaussian, as was done by Barkan
et al. (2014).



3. Stable periodic and quasiperiodic crystals in the
original LP model with exact length-scale selection

3.1. Notation and method of calculation

3.1.1. Calculation of stability bounds. We set q equal to kn

from equation (2) with n > 3, so that 1 < q � 2, and the upper

limit of 2 is obtained for n!1. Our goal is to stabilize

N-fold symmetric structures whose Fourier coefficients are

confined to two circles of radii unity and kn. Each circle is

expected to contain N equally separated Bragg peaks, with N

= n or 2n when n is even or odd, respectively. These targeted

structures are shown schematically in Figs. 3(i)–3(o) for k4 =

21/2, k6 = 31/2, k1 = 2, k5 = (1 + 51/2)/2, k12 = (2 + 31/2)1/2, k8 =

(2 + 21/2)1/2 and k10 = [(5 + 51/2)/2]1/2, respectively.

These two-scale structures are in thermodynamic competi-

tion with the uniform liquid phase �(r) = 0, and with single-

scale and trivial two-scale periodic structures consisting of two

degenerate lamellar phases varying in their spatial scale (set

by which circle the two peaks lie on5), four degenerate

hexagonal configurations, two of which are regular and two

distorted, containing two length scales, and infinitely many

oblique, rectangular and square structures consisting of a sum

of two cosines with an arbitrary relative orientation, whose

wavevectors are taken from the set {1, q}. These competing

structures are shown schematically in Figs. 3(a)–3(h). The

targeted structures and the competing ones are also listed in

Table 1. As is typical for these kinds of stability calculations,

one cannot be certain that the list of candidate and competing

structures is exhaustive. We believe it is complete, however,

not only due to intuitive symmetry considerations, but also

based on repeated computational simulations. As one

example, the Model A dynamics of equation (4) have been

applied to many realizations of random initial conditions,

thereby exploring the space of likely minimum free-energy

states over a wide range of model parameters.

As noted by LP, because all the candidate structures are

centrosymmetric, and because there are no screw rotations in

two dimensions, we may always take each of the Fourier

coefficients on a given circle to be equal, and their phases may

all be chosen such that they are either 0 or �, corresponding to

positive and negative real values, respectively.6 The mini-

mization of the free energy (13) is therefore always with

respect to no more than two real variables, which we denote ~��
in structures with a single scale and ~��1 and ~��q in the two-scale

structures. For example, the larger regular hexagonal phase

has a real-space structure of

�ðrÞ ¼ 2 ~�� cos xþ cos
xþ 31=2y

2
þ cos

�xþ 31=2y

2


 �
: ð14Þ

The free energy of equation (13) then becomes a quartic

function of two variables, given by

F ~��1; ~��q

� �
¼ �

�

2

X
k1þk2¼0

~��k1
~��k2

�
1

3

X
k1þk2þk3¼0

~��k1
~��k2

~��k3

þ
1

4

X
k1þk2þk3þk4¼0

~��k1
~��k2

~��k3
~��k4
: ð15Þ

for two-scale structures, where all ki = j ki j2 f1; qg, and a

similar function of the single variable ~�� for single-scale

structures. Computer-assisted symbolic algebra is used to

evaluate the sums, and then to minimize them with respect to
~�� or ~��1 and ~��q. The structure that has the lowest free energy,

given the value of �, is the thermodynamically stable one,

assuming we have not overlooked any additional competing

structures.

3.1.2. Calculation of metastability bounds. The majority of

work on the LP model has been focused on finding the free-

energy minimizing structure for various choices of the para-

meters. However, as seen in the work by Barkan et al. (2014),

the phase transitions between these structures exhibit signifi-

cant hysteresis. As a first attempt at evaluating the meta-
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Figure 3
Fourier spectra of the candidate structures: structures (a)–(g) use the
arbitrary ratio q = k5, while all other ratios are specified explicitly. The
uniform phase (a) has no Fourier modes. An example of a stabilizing
triangle is included in the k5 decagonal structure (l).

5 Jiang et al. (2015) termed these ‘sibling periodic crystals’.
6 More technically, there is always a Rokhsar–Wright–Mermin gauge
transformation (Rokhsar et al., 1988) that can be applied to the free-energy
minimizing structure to obtain these phase values, without altering the free
energy. For specific information regarding the required gauge transformation,
and a definition of a screw operation in the case of quasicrystals, see, for
example, Rabson et al. (1991).



stability bounds on �, we can imagine writing a structure as a

linear combination of multiple components

�ðrÞ ¼
X

i

Ai�iðrÞ; ð16Þ

such as aligned lamellar, hexagonal and dodecagonal modes

on a circle.

The coefficients Ai are set by the local minimum of the free

energy,

@F½�ðrÞ�

@Ai

¼ 0; ð17Þ

where, for a given phase, some of the Ai’s will be zero. These

represent the potential ‘directions’ in which the structure can

decay. The spinodal decomposition of a phase, where it is no

longer metastable, occurs when that point on the free-energy

landscape transitions from a local minimum to a saddle point.

This occurs when the determinant of the Hessian of the free

energy of this structure,

@2F

@Ai@Aj

; ð18Þ

becomes zero.

In our calculations, we include all of the candidates as

potential decay directions, but we have no proof that these are

the only options, so the reader should take the metastability

bounds reported below as tentative results.

3.2. Stability and metastability bounds in the original LP
model

3.2.1. Single-scale phases. First, we consider the single-scale

lamellar, hexagonal and square phases, along with the uniform

liquid state. Recall, also, that this includes the two distorted

hexagonal phases that have the same free energy as the two

regular ones, even though, strictly speaking, they consist of

two length scales. The Fourier spectra of these structures are

depicted in Figs. 3(a)–3(e) and 3(h). The stability bounds are

summarized in the top section of Table 1 and plotted in Fig. 4.

The uniform phase always has a free energy of

FUNIF ¼ 0; ð19Þ

and decays spinodally when �> 0.

For the lamellar phase, the free-energy equation (15) gives

F LAMð ~��; �Þ ¼ �� ~��2
þ

3

2
~��4: ð20Þ

Minimizing FLAM over ~�� shows that, for �< 0, ~�� = 0, thus

giving a uniform phase. The lamellar phase therefore only

exists for positive �, wherein

F LAMð�Þ ¼ �
�2

6
: ð21Þ

The free energy of the hexagonal phase is given by

FHEXð ~��; �Þ ¼ �3� ~��2
� 4 ~��3

þ
45

2
~��4: ð22Þ

It only exists for � � �1=15, below which the nontrivial

minima of equation (22) are complex, and so the only possible
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Table 1
Stability and metastability boundaries in the infinite-c LP model.

Note that the stability regions of the single-scale structures are modified by their competition with the q-tuned two-scale structures. The metastability regions are
left unchanged, except in the k6 and k12 cases where the lower bound becomes 0. Recall that � here is in units of �2, as in equation (7); without scaling one should
multiply the quoted values by �2. The choices of q = k8 and k10 fail to stabilize octagonal and decagonal quasicrystals, respectively. However, they can exhibit
regions of metastability, which might be observable in experiments or simulations given proper initial conditions.

Structure q Stable Metastable Figures

Uniform �<� � 0:05926 � � 0 3(a)

One-scale periodic Hexagonal �0:05926<� �<� 1:913 �0:06667<� �<� 5:333 3(d)–3(g), 4, 15, 22
Lamellar 1:913<� � 1:333<� � 3(b), 3(c), 4, 14, 15
Square Unstable Unstable 3(h)

Two-scale periodic Square k4 = 21/2
’ 1.414 0:09205<� �<� 0:7689 �0:1035<� �<� 2:113 3(i), 5(a)

Hexagonal k6 = 31/2
’ 1.732 �0:1143<� �<� 2:074 �0:1281<� �<� 8:827 3(j), 5(b)

Lamellar k1 = 2 �0:06904<� � �0:07760<� � 3(k), 5(c)

Two-scale quasicrystal Decagonal k5 = (51/2 + 1)/2 ’ 1.618 �0:08602<� �<� 0:2290 �0:09677<� � 1, 3(l), 6(a), 16, 21
Dodecagonal k12 = (2 + 31/2)1/2

’ 1.932 �0:1009<� �<� 0:03055 �0:1135<� � 1, 3(m), 6(b), 16
k8, k10 etc. Unstable See caption 3(n), 3(o)

Figure 4
Free energies of the single-scale periodic structures in the infinite-c LP
model: as � is increased, the uniform liquid is the equilibrium phase until
it reaches �8/135, at which point a first-order transition to the hexagonal
structure occurs. This persists until � reaches (63/2 + 14)/15 where the
lamellar structure becomes the equilibrium phase. The gray region
corresponds to the forbidden zone below the lower bound, calculated in
Section 6.6.



state is the uniform one with ~�� = 0. Above this point – a saddle

node in the context of dynamical bifurcation theory – we have

the nontrivial minimum

FHEXð�Þ ¼
�675�2 � 8ð15�þ 1Þ3=2

� 180�� 8

6750
: ð23Þ

For generic q, as � is increased, the system first undergoes a

first-order transition from the uniform phase to the hexagonal

phase at � =�8/135’�0.05926 and then to the lamellar phase

at � = (63/2 + 14)/15 ’ 1.913. At the second transition, F =

�[84(61/2) + 206]/675. This behavior is shown in Fig. 4.

The hexagonal phase is metastable when �0.06667 ’ �1/15

� � � 16/3 ’ 5.333, and the lamellar phase is metastable for

all � � 4/3 ’ 1.333.

The single-scale square structure in Fig. 3(h) and its infi-

nitely many degenerate oblique, rectangular and square

structures, consisting of the sum of two cosines with an arbi-

trary relative orientation, all have a free energy of

F SQUð ~��; �Þ ¼ �2� ~��2
þ 9 ~��4; ð24Þ

which leads to a minimized free energy of

F SQUð�Þ ¼ �
�2

9
: ð25Þ

Because the square structure has additional quadruplets

compared with the lamellar phase (21) without any compen-

sating triplets, its free energy is always higher, and it is

therefore never in thermodynamic equilibrium.

3.2.2. Two-scale periodic phases. Next, we consider the

two-scale square, hexagonal and striped superstructures, for q

= k4, k6 and k1, respectively. Their Fourier spectra are shown

in Figs. 3(i)–3(k).7 For these structures there are no simple

expressions for the minimized ~��1 and ~��q values, which are

generally unequal, nor for their minimized free energies and

critical � values. Thus, we provide only numerical results for

the stability bounds in the middle section of Table 1 and plot

these bounds in Fig. 5.

The free energies from which these bounds are obtained are

given by

F S-SQU ~��1; ~��q; �
� �

¼F SQU ~��1; �ð Þ þ F SQU ~��q; �
� �

þ 4 ~��2
1 ~��q �2þ 9 ~��q

� �
; ð26aÞ

F S-HEX ~��1; ~��q; �
� �

¼FHEX ~��1; �ð Þ þ FHEX ~��q; �
� �

þ 6 ~��2
1 ~��q �2þ 6 ~��1 þ 15 ~��q

� �
; ð26bÞ

F S-LAM ~��1; ~��q; �
� �

¼F LAM ~��1; �ð Þ þ F LAM ~��q; �
� �

þ 2 ~��2
1 ~��q �1þ 3 ~��q

� �
; ð26cÞ

where F SQUð ~��q; �Þ, FLAMð ~��q; �Þ and FHEXð ~��q; �Þ are given in

equations (24), (22) and (20), respectively.

3.2.3. Two-scale quasiperiodic phases. Finally, we consider

the two-scale quasicrystals with q = k5, k12, k8 and k10, whose

Fourier spectra are shown in Figs. 3(l)–3(o), respectively. We

find that the k8 and k10 structures are never global minima of

the free energy and are therefore unstable. We do not give the

detailed calculation of their free energies here, and only note

that they may exhibit regions of metastability. Thus, one could

potentially observe them in experiment or simulation given

proper initial conditions. The stability bounds for the k5

decagonal quasicrystal and the k12 dodecagonal quasicrystal

are included in the latter half of Table 1 and plotted in Fig. 6.

The stability bounds reported here should be taken in place of

the original bounds reported by Lifshitz & Petrich (1997), as

they missed the existence of a stable decagonal quasicrystal

with q = k5 rather than k10 and miscalculated the stability

boundaries of the dodecagonal one.8

The simplest expressions for the upper stability bounds, for

both of these phases, involve roots of quintic polynomials that

are provided below for the first time. The metastability bounds

for all of the structures studied in this section are reported

here for the first time as well. Because all of the results are

summarized in Table 1, readers who are not interested in the

detailed calculation itself may skip to the next section.

The free energy of the k5 decagonal phase is given by

FDEC ~��1; ~��q; �
� �

¼ � 5� ~��2
1 þ ~��2

q

� �
� 20 ~��2

1 ~��q þ ~��1 ~��2
q

� �
þ

135

2
~��4

1 þ ~��4
q

� �
þ 60 ~��3

1 ~��q þ ~��1 ~��3
q

� �
þ 210 ~��2

1 ~��2
q: ð27Þ
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Figure 5
Free energies of the two-scale periodic structures in the infinite-c LP
model: in panel (a), with q = k4, the square superstructure dominates
when �0.09205 <� �<� 0.7689. In panel (b), with q = k6, the hexagonal
superstructure dominates when �0.1143 <� �<� 2.074. Finally, in panel
(c), with q = k1, the lamellar superstructure dominates when � >�
�0.06904. The two-scale superstructure always has a lower free energy
than its single-scale analogue. The gray region is the same as in Fig. 4.

7 The single-scale lamellar, square and hexagonal structures, and the two-scale
square and hexagonal superstructures, correspond to the A1, A1 	 A1, A2, B2

and G2 Lie algebra root systems, respectively.
8 These discrepancies led to some confusion in the subsequent literature [see,
e.g., p. 3 and footnote 32 of Barkan et al. (2011), p. 2 and footnote 26 of Barkan
et al. (2014), and pp. 7 and 9 of Jiang et al. (2015)].



It exists only when � � �3/31 ’ �0.09677. For �3/31 � �<�
0.5245, ~��1 = ~��q and

FDECð�Þ

¼
�15	 312�2 � 40ð31=2Þð31�þ 3Þ3=2

� 180	 31�� 360

9	 313
:

ð28Þ

Above this approximate upper bound, for which there is no

simple expression, the free energy continues to decrease, but
~��1 no longer equals ~��q. The free energy at the transition is

approximately �0.04889.

The free energy of the dodecagonal phase is given by

FDOD ~��1; ~��q; �
� �

¼ � 6� ~��2
1 þ ~��2

q

� �
� 8 ~��3

1 þ ~��3
q

� �
� 24 ~��2

1 ~��q þ ~��1 ~��2
q

� �
þ 99 ~��4

1 þ ~��4
q

� �
þ 144 ~��3

1 ~��q þ ~��1 ~��3
q

� �
þ 360 ~��2

1 ~��2
q: ð29Þ

It exists only for � � �16/141 ’ �0.1135, where

FDODð�Þ

¼
54	 472�2 � 26ð141�þ 16Þ3=2

� 9	 27 	 47�� 212

27	 473

ð30aÞ

for �16=141 � � � �208=867 ’ 0:2399, and

FDODð�Þ

¼
�81	 672�2 � 8ð31=2Þð67�þ 75Þ3=2

� 180	 67�� 9000

9	 673

ð30bÞ

for 208=867 � �. In the first case, ~��1 ¼ ~��q, but in the second,
~��1 6¼ ~��q. The free energy at the transition between these two

free-energy minima is �29 	 73=ð33 	 174Þ.

It is interesting to note that the free energies of both the

decagonal and dodecagonal quasicrystals, in the infinite-c

limit, have an additional, accidental, Z2 symmetry associated

with the exchange of ~��1 and ~��q. In both cases, when mini-

mizing the free energy with respect to these amplitudes there

is one solution branch that maintains this symmetry with ~��1 =
~��q and a second branch where the Z2 symmetry is sponta-

neously broken and ~��1 6¼ ~��q. Yet, as it turns out, in the

decagonal quasicrystal this symmetry-breaking transition is

first order, while in the dodecagonal case it is a continuous

phase transition.

We compare the free energies of these quasicrystal phases,

given the requisite value of q, with those of the uniform and

hexagonal phases in Fig. 6, which shows that the decagonal

phase is stable for �0.08602 ’ �8/93 � �<� 0.02290. The

upper bound is given by the second real root of the quintic

35 	 25	 312 	 434 �5 � 16	 35 	 5	 31	 43	 103 703 �4

� 64	 81	 4 938 418 073 �3
� 210

	 27	 5	 11 798 281 �2

� 29
	 3	 5	 1 046 081 �þ 212

	 5	 67 303 ¼ 0; ð31aÞ

and the free energy at the transition is approximately

�3.694 	 10�3.

The dodecagonal phase is stable for �0.1009 ’ �128/1269

� �<� 0.03055. This upper bound is given by the second real

root of

319 	 25	 472�5 � 16	 310 	 5	 121	 47	 7757 �4

� 64	 27	 7	 4 093 625 687 �3 � 210 	 27	 7	 16 491 709 �2

þ 212
	 9	 11	 27 953 �þ 219

	 8059 ¼ 0; ð31bÞ

and the free energy at the transition is approximately

�4.180 	 10�3.

The decagonal phase with ~��1 = ~��q is metastable when

�0.09677 ’ �3/31 � � � 763/972 ’ 0.7850. The decagonal

phase with ~��1 6¼ ~��q appears to be metastable for all � >�
�0.01493.

The dodecagonal phase with ~��1 = ~��q is metastable for

�0.1135 ’ �16/141 � � � 208/867 ’ 0.2399. The phase with
~��1 6¼ ~��q appears to be metastable for all � � 208/867. Addi-

tionally, when q = k12 , the lower bound of the hexagonal

metastability region is increased to zero.

4. Relaxing the requirement of exact length-scale
selection

4.1. The two-ring approximation

Despite the convenience of taking the infinite-c limit in the

analysis of F LP, as given by equations (6) and (7), realistic

systems can never fully extinguish all unwanted Fourier

modes. It is therefore important to examine the LP model with

finite-c values. Evaluating the finite-c LP free energy with

quantitative precision requires an approach like the projection

method of Jiang & Zhang (2014), which has been applied to

the LP model (Jiang et al., 2015). However, one can obtain a

fair understanding of the role of length-scale selectivity by

employing a simple ‘two-ring’ approximation.

We restrict ~��ðkÞ to lie within two rings centered about the

origin. This is in contrast with allowing ~��ðrÞ to vary freely, as

most numerical simulations do (Lifshitz & Petrich, 1997;

Barkan et al., 2011), or restricting ~��ðkÞ to some subset of a two-

dimensional or higher-dimensional lattice, as in the projection

method (Jiang et al., 2015). This two-ring approximation

compromises the numerical accuracy of our results, but what
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Figure 6
Free energies of the quasiperiodic structures in the infinite-c LP model: in
panel (a), with q = k5, the decagonal structure dominates when �8/93
� �<� 0.02290. In panel (b), with q = k12 , the dodecagonal structure
dominates when �128/1269 � �<� 0.03055. The gray region is the same
as in Fig. 4.



we lose in quantitative correctness we make up for in the

simplicity with which we demonstrate the qualitative impor-

tance of length-scale selectivity in stabilizing quasicrystals via

two preferred scales.

With this approximation, the target decagonal or dodeca-

gonal quasicrystals have their Fourier amplitudes on exact

circles of radii unity and q as before, and so their free energies

are unchanged. The competing lamellar and hexagonal phases

are rescaled by a factor 	 so as to position both their first and

second harmonics to fit, as well as possible, within two finite-

width rings near the minima of ~VVLPðkÞ from equation (10),

which is plotted with c = 1 in Fig. 1. This lowers the free

energies of these phases by adding triplets to the calculation of

the local contribution to the free energy in equation (9), as

with the superstructures in Section 3.2.2, but comes at a cost in

the integral over ~VVLPðkÞ,

n ~VVð	Þ ~��2
	 þ

~VVðk	Þ ~��2
k	

� �
; ð32Þ

where n and k are both 2 for the lamellar phase, and 6 and 31/2,

respectively, for the hexagonal one. Altogether, this gives

FLAM ~��	; ~��k	; 	; �ð Þ ¼ 2 ~VVð	Þ � �
� �

~��2
	 þ 2 ~VVð2	Þ � �

� �
~��2

2	

� 2 ~��2
	 ~��2	 þ

3

2
~��4
	 þ ~��4

2	

� �
þ 6 ~��2

	 ~��2
2	;

ð33aÞ

and

FHEX ~��	; ~��k	; 	; �ð Þ ¼ 6 ~VVð	Þ � 3�
� �

~��2
	 þ 6 ~VV 31=2	

� �
� 3�

� �
~��2

31=2	

� 4 ~��3
	 þ ~��3

31=2	

� �
� 12 ~��2

	 ~��31=2	

þ
45

2
~��4
	 þ ~��4

31=2	

� �
þ 36 ~��3

	 ~��31=2	

þ 90 ~��2
	 ~��2

31=2	:

ð33bÞ

These are minimized numerically over ~��	, ~��k	 and 	 for each

value of c and � and compared with the free energies of the

decagonal or dodecagonal quasicrystals, so that the minimum

free-energy phase can be identified.

4.2. c-Dependent phase diagrams for decagonal and do-
decagonal quasicrystals

The c-dependent phase diagrams, calculated using the two-

ring approximation, are shown in Figs. 7 and 8, for the deca-

gonal and dodecagonal quasicrystals, respectively. In both

cases, one clearly observes that length selectivity, as para-

meterized by c, is a key factor contributing to quasicrystal

stability. As c is decreased, the competing phases change from

a solution where 	 = 1 and ~��k	 = 0 to one where 	 is shifted and

both ~��	 and ~��k	 are nonzero, in order to take advantage of

both minima of ~VVLPðkÞ in an optimal way. This causes the

upper bound of � for quasicrystal stability to constrict with

decreasing c until the quasicrystalline phase vanishes. This

vanishing occurs at a uniform–hexagonal–quasicrystal triple

point. Below the triple point, the critical � for the uniform–

hexagonal transition continues to decrease towards the value
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Figure 7
Phase diagram of the LP model with q = k5 in the two-ring approximation:
the thick dark-green hexagonal–decagonal boundary, which was calcu-
lated using the projection method by Jiang et al. (2015), indicates that this
phase diagram should be considered only qualitatively. Nevertheless, note
the expected uniform–hexagonal–decagonal triple point, and the
possibility that the lamellar–hexagonal coexistence line has a maximum
� for intermediate c before it reaches its expected value in the limit of
infinite c.

Figure 8
Phase diagram of the LP model with q = k12 in the two-ring
approximation: in the dodecagonal case, the thick dark-green
hexagonal–dodecagonal boundary, which was calculated using the
projection method of Jiang et al. (2015), shows very good agreement
with the results of the two-ring approximation. Note the uniform–
hexagonal–dodecagonal triple point and the lamellar–hexagonal co-
existence curve exhibiting a turning point at intermediate c with a
minimum value of �.



� �0.1143 at zero c, as calculated earlier for the two-scale

hexagonal phase in Section 3.2.2.

The portion of the hexagonal to quasicrystal phase

boundary, calculated by Jiang et al. (2015) using the more

accurate projection method,9 is shown on both phase diagrams

using thick dark-green lines. These lines indicate that, while

both approximate phase diagrams qualitatively agree with the

projection-method calculation, only the dodecagonal phase

diagram agrees with it quantitatively. This is because, at the

relevant c values, the free-energy barrier between the two

minima of ~VVLPðkÞ in the decagonal (q = k5) case, shown in

Fig. 1, is sufficiently low that many higher-harmonic peaks

appear in this region and stabilize the decagonal phase relative

to the hexagonal one, which has no additional Fourier peaks

there. This enlarges the stability region of the decagonal phase

compared with what we calculated by restricting its Fourier

coefficients to two exact circles. On the other hand, the free-

energy barrier between the two minima of ~VVLPðkÞ in the

dodecagonal (q = k12) case is much steeper, preventing addi-

tional rings from forming. This leads to the two-ring approx-

imation and its predictions for the position of the triple point

and the precise shapes of the phase-boundary curves, being

quantitatively reasonable when q = k12 but only qualitatively

valid when q = k5.

5. Four-scale octagonal and octadecagonal
quasicrystals

Lifshitz & Petrich (1997) speculated that, with more than just

two length scales, the LP model could stabilize quasicrystals

with higher orders of symmetry than the dodecagonal struc-

tures they obtained, such as 18- or 24-fold. In the meantime,

such structures have been observed experimentally (Fischer et

al., 2011) and in simulations (Engel & Glotzer, 2014; Dotera et

al., 2014; Pattabhiraman & Dijkstra, 2017b). In addition,

Arbell & Fineberg (2002) discovered patterns with 8-fold

symmetry in Faraday wave experiments using three driving

frequencies. Here, we study the infinite-c LP model with four

length scales, by modifying ~VV0 in equation (11) from {1, q} to

{q1, 1, q2, q3}. We consider two cases: (i) octagonal quasi-

crystals, with q1 = k8/3 = 2cos(3�/8) = (2� 21/2)1/2
’ 0.7654, q2 =

k4 and q3 = k8 = (2 + 21/2)1/2
’ 1.848; and (ii) octadecagonal

quasicrystals, with q1 = k18/7’ 0.6840, q2 = k18/5’ 1.286 and q3

= k18 ’ 1.970. The anticipated diffraction spectra of these two

structures are shown in Fig. 9.

With more than two length scales, one must carefully check

for competing structures, additional to the single-scale phases

in Section 3.2.1. For the octagonal case, we must consider the

two-scale square superstructure shown in Fig. 3(i), allowed by

the fact that q2 = k4.

For the octadecagonal case, additional competing structures

stem from the fact that q1 + q2 = q3. This allows for the

‘modified’ lamellar and hexagonal candidates shown in Fig. 10.

These have free energies of

F LAM
 ~��f g; �ð Þ ¼ �� ~��2
q�
� 4 ~��q�

�
3

2
~��4

q�
þ 3 ~��2

q�

� �2
; ð34aÞ

and

FHEX
 ~��f g; �ð Þ ¼ � 3� ~��2
q�
� 4 ~��3

q�
� 12 ~��q�

�
9

2
~��4

q�
þ 27 ~��2

q�

� �2
þ36 ~��q�

~��q�
; ð34bÞ

where ~��n
q�

=
P3

i¼1 ~��n
qi

and ~��q�
=
Q3

i¼1 ~��qi
. Minimizing these

equations in the relevant � range shows that the coincidental

lamellar phase has ~��q1
= ~��q2

= ~��q3
and a free energy degenerate

with the single-scale hexagonal phase. The coincidental

hexagonal phase has only one ring of active modes when its

free energy is minimized and so does not have its free energy

reduced relative to the single-scale hexagonal structure. Thus,

we can continue treating the usual single-scale hexagonal

phase as the only candidate competing with the octadecagonal

quasicrystal for the relevant values of �.
Applying equation (15) to the octagonal structure in

Fig. 9(a) gives a free energy of

FOCT ~��f g; �ð Þ

¼ �4� ~��2
� � 16 ~��2

1 ~��q�
þ ~��q2

~��q1
þ ~��q3

� �2
h i

þ 6



~��2

1 � ~��2
1 þ 4 2 ~��2

� þ 4 ~��q�

� �2
�2 ~��q1

~��q3
� ~��2

q2

h in o

� 5 ~��4
q�
þ 12 ~��q�

� �2
þ8 ~��q1

~��q3
~��2

q�
þ 3 ~��2

q2

� ��
; ð35aÞ
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Figure 9
Fourier spectra of the four-scale quasicrystals|: (a) for the octagonal
quasicrystal, the radii of the circles from inside to outside are k8/3, 1, k4

and k8; (b) for the octadecagonal quasicrystal, the radii are k18/7, 1, k18/5

and k18.

Figure 10
Fourier spectra of additional structures competing with the four-scale
octadecagonal quasicrystal: the radii of the circles are the ones listed for
Fig. 9(b).

9 We thank the authors for graciously sharing their raw data with us.



where ~��n
� = ~��n

1 + ~��n
q�

. While it is lengthy, it is not difficult for a

computer to minimize this quartic numerically over the four
~��’s for each value of �. Interestingly, despite the quartic

lacking ~��q1
$ ~��q2

and ~��q2
$ ~��q3

symmetry, the minima in the

relevant small � range all satisfy ~��q1
= ~��q2

= ~��q3
.

As shown in Fig. 11(a), the octagonal quasicrystal is

expected to be thermodynamically stable when �0.1119
<
� �<� �0.06227. In this range, the optimized ~��1 is larger than

the equal ~��q’s by a factor varying between roughly 2.1 and 1.7.

The free energy at the transition to the two-scale supersquare

phase is approximately �1.094 	 10�3. A finite section of this

quasicrystal is shown in Fig. 12.

The free energy of the octadecagonal structure is

FOD ~��f g; �ð Þ ¼ � 9� ~��2
� � 12 ~��3

�

� 36 ~��2
1 ~��q�
þ ~��q�

þ ~��2
q1

~��q2
þ ~��q1

~��2
q3
þ ~��2

q2
~��q3

� �
þ

459

2
~��4

� þ 54 ~��2
1 4 ~��1 ~��q�

þ 5 ~��q�

� �2
þ8 ~��2

q�

h i

þ 540 ~��q�
~��q�
þ 162 ~��3

q1
~��q2
þ ~��3

q2
~��q3

� �
þ 108 ~��3

q1
~��q3
þ ~��q1

~��3
q2
þ ~��q2

~��3
q3

� �
þ 675 ~��2

q1
~��2

q2
þ ~��2

q3

� �
þ 189 ~��q1

~��3
q3
þ 702 ~��2

q2
~��2

q3
:

ð35bÞ

As shown in Fig. 11(b), the octadecagonal quasicrystal is

expected to be stable when �0.06882 <� �<� �0.05140. In this

range, the optimized ~��1 is larger than the ~��q’s by a factor

varying between roughly 2.2 and 2.6. The ~��q’s are almost, but

not exactly, equal, varying by about 1%. The free energy at the

transition to the hexagonal phase is approximately

�2.085 	 10�4. A finite section of this quasicrystal is shown in

Fig. 13.

6. The density distribution method

6.1. The notion of a density distribution and its quantum
density of states analogy

When the local free-energy function f ð�Þ is a finite poly-

nomial such as equation (7) and the structure �(r) consists of a

finite number of harmonic components, the free energy of a
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Figure 11
Free energies of four-scale quasicrystals in the infinite-c LP model: (a) the
octagonal structure is the equilibrium phase when �0.1119 <

� �<�
�0.06227; (b) the octadecagonal structure is the equilibrium phase when
�0.06882 <� �<� �0.05140.

Figure 12
Predicted four-scale octagonal quasicrystal: blue and red shades
correspond to negative field values � >� �0.2306 and positive values
�<� 1.117, respectively. This quasicrystal has � = �0.09. At this �, the
minimization of the quartic energy in equation (35a) gives ~��1 ’ 0.05427
and ~��q1

= ~��q2
= ~��q3

’ 0.02856.

Figure 13
Predicted four-scale octadecagonal quasicrystal: blue and red shades
correspond to negative field values � >��0.1615 and positive values �<�
0.6008, respectively. This quasicrystal has � = �0.06. At this �, the
minimization of the quartic energy in equation (35b) gives ~��1 ’ 0.02960,
~��q1
’ 0.01234, ~��q2

’ 0.01243 and ~��q3
’ 0.01246.



given candidate configuration can be evaluated using the

approach of equation (15). However, this is not the case when

the local free-energy function is non-polynomial. We describe

here an alternative technique, which we call the ‘density

distribution method’, that not only allows us to evaluate such

free energies, but also provides a novel way of understanding

the stability of the various periodic and quasiperiodic phases.

This understanding is applied in Section 7 to calculate the free

energy (3) of the candidates under the BDL model and

explain the surprising stability of certain decagonal quasi-

crystals, and in Section 8 to aid in the artificial design of a new

local-energy function f ð�Þ which stabilizes arbitrarily high-

order quasicrystals with only two length scales.

Rather than evaluating the integral (12) – used to calculate

the contribution of the local term to the free energy – over

space, this term can be summed differently by integrating over

the set of possible values � that �(r) may take on,

F ¼

Z
f ð�ÞPð�Þ d�; ð36Þ

where

Pð�Þ /

Z
� ð�ðrÞ � �Þ dr; ð37Þ

is normalized such thatZ
Pð�Þ d� ¼ 1; ð38Þ

and � is the Dirac delta function. Pð�Þ is the probability

density function of �(r) being �. Intuitively, it is essentially a

histogram of the position-space �(r) values obtained when r is

selected by blindly throwing a dart at the entire Cartesian

plane on which the structure is defined. This reformulation of

the free energy is conceptually reminiscent of Lebesgue

integration. It can also be thought of as taking a uniform-

weight inner product of f and P over the vector space of real

functions.

An intriguing analogy exists between the density distribu-

tion and the density of energy eigenstates of a quantum

Hamiltonian for a single particle in a periodic potential. There,

it is the energy dispersion, or band structure, E(k), that plays

the role of our density field �(r). When the Hamiltonian is that

of a nearest-neighbor tight-binding model for a particle

hopping on a lattice, corresponding to one of our candidate

structures, the band structure E(k) assumes the same form

taken by our density field �(r) and the analogy becomes

exact.10 Consequently, the formal expression for the calcula-

tion of the density distribution in one dimension is similar to

that of the density of states11

Pð�Þ ¼
X
�ðrÞ¼�

1

jr�ðrÞj
; ð39Þ

where in d dimensions the sum is replaced by an integral over

the d� 1-dimensional equal-� surface.

We can take the analogy one step further if we notice –

using standard complex analysis – that the density distribution

Pð�Þ ¼ �ImfGð�Þg=�, where

Gð�Þ ¼

Z
1

�� �ðrÞ þ i0þ
dr: ð40Þ

It turns out that this function Gð�Þ is the on-site lattice

Green’s function, obtained for the nearest-neighbor tight-

binding Hamiltonian of a particle hopping on the corre-

sponding lattice, with �(r) replaced by E(k). The real and

imaginary parts of the lattice Green’s function are related to

each other by the Kramers–Kronig relations and so encode

equivalent information about the crystal structure. The real

part can be useful for evaluating the density distribution-based

free-energy equation (36) for certain local free-energy density

functions f ð�Þ, such as the one in Section 7.

Many advanced mathematical approaches have been

developed for evaluating these lattice Green’s functions,

including contour integrals (Ray, 2014), hypergeometric

functions and Calabi–Yau differential equations (Guttmann,

2010), holonomic functions (Koutschan, 2013; Zenine et al.,

2015; Hassani et al., 2016), and Chebyschev polynomials (Loh,

2017).

6.2. Rescaling and skewness of the density distribution

As for any normalized probability distribution (38),

rescaling the field strength �(r), and with it the width of the

density distribution, merely rescales the distribution itself by

the reciprocal factor, namely P�ð��Þ = P ð�Þ=j�j. In the case of

single-scale structures, whose overall field strength is deter-

mined by a single Fourier amplitude ~��, it is therefore sufficient

to calculate the density distribution once for P ~��¼1ð�Þ, and

rescale later if necessary.

For two-scale structures, characterized by two Fourier

amplitudes ~��1 and ~��q, a rescaling of �(r) affects both ampli-

tudes together, giving P ~��1; ~��q
ð�Þ = j�jP� ~��1;� ~��q

ð��Þ. Thus, the

density distributions differ for fields with different ratios ~��q= ~��1

of the amplitudes, but are otherwise independent of the

overall scale of the field.

For all the structures relevant to us, Pð�Þ has compact

support ½�min; �max� between the extreme values of �(r), which

are both finite, because the fields are all finite sums of

harmonic functions. The value 
 = ��max=�min is a measure of

the ‘skewness’ or ‘lopsidedness’ of the density distribution. It

characterizes the imbalance between the ground state and the

highest excited state of the corresponding tight-binding

model. It is a useful measure that will serve us in what follows.

Because of the freedom to rescale the density distribution,

for single-scale structures 
 can take on at most only two

distinct values: 
 for positive ~�� and its inverse 1/
 for negative
~��. We need only consider positive ~��. On the other hand, with

this assumption, 
 for two-scale structures varies continuously

as a function 
 ð ~��q= ~��1Þ of the ratio of the two Fourier ampli-

tudes.
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10 This analogy is reminiscent of that between the shape of micelles in real
space and electronic Fermi surfaces in momentum space, suggested by Lee et
al. (2014) and discussed by Lifshitz (2014).
11 See, for example, equation (8.63) of Ashcroft & Mermin (1976).



6.3. Numerical sampling of the field

One may need to resort to numerical sampling of the field

�(r) in order to generate the density distribution Pð�Þ when

analytical methods for calculating equations (37) or (39) prove

difficult. For periodic crystals this is readily achieved by

uniformly sampling the unit cell of the crystal in both spatial

directions. Quasicrystals lack periodicity, so this approach

would, in principle, require a uniform sampling of the entire

two-dimensional plane.

An alternative approach for the periodic case, which is

easier to generalize to quasicrystals, is to remain at the origin

of the two-dimensional plane and shift the field itself, until a

full unit cell is sampled. This procedure samples the origin of

the degenerate minimum free-energy states, which in the

periodic case merely differ by a rigid translation within the

unit cell.

One can sample the minimum free-energy states in terms of

the Fourier coefficients of the fields by ensuring that the value

of the free energy – like the one in equation (13) – does not

change. This implies that one may generally shift the phases of

the (complex) Fourier coefficients as long as the sum of these

phases is zero for all possible structure invariants. This

amounts to performing a Rokhsar–Wright–Mermin gauge

transformation (Rokhsar et al., 1988), as explained elsewhere

(Lifshitz, 2011). Thus, one may freely shift the phases of the

Fourier coefficients on wavevectors that are linearly inde-

pendent over the integers. All the phase shifts of the

remaining Fourier coefficients are then determined by the

structure invariants. For periodic crystals in two dimensions

there are two such independent phases. For the decagonal and

dodecagonal quasicrystals of interest here there are four

independent phases. Shifting these phases uniformly from 0 to

2� yields the uniform sampling that we seek.12

6.4. Density distributions for the candidate phases

6.4.1. Single-scale structures. Trivially, PUNIFð�Þ = �ð�Þ.
We therefore begin with the single-scale lamellar field

which, after scaling ~�� to unity, is given by �(r) = 2cosx.

Because j�j never exceeds two, PLAMð�Þ vanishes when j�j>
2. We express it analytically between these bounds using

equation (39), by substituting �2 sinðxÞ x̂x for r�ðrÞ and

cos�1ð�=2Þ for x and normalizing according to equation (38).

This gives

PLAMð�Þ ¼

0 � � �2,

1

�ð4� �2Þ
1=2

�2 � � � 2,

0 2 � �.

8>>><
>>>:

ð41aÞ

This calculation is demonstrated schematically in Fig. 14.

While calculating PLAM is straightforward, doing so for

PHEX is quite difficult. The mathematics necessary to do so was

worked out by Ramanujan (1914) using one of his theories of

elliptic functions to alternative bases. The connection to lattice

Green’s functions was introduced by Horiguchi (1972). We

simply provide the result,

PHEXð�Þ¼

0 �<� 3,

2K
16ð�þ 3Þ1=2

8ð�þ 3Þ1=2
� �2 þ 12


 �

�2½8ð�þ 3Þ1=2
� �2 þ 12�1=2

�3 � �<� 2,

2K 1�
16ð�þ 3Þ1=2

8ð�þ 3Þ1=2
þ �2 � 12


 �

�2½8ð�þ 3Þ1=2
þ �2 � 12�1=2

�2<� � 6,

0 6<�,

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð41bÞ

where K is the complete elliptic integral of the first kind.

These density distributions are plotted in Fig. 15, showing

that the lamellar phase is unskewed with 
LAM = 1 as

expected, while the hexagonal phase is skewed, with 
HEX = 2.

6.4.2. Two-scale structures. The density distributions of the

decagonal and dodecagonal fields are calculated numerically

by measuring them at the origin, as explained earlier, while

sampling the set of all degenerate minimum free-energy states

via appropriate phase shifts of the harmonic functions. The

phase-shifted fields are given by

�DECðr ¼ 0;f�igÞ ¼

2 ~��1

�
cos�1 þ cos�2 þ cos�3 þ cos�4

þ cos �1 þ �2 þ �3 þ �4ð Þ
�

þ 2 ~��q

�
cos �1 þ �2ð Þ þ cos �2 þ �3ð Þ þ cos �3 þ �4ð Þ

þ cos �1 þ �2 þ �3ð Þ þ cos �2 þ �3 þ �4ð Þ
�
;

ð42aÞ

and
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Figure 14
Graphical evaluation of the lamellar density distribution: the left-hand
panel shows a half-period of the sinusoidal lamellar spatial structure. The
horizontal lines coming off it are evenly spaced in the horizontal
direction. Their vertical density determines the distribution in the right-
hand panel. Note how the stationary regions of the structure, where the
gradient vanishes at 0 and �, lead to the inverse square root Van Hove
singularities in the density distribution at j�j = 2.

12 Equivalently, one can think of this process as uniformly sampling a unit cell
of the higher-dimensional periodic structure through which the quasicrystal
can be constructed as a slice at an irrational slope (Senechal, 1995).



�DODðr ¼ 0; f�igÞ ¼

2 ~��1

�
cos�1 þ cos�3 þ cos ð�1 þ �3Þ

þ cos�2 þ cos�4 þ cos ð�2 þ �4Þ
�

þ 2 ~��q

�
cos ð�1 þ �2Þ þ cos ð�3 þ �4Þ

þ cos ð�1 þ �2 þ �3 þ �4Þ

þ cos ð�1 þ �2 þ �3Þ þ cos ð�4 � �1Þ

þ cos ð�2 þ �3 þ �4Þ
�
: ð42bÞ

We call �1 the value of �(r = 0; {�i}) when ~��1 = 1 and ~��q = 0 and

likewise call �q the value when ~��1 = 0 and ~��q = 1, so that � =
~��1�1 + ~��q�q. We numerically sample the ordered pairs ð�1; �qÞ

uniformly over �i 2 ½0; 2�Þ, with 96 sampling points along

each phase, to give a total of roughly 85 million samples. If we

write this distribution function as P ð�1; �qÞ, then

P ~��1; ~��q
ð�Þ ¼

Z Z
� ~��1�1 þ ~��q�q � �
� �

P �1; �q

� �
d�1 d�q: ð43Þ

Upon numerically maximizing the skewness parameter 
 over

the ratio of amplitudes ~��q= ~��1 for the decagonal and dodeca-

gonal phases, we find that the optimal ratio is unity, where ~��1 =
~��q > 0, in both cases. The density distributions obtained for

this ratio are shown in Fig. 16, where it can be seen that the

decagonal and dodecagonal phases have maximal 
 values of 4

and 3, respectively.

The density distributions in Figs. 15 and 16, along with

equation (36), allow us to understand the stability of the

candidate phases more generally than before. The uniform

phase simply has FUNIF = f(0). The lamellar phase can

potentially dominate this by heavily sampling the local free-

energy density f ð�Þ far from � = 0. For example, a local free-

energy density with a strongly negative quadratic component

would likely favor the lamellar phase. Indeed, this is what we

observe in Section 3.2.1 when � exceeds (63/2 + 14)/15 and the

free energy of the lamellar phase is lower than that of the

hexagonal phase. On the other hand, the lopsided nature of

the hexagonal structure allows it to take advantage of the odd

components of the local free-energy density.

Similarly, quasicrystalline structures also attain stability

through the skewness of their density distributions. In parti-

cular, their extremes can be more lopsided than those of the

hexagonal phase. In other words, they have 
 > 
HEX = 2. In

Section 8, we use this feature of quasicrystals to stabilize

arbitrarily high-order structures using only two length scales.

6.5. Van Hove singularities

As shown in Figs. 15 and 16, the density distributions exhibit

a variety of Van Hove singularities (Van Hove, 1953). Note the

inverse square root Van Hove singularities exhibited by the

lamellar structure and the zeroth-order step discontinuities

and logarithmic singularities in the hexagonal density histo-

gram. The logarithmic singularity at � = �2 is due to the

corresponding stationary point in the structure function being

a saddle, to leading order, unlike the extrema which lead to the

step discontinuities.

By numerically minimizing the magnitude of the gradients

of the effective four-dimensional periodic functions [equations

(42a) and (42b)],

X4

i¼1

@�

@�i


 �2

; ð44Þ

we can identify Van Hove singularities at �min and �max, at

�4/5 in the decagonal structure, and at�1/2,�3/8 and 0 in the

dodecagonal structure.

With the exception of the discontinuity in the decagonal

distribution at �min = �1, all of the quasicrystal Van Hove

singularities are first order. This zeroth-order Van Hove

singularity turns out to be crucial for stabilizing the decagonal

structure under the BDL model in Section 7 and can be

understood in terms of the spatial Hessian of the effective

four-dimensional function. One of the phase-shifted structures
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Figure 15
Density distributions of the uniform, lamellar and hexagonal structures:
note the Van Hove singularities (i) the inverse square root singularities of
the lamellar distribution at �min = �2 and �max = 2, (ii) the logarithmic
singularity of the hexagonal distribution at � = �2, and (iii) the
discontinuous jumps from 1/(31/2�) and 1/[4(31/2)�] to zero at �min = �3
and �max = 6, respectively. The skewness of the latter two distributions is
given by 
LAM = 1 and 
HEX = 2.

Figure 16
Density distributions for decagonal and dodecagonal quasicrystals: for
these quasicrystals, 
 is maximized when ~��1 = ~��q = 1/5 or 1/8, respectively.
Observe that 
DEC = 4 and 
DOD = 3, and note the interior Van Hove
singularities at �4/5 and �1/2, �3/8 and 0, and the zeroth-order
discontinuity in the decagonal distribution at �min = �1. This final Van
Hove singularity is analyzed in Section 6.5 and is a key factor leading to
the decagonal structure’s stability under the BDL model.



that has this minimum of �1 at its origin is given by {�i}min =

{sec�1(�4), 0, 2 sec�1(4), 0}. At this point, the Hessian is

@2�DEC

@�i@�j

����
f�igmin

¼
1

4

8 6 4 2

6 12 18 9

4 18 32 16

2 9 16 8

0
BB@

1
CCA: ð45Þ

The nullity, or the rank of the kernel, of this matrix is two. In

this case, this indicates that the manifold of the minima is two-

dimensional. This generates a quadratic minimum of effective

dimension two, the rank of the Hessian. A quadratic

d-dimensional minimum generates a singularity of order

d=2� 1, so the decagonal density distribution has a zeroth-

order discontinuity at its minimum.

As explained by Van Hove (1953), topological considera-

tions in Morse theory require the existence of a certain

number of stationary points with each quadratic signature,

although degenerate stationary points such as the one

analyzed in the previous paragraph complicate the situation.

6.6. A lower bound on the LP free energy

Using the language of density distributions, we can calculate

a lower bound for the free energy in the LP model. Clearly, if it

were not for the infinite-c penalty at k = 0, which requires the

average density to be zero, the best possible density distri-

bution would have a single delta-function peak, corresponding

to a uniform field �(r) = �0 that minimizes the local free-

energy density (7) everywhere. To satisfy the zero-average

requirement we must add a compensating delta function peak

at some negative value �‘ < 0, and possibly allow the positive

value �r > 0 to shift away from �0. This yields a field with sharp

boundaries between two allowed values and a density distri-

bution of the form Pð�Þ = P‘�ð�� �‘Þ + Pr�ð�� �rÞ.

Given sufficient harmonics, structures of arbitrary

symmetry can attain this sharp form. Of course, with too many

allowed length scales, the physical requirements on the length-

scale selectivity c are stricter, and even so the set of competing

candidate phases can increase, so the results below provide

only an extreme theoretical lower bound on the free energy.

All that is left is to minimize the free energy (36) under the

constraints of zero-averaging, P‘�‘ + Pr�r = 0, and the

normalization P‘ þ Pr = 1 of the density distribution. Solving

for the left-hand side variables gives P‘ = 1� Pr and �‘ =

ðPr�rÞ=ðPr � 1Þ. Substituting them into Pð�Þ and minimizing

the free energy (36) over Pr and �r gives

Pr ¼
1

2
�

1

2ð9�þ 3Þ1=2
; ð46Þ

and

�r ¼
ð9�þ 3Þ1=2

þ 1

3
: ð47Þ

Essentially, we have fitted the right peak into the wells of the

solid colored lines in Fig. 2, while remembering that it must be

balanced out by a corresponding peak at negative �. This gives

a lower bound on the free energy of F � �ð9�þ 2Þ2=324.

Note that this implies that �must be greater than�2/9 to allow

for the possibility of structures with negative free energy. This

‘forbidden zone’ is shown as the grayed-out regions in

Figs. 4–6. Furthermore, the lowest possible metastability

bound is � = �1/3.

7. Mean-field theory for soft interacting particles

7.1. The Barkan–Diamant–Lifshitz model

Equipped with the density distribution method and the

ability to calculate free energies with non-polynomial local

terms, we can perform a more detailed and informed analysis

of the coarse-grained free energy (3) used in the BDL model

(Barkan et al., 2011), which contains a local logarithmic

entropy term. Assuming a sufficiently dense system of soft

particles that interact via a Fourier transformable isotropic

pair potential UðrÞ – implying that it does not diverge at a

higher order than the usual 1/r electrostatic potential as the

particles get closer together – one can express the BDL

coarse-grained free energy in the form of equation (9) with

~VVðkÞ ¼
~UUðkÞ � ~UUmin

8�2j ~UUminj
; ð48Þ

and

fCGð�Þ ¼ T ð�þ 1Þ ln ð�þ 1Þ � �½ � �
�2

2
; ð49Þ

where ~UUðkÞ is the Hankel transform of UðrÞ and ~UUmin is its

minimum value. The temperature T is measured here in units

of the spinodal temperature Tsp = �c ~UUmin=kB, where c is the

average number density of the particles and kB is the Boltz-

mann constant. Recall that Tsp is the lower metastability

boundary of the uniform liquid phase, below which the system

must become ordered, and note that the minimum ~UUmin of
~UUðkÞ must be negative for this temperature to be positive.13

Finally, the value � of the field �(r) is here constrained to

�> � 1 by the fact that the number density c(r) = c ½�ðrÞ þ 1�

of the particles cannot be negative. This ‘vacuum constraint’

ensures that the logarithm in equation (49) does not diverge.

BDL proceeded to take the fourth-order Taylor expansion

of fCG to obtain

f4ð�Þ ¼
T � 1

2
�2
�

T

6
�3
þ

T

12
�4; ð50Þ

and mapped this resulting quartic free energy onto the LP free

energy, giving them a rough estimate of the physical para-

meters that might stabilize the different targeted structures,

based on the LP results. By rescaling � and F , we can make f4

equivalent to the LP form in equation (7). The correspon-

dence between T and � necessary to do so is then given by T =

4=ð3�þ 4Þ. Note that the range �4/3 <�< 0 corresponds to

scaled temperature values of T > 1 above the spinodal

decomposition, and that positive values of � correspond to
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13 It must also be noted that BDL denote the spinodal temperature as Tc ,
while Barkan et al. (2014), who confirmed the BDL results using molecular
dynamics simulations, denote it as Tsp but leave the temperature T unscaled.



values of T < 1 below it. The cases of � � �4/3 and T < 0 are

unphysical for the coarse-grained free-energy model.

The success of the estimates obtained by BDL through this

mapping were somewhat fortuitous, as a comparison between

even properly rescaled plots of fLP and fCG in Fig. 2 reveals

that they are very different outside of the radius of conver-

gence j�j> 1. As the transition from the uniform liquid to the

ordered state is first order, the field �(r) generally contains

regions with large values, making f4 a poor approximation

even at the transition. It is therefore important that we can

now evaluate the exact local free energy fCG. As for the

evaluation of the nonlocal term of the free energy, in order to

make the analytical calculations more tractable, we again work

in the limit of exact length-scale selection – analogous to the

infinite-c limit of the LP model – corresponding here to the

small ~UUmin and therefore small Tsp limit. As seen below, we

indeed find important differences between the behaviors of

the LP and BDL models.

7.2. Single-scale structures

For the single-scale lamellar and hexagonal phases, substi-

tuting the density distributions of equations (41a) and (41b)

and the logarithmic local free-energy density of equation (49)

into the free-energy equation (36) gives

FLAMð ~��; TÞ¼ � ~��2

þ T
n

ln
�

1� 4 ~��2
� �1=2

þ1
�
� 1�4 ~��2
� �1=2

�ln 2þ1
o
;

ð51aÞ

and

where 2F1 is a hypergeometric function.14

Now, minimizing FLAM over ~�� yields

F LAMðTÞ ¼

T � T ln ð2Þ � 1
4 0 � T � 1

2 ,

T ½ln ðTÞ � T þ 1� 1
2 � T � 1 ,

0 1 � T,

8><
>: ð52Þ

which is shown in Fig. 17. At absolute zero, the free energy is

exactly �1/4. In the first temperature range, where F LAM is

linear in T, ~�� = 1/2, which is the maximum value it can obtain

without violating the vacuum constraint. Increasing it further

would violate the non-negative density condition. At the

transition to the second temperature range, the free energy is

ð1� 2 ln 2Þ=4. From here, as T increases to unity, ~�� decreases

to zero. At T = 1, a second-order phase transition to the

uniform phase occurs.

The result of minimizing FHEX, which is obtained numeri-

cally, is also shown in Fig. 17, displaying similar behavior. At

absolute zero, the free energy is exactly �1/3. For 0 � T <
�

0.8514, ~�� has its maximum allowed value, which is 1/3, and the

free energy is linear in T. When T ’ 0.8514, F ’ �0.05278,

and in the next temperature range ~�� decreases monotonically

to�0.1923 at T’ 1.063, at which point the system undergoes a

first-order transition to the uniform phase.

Note that the hexagonal phase always has a lower free

energy than the lamellar phase. Therefore, we do not need to

consider the single-scale lamellar candidate when evaluating

the stability of quasicrystals in the BDL model, as it is never

the equilibrium phase. This is qualitatively different from the

behavior with the quartic local free energy f4, analogous to

that of the LP model, where the lamellar phase would be

expected to take over at T � (34 � 63/2)/47 ’ 0.4107.

7.3. Two-scale structures

In the original LP model, one can set q to k4, k6 and k1 to

stabilize two-scale square, hexagonal and lamellar super-

structures, respectively. Unsurprisingly, the BDL model can

also do this, as demonstrated in Fig. 18, and it stabilizes these

two-scale periodic phases all the way down to absolute zero.

Their free energies are calculated using the same techniques as

the quasicrystalline structures treated below, but we omit a

detailed analysis of their behavior.

Again, as in the LP model, setting q to k8 and k10 fails to

stabilize octagonal and decagonal quasicrystals, as their free

energies, shown in Fig. 18, are always greater than that of the

single-scale hexagonal phase. Only decagonal and dodeca-

gonal structures with q = k5 and k12 occur as stable quasi-

crystalline states in the BDL model. Their free energies are

calculated using the sampled distribution of ordered pairs
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Figure 17
Free energies of the single-scale periodic structures in the BDL model: in
this model, the free energy of the hexagonal structure is always lower
than that of the lamellar structure, so we need not consider it further. The
hexagonal structure is the equilibrium phase up to T ’ 1.063, where it
undergoes a first-order transition to the uniform liquid phase. Colored
dots correspond to temperatures below which the Fourier amplitude ~��
reaches its maximum value and the free energy becomes a linear function
of the temperature.

14 Alternatively, one could evaluate these expressions using a double integral
of an expression involving the analytically continued real part of the lattice
Green’s function (40) and no logarithms, instead of a single integral with a
logarithm.



Pð�1; �qÞ as explained in Section 6.4.2, and plotted in Fig. 19 as

functions of T.

We would like to emphasize that the minimization of the

free energy with respect to ~��1 and ~��q is performed subject to

the vacuum constraint, which is more difficult to take into

account for the two-scale structures. Each ð�1; �qÞ pair from

Section 6.4.2 not only gives a small free-energy contribution,

but also imposes the linear constraint �1 ~��1 + �q ~��q � �1 on

the values of ~��1 and ~��q. The problem of finding the inter-

section of these half-planes is dual to that of finding the

convex hull of the ð�1; �qÞ points (de Berg et al., 2008). If

ð�1A; �qA
Þ and ð�1B; �qB

Þ are adjacent extremal points on the

convex hull, then the point

�qA
� �qB

; �1B � �1A

� �
�1A�qB

� �1B�qA

; ð53Þ

is a vertex of the polygonal boundary of the set of allowed

ð ~��1; ~��qÞ values that do not violate the vacuum constraint. The

feasible sets for the decagonal and dodecagonal quasicrystals

are displayed in Fig. 20. As shown there, we are able to find

exact values for all the polygonal vertices bounding the

regions. A simple constrained descent algorithm is used to

minimize the free energy over these convex sets.

For the decagonal phase with q = k5, a portion of which is

shown in Fig. 21, as the temperature is lowered the system

undergoes a first-order phase transition from the uniform

liquid to the quasicrystal at T’ 1.125, at which point ~��1 = ~��q ’

0.1352. These ~��’s increase together until T ’ 0.8977, where

they reach their maximal allowed value of 1/5. At this point,

the free energy of the decagonal phase is approximately

�0.06746. This continues to be the equilibrium phase all the

way down to absolute zero, where the free energy becomes

exactly �2/5.

For the dodecagonal phase with q = k12 , the first-order

transition from the uniform liquid occurs at T ’ 1.159, where
~��1 = ~��q ’ 0.1220. At T ’ 1.152, the free energy F ’ �1.123	
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Figure 18
Free energies of the two-scale periodic and unstable quasiperiodic
structures in the BDL model: plotted for comparison are the free energies
of the uniform and single-scale hexagonal phases. q takes the values k4,
k6, k8, k10 and k1, as labeled. As in the LP model, the free energies of the
two-scale square (k4), hexagonal (k6), lamellar (q = k1), decagonal (k5)
and dodecagonal (k12) structures are lower than that of single-scale
hexagonal structure, but unlike the LP model the decagonal structure
remains the equilibrium phase down to zero temperature, without
undergoing a second phase transition. On the other hand, still in line with
the LP model, the free energies of the octagonal (k8) and decagonal (k10)
quasicrystals are always higher than that of the single-scale hexagonal
structure, and are therefore never the equilibrium phase.

Figure 19
Free energies of the stable two-scale quasiperiodic structures in the BDL
model: the decagonal structure (k5) is the equilibrium phase for T <

�
1.125 and the dodecagonal structure (k12) is the equilibrium phase for
0.8697<� T<� 1.159. Black dots mark the phase transitions, while colored
dots mark transitions between linear and nonlinear regimes of the free
energy, where the Fourier amplitudes ~��1 and ~��q reach a stationary pair of
values.

Figure 20
Feasible ð ~��1; ~��qÞ sets for decagonal and dodecagonal quasicrystals in the
BDL model: these are the convex regions over which the Fourier
coefficients can vary without violating the vacuum constraint. There is a
mirror line given by ~��1 = ~��q. Solid dark lines in the first quadrant show the
path of the minimizing values of ð ~��1; ~��qÞ as the temperature is changed.
While the polygonal vertices are exact, we believe that there is no simple
expression for the two smooth curves in the dodecagonal feasibility
boundary. Note that the peakedness of the decagonal structure jutting far
into the first quadrant essentially explains its surprising stability in the
BDL model. Similar shapes exist for the additional phases considered in
Fig. 18, but are omitted here.



10�3 and the ~��’s reach their maximum allowed value of 1/8,

and the free energy as a function of temperature enters a

linear regime. The ~��’s remain at 1/8 until T ’ 0.8697, at which

point the hexagonal phase takes over at a free energy of

approximately �0.04697. Regardless, if we continue to restrict

our attention to the dodecagonal structure, it undergoes a

second-order phase transition-like event where the Z2

symmetry ~��1 $ ~��q is broken at T’ 0.8446 andF ’�0.05086.

After this point, the F ’s move along their maximum allowed

sum line ~��1 + ~��q = 1/4 until T ’ 0.7022, where they land in

either of the two degenerate states ð ~��1; ~��qÞ = (7/36, 1/18) or

(1/18, 7/36) with a free energy of approximately�0.07973. The

structure remains in one of these two minima until absolute

zero, where the free energy becomes exactly �53/216.

7.4. Skewness and the vacuum constraint

While the dodecagonal quasicrystal shows qualitatively

similar stability under the LP and BDL models, the decagonal

quasicrystal exhibits significantly different behavior, showing

surprisingly robust stability in the BDL model. Until now, it

was understood that soft quasicrystals are stabilized by three-

body (or more generally odd-body) interactions that break the

Z2 symmetry of the free energy F, namely, the �!��
symmetry of f ð�Þ. However, the fact that the decagonal

quasicrystal dominates even at T = 0, where there are no

three-body interactions, demonstrates that this cannot be the

whole story.

The primary quasicrystal stabilizing factor in the BDL

model is the important � � �1 vacuum constraint, which is a

very effective alternative way of breaking the Z2 symmetry of

F . The decagonal structure with ~��1 = ~��q possesses the most

lopsided of any of the density distributions examined, giving it

a 
 skewness of four, and allows the decagonal phase to take

maximal advantage of the the highly negative fCGð�Þ values at

large �’s without violating the vacuum constraint. The

important Van Hove singularity at the vacuum minimum,

which allows this high skewness to occur, is analyzed in

Section 6.5. Note that the structure itself, shown in Fig. 21,

contains well separated very highly peaked positive red spots

in a shallow blue sea of negative values. This argument also

explains the result of the molecular dynamics simulations

performed by Barkan et al. (2014) with q = k5, showing that the

decagonal quasicrystal remains stable as T is lowered to

absolute zero, without undergoing a transition to the hexa-

gonal phase as would be predicted by a naı̈ve correspondence

to the LP model.

8. Higher-order quasicrystals

8.1. Skewness of the 6n-fold two-scale structures

Finally, we examine the 
 skewness of the density distri-

butions of quasicrystals of order 6n for arbitrary n � 2. Then,

using the information obtained, we judiciously design an

artificial local free-energy function f ð�Þ that allows for the

stabilization of quasicrystals of these orders. While the local

free energies previously used by Lifshitz & Petrich (1997) and

Barkan et al. (2011) were physically justified by entropic

considerations and their truncated polynomial expansions, the

one we construct below is engineered with the sole goal of

stabilizing higher-order quasicrystal phases. However, as we

argue below, it might not be impossible to design a physical

system with sufficiently similar behavior to stabilize some of

these higher-order quasicrystals, particularly when n is not too

large.

We first demonstrate that, for all n, two-scale 6n-fold crys-

tals, like the ones shown in Figs. 3(j) and 3(m) for n = 1 and 2,

all have their skewness 
 from Section 6.2 greater than two,

when the two amplitudes ~��1 and ~��q are equal. We restrict our

attention to this case and scale both ~��1 and ~��q to unity.

By inverse Fourier transforming its momentum-space

representation according to equation (8), the position-space

field representing this quasicrystal can be written as

�ðrÞ ¼
X6n

j¼1

exp i kj � rþ �j

� �� �
þ exp i kj þ kjþ1

� �
� rþ �j;jþ1

� �� 	
;

ð54Þ

where the wavevectors
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Figure 21
Predicted decagonal quasicrystal with ~��1 = ~��q = 1/5: red shades
correspond to positive field values � � 4, whereas blue shades represent
negative values which just barely scrape against the vacuum when � =�1.
Note the abundance of blue or white areas which are interspersed with
bright red spots. This provides the skewness which makes this structure so
stable in the BDL model.



kj ¼ cos
j

6n


 �
x̂xþ sin

j

6n


 �
ŷy; ð55Þ

have length |kj| = 1, and the sum of two consecutive vectors has

a length |kj + kj+1| = q = k6n .15

In principle, the additional phases �j and �j,j+1 are free to

vary so as to minimize the free energy (12), yet for similar

arguments mentioned in Section 3.1.1 there is always a

representative structure, within the set of all degenerate

minimum free-energy states, for which the phases within each

circle are all equal and can be taken to be 0 or �. We limit our

attention to structures where the phases are the same on both

circles, taking them all to be zero without any further loss of

generality, owing to our freedom to change the sign of the

cubic term in f ð�Þ accordingly. With this choice, with all the �’s

set to zero, the field obtains its maximum value �max = 12n at

the origin. We now show that �min > �6n so that 
 > 2.

As explained in Section 6.3, we sample the field by staying

at the origin r = 0 and shifting the � phases, while keeping the

structure invariants constant, thereby performing Rokhsar–

Wright–Mermin (Rokhsar et al., 1988) gauge transformations.

This requires the sum of the phase shifts at wavevectors that

add to zero to vanish, and immediately implies that �j,j+1 � �j

+ �j+1, where ‘�’ stands for equality modulo 2�. Thus, the

phase shifts on the outer circle are all fixed by the choice of

shifts on the inner circle.

In addition, within the inner circle, each vector and its

negative impose the constraint �j + �j+3n � 0, and each triplet

of wavevectors adding to zero imposes the constraint �j + �j+2n

� �j+n. This leaves at most two independent phases on each of

the n sextets forming the inner circle that still need to satisfy

additional constraints imposed by each additional prime

divisor of n other than 2 or 3. The resulting number of inde-

pendent phase shifts is given by �ð6nÞ, where � is the Euler

totient function.

This can be used to rewrite the shifted field at the origin as

�ðr ¼ 0;f�igÞ ¼

2
Xn

m¼1

cos�m þ cos�mþ2n þ cos �m þ �mþ2n

� �� �

þ 2
Xn

m¼1

�
cos �m þ �mþ1

� �

þ cos �mþ2n þ �mþ2nþ1

� �
þ cos �m þ �mþ1 þ �mþ2n þ �mþ2nþ1

� ��
: ð56Þ

Each of the triplets of cosines in the two sums of equation (56)

can be written in the form cosx + cosy + cos(x + y). This

function has a minimum of �3/2 when both x � y � �2�/3.

However, this bound is unattainable for all 2n cosine triplets:

If we set �m � �m+2n � �2�/3 for m = 1 . . . n, so as to obtain

the �3/2 minimum for all the triplets of the first sum, then no

matter what the sign choices are, at least one of the triplets in

the second sum must have phases of zero and therefore does

not achieve the �3/2 minimum. This implies that �min > �6n,

and so 
 > 2.

Indeed, numerical sampling for ~��1 = ~��q shows that 
 = 3, 3,

36/13 ’ 2.769 and �2.634, for n = 1 . . . 4, respectively.

Asymptotically, 
 appears to decrease no faster than 2 + 2/n.

8.2. A local free-energy density that stabilizes 6n-fold
quasicrystals

We set our local free-energy density to be

f ð�Þ ¼

2 �<� 1,

0 �1 � � � 2,

�1 2< � ,

8><
>: ð57Þ

which is shown as the black lines in Figs. 1 and 22. Using the

density distributions calculated in Section 6.4, it is not difficult

to show that the uniform and single-scale lamellar and hexa-

gonal phases must have non-negative free energies with this

local free-energy function. In particular, because 
HEX = 2, the

hexagonal phase cannot probe the negative f ð�> 2Þ ¼ �1

region without suffering greater free-energy penalties from

the positive f ð�< � 1Þ ¼ 2 region, as can be inferred

graphically from Fig. 22. Furthermore, because the free-

energy penalty is twice the free-energy decrease, the hexa-

gonal phase is unable to reach negative free energies through

negative values of ~�� either.

For the 6n-fold two-scale structures considered above, we

scale ~��1 = ~��q until �min reaches �1. Then, because 
 > 2, �max

is also greater than two. This, together with the density

distribution (36) and the local free-energy function (57),

implies that the free energy F is negative for this structure.

Thus, a 6n-fold quasicrystal is the minimum free-energy state
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Figure 22
Density distribution of the two-scale octadecagonal quasicrystal: the
black line is the local free-energy density from equation (57). Here q = k18

’ 1.970 and ~��1 = ~��q = 1/13. Note that the purple-colored octadecagonal
density distribution extends into the positive values of �> 2, where the
free-energy density is negative, making its overall free energy F ’
�1.223 	 10�3 < 0. On the other hand, the density distribution of the
single-scale hexagonal structure, which is plotted here for reference,
cannot extend beyond � = 2 without running into the barrier at �< �1,
which would force its free energy to become positive. This approach for
forcing the quasicrystal structure to be the minimum free-energy state
succeeds theoretically for all 6n-fold quasicrystals, where n � 2, although
they become increasingly fragile.

15 We note that, for 6n> 46, there are additional inequivalent arrangements of
wavevectors to consider, corresponding to distinct Bravais lattices, which we
ignore here. See Mermin et al. (1987) for additional information.



of the system. Indeed, the calculated free energies of the

octadecagonal and icositetragonal quasicrystals are approxi-

mately �1.223 	 10�3 and �6.093 	 10�5, respectively. These

free energies are simply the fraction of the density distribution

above a density of two when the ~��’s are scaled such that �min =

�1, as can be seen graphically in Fig. 22.

Only some of the features of the contrived local free-energy

density (57) are necessary for this stabilization to occur, and

lower orders will be much more tolerant of imprecision than

higher orders. For arbitrarily high orders, the flat region which

includes � = 0 in the local free-energy functional is essential to

this argument, as is some degree of favorable free energy for

high values of � and a somewhat greater free-energy penalty

for sufficiently negative ones. These deviations from zero do

not have to be sudden jumps. If the quasicrystalline 
 can only

be proven to be greater than two, as we have done here for 6n-

fold structures, the ratio of the onset of these latter two effects

must be exactly two, but if it can be shown to be even higher

there will be some room for error.

Reproducing these results in the laboratory is likely to be

challenging for at least three reasons:

(i) High length-scale selectivity will be required.

(ii) The thermodynamic stability of a stable state does not

necessarily imply that it is kinetically accessible within a

reasonable time frame.

(iii) Engineering an effective local free-energy density

function like the one in equation (57) may be difficult. We

suggest using a system similar to the interacting particles in the

BDL model, where the vacuum constraint �(r) � �1 imple-

ments the required barrier for negative concentrations relative

to the average. A drop in the local free-energy density for

sufficiently high concentrations could potentially be imple-

mented through a kind of local phase change which sets in at a

critical density, or some other highly nonlinear effect, such as

the formation of oscillons (Umbanhowar et al., 1996; Arbell &

Fineberg, 2000).

9. Closing remarks

In closing, we wish to emphasize the ease with which one can

stabilize quasicrystals in rather simple isotropic models of

interacting particles or their mean-field descriptions. It was

appreciated from the outset that one needs to introduce

multiple length scales into the interaction potentials of the

constituent particles. Yet the ability to do so in a quantitatively

predictive and controlled manner has only emerged in the last

two decades, based on the understanding of how the multiple

scales ‘work together’ to produce the targeted quasicrystalline

structures.

The Faraday wave experiments of Edwards & Fauve (1993)

led to the understanding of Lifshitz & Petrich (1997) that one

needs to break the �!�� symmetry of the Landau free-

energy expansion in order to allow the two length scales to

couple via triad resonances or effective three-body inter-

actions. This understanding was then generalized by Barkan et

al. (2011) with their symmetry-breaking logarithmic entropy

term.

Here, enabled by the density distribution method for

calculating such non-polynomial free energies, we have come

to an even deeper understanding that the breaking of �!��
symmetry favors the formation of structures with skewness.

Indeed, quasicrystalline structures attain stability through the

large skewness of their density distributions. Importantly, their

extremes can be more lopsided than those of the hexagonal

phase, which also takes advantage of its skewness to compete

with the lamellar and uniform states. We have taken this idea

to the extreme in Section 8 to design a local free energy which

allows arbitrarily high-order quasicrystals to be stabilized.

Quasicrystals are stabilized by local free energies which

take advantage of the unique skewed shape of quasicrystalline

density distributions. Three-body interactions are responsible

for this in the LP model, but any symmetry-breaking term may

do the job.
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