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The generation and motion of crystalline defects during plastic deformation are

critical processes that determine the mechanical properties of a crystal. The

types of defect generated are not only related to the symmetry of a crystal but

also associated with the symmetry-breaking process during deformation.

Proposed here is a new mathematical framework to capture the intrinsic

coupling between crystal symmetry and deformation-induced symmetry

breaking. Using a combination of group theory and graph theory, a general

approach is demonstrated for the systematic determination of the types of

crystalline defect induced by plastic deformation, through the construction of a

crystal deformation group and a deformation pathway graph. The types of

defect generated in the deformation of a face-centered cubic crystal are

analyzed through the deformation pathway graph and compared with

experimental observations.

1. Introduction

The mechanical properties of a crystal, such as its strength,

ductility, toughness etc., are dictated by the generation and

motion of defects during plastic deformation (Read, 1953;

Christian & Mahajan, 1995; Kaplan, 2015; Anderson et al.,

2017). It has been well understood that the types of defect

generated (such as dislocations and twins) are associated with

the symmetry of the crystals (Bhagavantam & Suryanarayana,

1949; Nye, 1985; Prince, 2004; Muller, 2013; Gao et al., 2017).

As a rigorous mathematical tool to describe crystal symmetry,

group theory has been widely utilized to analyze the type and

crystallographic equivalency of defects (Cahn, 1977; Dmitriev

& Toledano, 1996; Cayron, 2007, 2016; Gao et al., 2016, 2017).

Note that crystalline defects could be related to either point

symmetry or translational symmetry (or a combination of the

two). For example, a twin is usually associated with a point

symmetry, while a dislocation is associated with a translational

symmetry. In this sense, the type of defect can be interpreted

as an intrinsic attribute of a crystalline state.

The generation and motion of crystalline defects represent

certain displacement fields, via which plastic deformation

(deformation for short hereafter) involves symmetry breaking

(Ericksen, 1980; Serra et al., 1988; Bhattacharya et al., 2004). In

other words, the displacement induced by the generation and/

or motion of the defects responsible for the deformation is not

only related to the symmetry of the crystalline states before

and after the deformation, but also determined by the

symmetry-breaking process during deformation. A typical

example is the so-called lattice-invariant deformation (LID)

(Bowles & Wayman, 1972; Olson & Cohen, 1979), which is a
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symmetry-breaking process but does not change the crystal

lattice. Mathematically, an LID can be treated as a mapping

relation that maps a crystal lattice onto itself through a

deformation. In this regard, an LID is similar to a crystal

symmetry operation that maps a crystal lattice onto itself

through point and translational symmetry operations. Thus,

LID is clearly a subject of group theory description. In fact, a

combination of LID and crystal symmetry leads to a new

group that will be referred to as a crystal deformation group

(CDG) hereafter. The CDG depends on the choice of the LID,

which cannot be captured in either the point group or the

space group of a crystal. For a given crystal, the energetically

most favorable deformation mode (associated with a specific

symmetry-breaking LID process usually obtained by energetic

calculations) is a piece of information beyond the geometry of

a crystal, which should be a critical input for the crystal-

lographic analysis of deformation. In other words, a CDG is

constructed to reflect the coupling between the crystal

symmetry and the most favorable deformation mode of a

crystal. From a physical point of view, symmetry breaking is

represented by a space (sometimes called order parameter

space), the structure of which dictates the types of defect

generated during the symmetry-breaking process. For

example, the dimensionality of topological defects is deter-

mined by the topology of the order parameter space (Mermin,

1979). In general, the structure of a CDG is difficult to

determine. We propose a new mathematical description based

on graph theory. By applying a graph homomorphism on the

Cayley graph (Cayley, 1878) of a CDG, we construct the so-

called deformation pathway graph (DPG), which can be

conveniently used to predict defect structures during crystal

deformation.

In this paper, we establish a theoretical foundation to

describe the symmetry breaking associated with LID using a

combination of group theory and graph theory. Through the

construction of a CDG and a DPG, we formulate a systematic

approach to identify possible defect structures generated

during deformation. Using a face-centered cubic (f.c.c.) crystal

as an example, we demonstrate a series of � twin boundaries,

which are compared with experimental observations. Thus, the

DPG provides a new theoretical tool for tailoring material

properties through defect engineering.

2. Construction of crystal deformation group and
deformation pathway graph

To illustrate the idea at an intuitive level, we will first show (i)

how to construct a CDG (D) using group theory and (ii) how

to construct a DPG (GH) using graph theory, for a generic 2D

example. Theoretically, a CDG is the coupling result of the

crystal symmetry operations and an LID operation of a

crystal. To visualize the group structure of the CDG, we

construct its Cayley graph (Cayley, 1878). The Cayley graph

includes all the information of the CDG, some of which could

be redundant for predicting defect structures. Thus, we further

simplify the Cayley graph to a DPG. By combining the CDG,

the DPG and the compatibility condition, deformation-

induced defect structures can be systematically predicted,

which is especially convenient for engineering purposes (with

no requirement for knowledge of group theory). As a typical

example of our new approach, systematic analysis of the CDG

and DPG of an f.c.c. crystal is performed, followed by a

summary of the general procedure to develop CDGs and

DPGs.

Here, we first consider a square crystal lattice in 2D. The

point group of a square lattice is 4mm, which can be repre-

sented by 2 � 2 matrices as follows:

P ¼

1 0

0 1

� �
;

0 1

�1 0

� �
;

�1 0

0 �1

� �
;

0 �1

1 0

� �
;

�1 0

0 1

� �
;

0 �1

�1 0

� �
;

1 0

0 �1

� �
;

0 1

1 0

� �
8>>><
>>>:

9>>>=
>>>;
:

ð1Þ

The operation (group law) of the group is matrix multi-

plication, and all the elements in P are unitary matrices with

determinant 1 or �1. Each element in P corresponds to a

symmetry operation that maps the square lattice onto itself. If

we want to focus on proper rotations, only matrices with

determinant 1 are considered, which gives a new group,

H ¼
1 0

0 1

� �
;

0 1

�1 0

� �
;
�1 0

0 �1

� �
;

0 �1

1 0

� �� �

¼ e; h1; h2; h3

� �
¼ h4

1; h1; h2
1; h3

1

� �
: ð2Þ

Clearly, H is a cyclic group of order 4, which can be generated

by h1 or h3. In the following, H is used instead of P because all

the deformation matrices should have a positive determinant

of 1 (volume unchanged). Furthermore, the internal structure

of H is not the focus of our paper, as will be discussed below.

In addition, we consider an LID operation described by the

following matrix,

d1 ¼
1 1

0 1

� �
: ð3Þ

Similar to the elements in H, d1 also corresponds to an

operation that maps the square lattice onto itself. However,

such a symmetry operation is associated with the translational

symmetry of the lattice. Crystallographically equivalent

deformations of d1 can be determined by the combination of

d1 and H,

d1 ¼
1 1

0 1

� �
;

d�1
1 ¼

1 �1

0 1

� �
;

h3
1d1h1 ¼

1 0

�1 1

� �
;

h1d�1
1 h3

1 ¼
1 0

1 1

� �
:

ð4Þ
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Note that all the above LIDs map a square lattice onto itself

with the same orientation before and after deformation, which

is critical for constructing a CDG. The geometric meanings of

h1 and d1 are shown in Fig. 1. A set of two linear independent

vectors in 2D (colored orange and purple) is chosen. Both

crystal lattices before and after the operation (h1 or d1) are the

square lattice. However, considering the change in lattice

vectors before and after the operation, h1 corresponds to a 90�

counter-clockwise rotation, while d1 corresponds to a shear

deformation with a [10] Burgers vector on the (01) shear

plane. Note that h1 and d1 are independent, since h1 is a rigid-

body rotation while d1 is a shear deformation of the square

lattice.

The above symmetry operations (including rotation and

LID) do not change the orientation of the crystal lattice.

Therefore, they can be applied to the square lattice repeatedly,

which leads to the construction of a crystal deformation group

D. It is clear that such a group is generated by h1 (the

generator of the proper rotation group H) and d1 (the LID

operation). In fact, it can be proved that D is exactly the

SL2(Z) group in this example. Here, SL2(Z) is called the

special linear group in 2D, which is represented by 2 � 2

matrices with all entries being integers (Z) and the determi-

nant being 1 (‘special’). The group SL2(Z), lying discretely on

SL2(R), has a role similar to that of Z on R (Z is an integer and

R a real number). SL2(Z) is generated by h1 and d1 through

matrix row/column operations, the proof of which can be

found in textbooks and papers on group theory (Alperin,

1993; Kassel & Turaev, 2008; Rankin, 1977; Schenkman, 1965).

The structure of the group D (generated by h1 and d1) can

be represented by its Cayley graph G. A Cayley graph (also

known as a Cayley color graph) is a colored directed graph

that captures the abstract structure of a group (Cayley, 1878).

Each vertex in the Cayley graph is associated with a group

element, and two vertices are connected by an edge if there

exists a group generator that links the two corresponding

group elements. The generation procedure of the Cayley

graph of group D is presented as follows. The generators of h1

and d1 are represented by the directed edges in green and red,

respectively, in Fig. 2. Each vertex in G corresponds to an

element of group D. Since D is an infinite group, G has to be

an infinite graph, so only a part of G is shown in Fig. 2. Here

we can see individual ‘green squares’ connected by red edges.

The green square captures the crystal symmetry with no

consideration of deformation, which conveys the local infor-

mation of graph G (as well as group D). The connections by

the red edges capture the global connectivity among the green

squares, which conveys the non-local information of graph G

(as well as group D).

From Fig. 2, a few relations about h1 and d1 can be easily

figured out, as dictated by the coupling between the crystal

symmetry and the LID. For example,

(i) h1
2d1 = d1h1

2;

(ii) (h1d1)3 = (d1h1)3 = e;

(iii) (h1d1
�1)3 = (d1

�1h1)3 = h1
2.

From a geometric point of view, all four vertices within the

same green square in Fig. 2 represent the same structural state,

since rigid-body rotations do not change a deformation state

(analogous to objectivity or frame invariance in continuum

mechanics). If the local information from the crystal symmetry

(e.g. the green square) is neglected, we can focus on the

deformation of the crystal. Here we consider a partition of the

crystal deformation group D. It is clear that the rotation group

H is a subgroup of D. Consider an element di of D, and the

right coset of H in D is Hdi. All these cosets partition the

entire group D into equal-sized non-overlapping sets.

D ¼ [di2DHdi: ð5Þ

It can be easily checked that H is not a normal subgroup of D,

and the right cosets {Hdi :di 2 D} (i.e. D/H) do not form a

group.

To visualize the internal structure of D/H, we consider a

graph homomorphism G! GH (Hahn & Tardif, 1997). Here
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Figure 1
A geometric illustration of the crystal symmetry operation (h1) and the
lattice-invariant deformation operation (d1) of a square lattice in 2D.

Figure 2
A part of the Cayley graph G of the crystal deformation group D with a
specified set of generators {h1, d1}.



we color the vertices in G with a criterion: the two vertices

directly connected by h1 (green edges) are in the same color

[Fig. 3(a)]. In addition, the vertices in the same color (circled

by gray dashed lines) in G become a new vertex in GH and all

the green edges in G are removed, while the red edges in G

become undirected and unparalleled. In other words, between

any two given vertices in GH, there is at most one undirected

edge connecting them. The deformation pathway graph GH is

shown in Fig. 3(b). From a group theory point of view, G

includes all the information of group D, while GH captures the

structure of D/H (by neglecting the internal structure of H).

For the convenience of further analysis, we number the

vertices in GH. GH is an infinite interconnected graph. Note

that each edge in GH could correspond to one or several

operations of the form h1
md1h1

n (m and n are integers between 0

and 3 since the cyclic order of H is 4 in the case of Fig. 3), e.g.

the undirected pink edge connecting vertices 1 and 2 in GH

corresponds to the two directed red edges of e ! d1 and

h1
2
! h1

2d1 in Fig. 2. The triangular circuit formed by vertices 1,

2 and 3 in GH is dictated by the relation (h1d1)3 = (d1h1)3 = e,

which is an intrinsic property of the deformation in a square

lattice.

With the deformation pathway graph GH, we can determine

the types of crystalline defect that may possibly be generated

during deformation by introducing the geometric compat-

ibility condition. In Fig. 3(b), each vertex corresponds to a

unique structural state, and the relation between two struc-

tural states determines the possible types of defect. For

convenience, we define any two vertices directly connected by

an edge as the first-nearest-neighbor (1st-NN) vertices and

any two vertices connected through another vertex (also

through two edges) as the 2nd-NN vertices, and so on. In

Fig. 3(b), for example, vertices 1 and 2 are 1st-NNs and

vertices 2 and 4 are 2nd-NNs. Theoretically, the number of

NNs indicates the number of repeated activations of the

deformation mode d1. Considering two domains (in two

structural states) with a planar boundary, we can determine

the types of defect (e.g. dislocation or twin boundary). For the

boundary between two domains in the structural states

represented by vertices 1 and 2 (1st-NNs) in Fig. 3(b), the

defects can be determined through the kinematic compat-

ibility condition (Wechsler et al., 1953; Bowles & Mackenzie,

1954; Wayman, 1964; Bhattacharya, 2004),

QF2 � F1 ¼ b� n; ð6Þ

where F1 and F2 are the deformation gradient matrices of

structural states 1 and 2 [corresponding to vertices 1 and 2 in

Fig. 3(b)], respectively. In this case, F1 = e (identity) and F2 =

d1, which are the inputs. b and n are the shear vector and

shear-plane normal to be determined, respectively. Q is a

rigid-body rotation to be determined in the solution, and � is

the dyadic product operator. Note that the choices of F1 and

F2 are not unique. For example, F1 can also be assigned as h1,

h2 or h3. Similarly, F2 can also be assigned as h1d1, h2d1 or h3d1.

It can easily be proved that the choices of F1 and F2 do not

affect the solutions of Q, b and n, in terms of crystallographic

equivalency.

The solutions of equation (6) are

b1 ¼
1

0

� �

n1 ¼
0

1

� �

Q1 ¼
1 0

0 1

� �

8>>>>>><
>>>>>>:

;

b2 ¼
1
5

�1

2

� �

n2 ¼
2

1

� �

Q2 ¼
0:6 �0:8
0:8 0:6

� �

8>>>>>><
>>>>>>:

ð7Þ

The first solution suggests [10](01) type dislocations or �1

boundaries on (01). Since Q2 is a 53.13� rotation (a 36.87�

misorientation in the square lattice), the second solution

suggests a �5 twin boundary on the (21) plane. The two

solutions are illustrated in Fig. 4. The original crystal in

structural state 1 is indicated by a dark-red square. Half of the

material transforms to state 2. The boundaries between the

two domains (in states 1 and 2) can be �1 or �5, as deter-

mined by the solution given in (7). In the case of �1, the two

neighboring domains are in the same orientation but different

structural states. In other words, the two domains separated by

a �1 boundary in Fig. 4 are distinguished by different defor-

mation states, i.e. F1 and F2, which can be identified in the
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Figure 3
A schematic illustration of the graph homomorphism G!GH. (a) G and
(b) GH.

Figure 4
The formation of twin boundaries and dislocations between vertices 1 and
2 of Fig. 3(b).



displacement fields (as well as in the displacement gradient

and deformation gradient). In particular, when one domain is

within one atomic layer (e.g. the deformation gradient F2 is

localized in one layer), it becomes a [10](01) type dislocation

loop, and the symmetry-breaking process is associated with

the motion of the dislocation (Fig. 4).

Similarly, considering the defects between the 2nd-NN

vertices, we can apply equation (6) to other deformation

gradient matrices. For example, [10](01) type dislocations or

�1 boundaries can be generated between vertices 2 and 4.

Boundaries with a 41.81� misorientation (non-special grain

boundary) can be generated between vertices 2 and 5. Theo-

retically, we can systematically determine the possible types of

defect generated between mth-NNs. However, those defects

with a large m are usually difficult to generate by a real

deformation. The choice of defects in a real crystal system

could depend on the loading conditions, e.g. tensile/compres-

sive/hydrostatic stress, strain rate, temperature etc., which

dictate the competition between twinning and dislocation.

However, we limit our analysis to pure crystallography in this

work so that our approach generally applies to all kinds of

crystal deformation, without any prior thermodynamic or

kinetic knowledge of twinning and dislocations.

Note that the CDG is a group description beyond the reach

of either point group or space group, as conventionally

defined. The CDG takes the information from the LID into

account. Geometrically, there are infinite types of LID for a

given crystal, because of the translational symmetry. However,

there are usually limited types of deformation mode that are

energetically accessible from a physical point of view. For

example, typical deformation modes in f.c.c. crystals are

1/2h110i{111} and 1/6h112i{111}, and typical deformation

modes in body-centered cubic (b.c.c.) crystals are

1/2h111i{110} and 1/6h111i{112}. The construction of the CDG

depends on the choice of deformation modes, which is a piece

of information on the symmetry-breaking pathway during the

deformation process. In the example of the square lattice in

2D, a special linear group can be obtained with the deforma-

tion mode of h10i{01}. In the literature, special linear groups

are also encountered in the definition of the lattice group

(Parry, 1976; Ericksen, 1980; Pitteri, 1984; Fonseca, 1987;

Bhattacharya et al., 2004; Conti & Zanzotto, 2004; Gao, 2018).

The so-called lattice group is introduced to provide a repre-

sentation of the point group of a lattice, which is a particular

way of describing crystal symmetry. Finite lattice groups are

constructed through the subgroups of the special linear groups

in 2D and 3D. Note that the lattice group (as well as the special

linear group used in its definition) describes the symmetry of a

lattice state, which is in contrast with the CDG. The CDG is a

group capturing the symmetry-breaking process during crystal

deformation, which relies on energetic information on the

most favorable deformation mode. In the above 2D example,

it is ‘coincidence’ that both the resulting groups are the SL2(Z)

(special linear groups are widely investigated in mathematics

since they have a large number of physical applications).

However, CDGs are not necessarily special linear groups in

general, which will be shown through the following example in

3D. In fact, the CDG of an f.c.c. crystal with a given defor-

mation mode of 1/6h112i{111} has to be generated using the

generating set presented below, which is not a special linear

group (3D lattice group).

3. Analysis of deformation pathway and defects in f.c.c.
crystals

Here we consider a deformation mode in an f.c.c. crystal

described by the following group generator:

df:c:c: ¼ Rf:c:c: Iþ bf:c:c: � nf:c:c:ð Þ ¼

0:5 �0:5 0:5
0 1 1

�0:5 �0:5 0:5

2
4

3
5;
ð8Þ

where bf.c.c. is a shear vector of 1/6[211] and nf.c.c. is the shear

plane of ð111Þ. Rf.c.c. is a rotation of 60� along the ½111� axis,

which is included to make the deformation df.c.c. produce an

LID with the same orientation before and after deformation.

It is clear that this deformation mode originates from the

Shockley partial dislocation (or a �3 deformation twin) in

f.c.c. crystals, and a full dislocation can also be captured since a

full dislocation is the combination of two Shockley partials. As

a result, the typical deformation modes observed in f.c.c.

crystals are well described by the following generating set of

the CDG:

Sf:c:c: ¼

�1 0 0

0 �1 0

0 0 1

2
64

3
75;

�1 0 0

0 1 0

0 0 �1

2
64

3
75;

0 0 1

1 0 0

0 1 0

2
64

3
75;

0 1 0

1 0 0

0 0 �1

2
64

3
75;

0:5 �0:5 0:5

0 1 1

�0:5 �0:5 0:5

2
64

3
75

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

ð9Þ

In the set of Sf.c.c. , the first four elements generate the proper

rotational symmetry operations in an f.c.c. crystal, while the

last one provides information on the LIDs. Note that the last

element in the generating set does not belong to the special

linear group SL3(Z), which requires all the entries in the

matrix to be integers. As a result, it is clear that the CDG for

an f.c.c. crystal is distinctly different from the lattice group of

an f.c.c. crystal.

The DPG for an f.c.c. crystal is shown in Fig. 5. Because it is

an infinite graph with a complex pathway network, only part

of the graph is shown, so that we can focus on the 1st-, 2nd-

and 3rd-NNs as well as the minimum circuit in this graph. For

any given vertex (e.g. vertex 1), it has six 1st-NNs, 24 2nd-NNs

and 84 3rd-NNs. Note that we can find 3-edge circuits and

6-edge circuits in Fig. 5. Furthermore, each vertex in this DPG

is involved in three 3-edge circuits, and every two neighboring

vertices are involved in one 3-edge circuit. Every two neigh-

boring states are different by a deformation of 1/6h112i{111}.

Each vertex is involved in twelve 6-edge circuits because there

are four {111} planes and three 1/6h112i on each plane in an

f.c.c. crystal. For every two neighboring vertices, there exist
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four 6-edge circuits including both vertices (all four circuits

including vertices 1 and 2 are shown in Fig. 5, through vertices

W, X, Y and Z, respectively). For every three ‘non-triangular’

neighboring vertices (e.g. vertices 1, 2 and 4), there exists a

unique 6-edge circuit (through Y) including all three vertices.

The DPG in Fig. 5 can be considered as an intrinsic char-

acteristic of the deformation in f.c.c. crystals. As a result, the

defect structures associated with the deformation can be

determined systematically using a similar analysis to that of

Fig. 3(b). By utilizing the kinematic compatibility condition

[i.e. equation (6)], we can calculate the defects generated

between 1st-NNs, 2nd-NNs and 3rd-NNs etc. The deformation

gradient matrices for the structural states 1–4 (corresponding

to vertices 1–4 in Fig. 5) are:

FF1 ¼

1 0 0

0 1 0

0 0 1

2
64

3
75; FF2 ¼

0:5 �0:5 0:5

0 1 1

�0:5 �0:5 0:5

2
64

3
75;

FF3 ¼

0:5 �0:5 �0:5

0:5 0:5 0:5

0 �1 1

2
64

3
75; FF4 ¼

1 0 1

0:5 0:5 �0:5

�0:5 0:5 0:5

2
64

3
75:

ð10Þ

The defect structure between the 1st-NN structural states

can be determined by utilizing equation (6) with FF2 and FF1,

which leads to a �3 twin on either the ð111Þ or (111) plane (in

the FF1 index). If one domain is within one atomic layer, the

�3 twin becomes a Shockley partial dislocation. Similarly, the

defect structure between FF3 and FF2 is a �3 twin on either the

(111) or ð111Þ plane (in the FF2 index). In other words, the

defects generated between 1st-NNs are a �3 twin or a

Shockley partial dislocation. It is clear that the defects asso-

ciated with 1st-NNs are directly related to the choice of the

deformation mode df.c.c. , by comparing equations (6) and (8).

In fact, an energetically favorable deformation mode is usually

suggested by experimental observation of static defects, rather

than direct observation of the atomic movements during a

dynamic deformation process. However, the types of defect

associated with 2nd- and higher-order-NNs are not easy to

identify directly from df.c.c. , unless a DPG is constructed.

Between the 2nd-NNs, e.g. FF4 and FF2 , the defect structures

are either a �1 boundary on the ð111Þ plane or a �11 twin on

the ð311Þ plane (in the FF2 index). If one domain is within one

atomic layer, the �1 boundary becomes a full dislocation in an

f.c.c. crystal, i.e. 1
2 ½110�ð111Þ. In a similar way, we can system-

atically determine the possible types of defect generated

between mth-NNs, e.g. �5, �17b and �19a twins can be

obtained between 3rd- and 4th-NNs, which could be related to

the special grain boundaries observed after severe plastic

deformation (Azzeddine et al., 2015). Theoretically, the

analysis of mth-NNs in CDGs and DPGs is analogous to the

groupoid analysis of �3n multiple twinning (Cayron, 2007).

The former is subjected to the 1/6h112i{111} deformation

between different structural states (in deformation space),

while the latter is subjected to the 60� misorientation between

different domains (in orientation space). Note that the rela-

tion between mth-NNs in a DPG is constrained by the

compatibility condition [equation (6)] rather than the 60�

misorientation (Gao et al., 2018).

Some of the above twin structures are illustrated in Fig. 6

using the OVITO visualization software (Stukowski, 2010). In

Fig. 6(a), a single f.c.c. crystal structure with 64 (4 � 4 � 4)

unit cells is constructed as the initial undeformed state at FF1.

The initial single crystal is separated into two domains, which

transform to two different structural states in Figs. 6(b)–6(d).

The domains in different structural states are in different

colors, and both the perspective view and the view along a

specific crystallographic direction are shown for illustration

purposes [h100i for panel (a), h110i for panels (b)–(d)]. The

�3 twin between FF3 and FF2 is shown in Fig. 6(b). The �1 and

�11 twins between FF4 and FF2 are shown in Figs. 6(c) and

6(d), respectively. The mathematical details for the determi-

nation of the above twins are presented in Appendix A. In

previous experimental observations, the �3 twin has been

reported as the dominant twin mode induced by conventional

deformation in f.c.c. crystals (Merkle, 1991; Christian &

Mahajan, 1995) because it originates from the 1st-NNs in the

DPG. Other � twins have also been reported after severe

plastic deformation (Azzeddine et al., 2015). There has been
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Figure 5
The deformation pathway graph for an f.c.c. crystal.

Figure 6
Atomic structures for twin boundaries generated by structural states T1–
T4. (a) A single f.c.c. crystal at T1, (b) the �3 twin (T2/T3) on (111)T2 , (c)
the �1 twin (T2/T4) on ð111ÞT2 and (d) the �11 twin (T2/T4) on ð311ÞT2.



no direct observation of the �11 deformation twin. However,

the �11 twin has also been reported as a thermodynamically

stable boundary in both experimental and theoretical studies

(Merkle & Wolf, 1992; Mills et al., 1992; Merkle, 1995; Kurtz et

al., 1999; Goukon et al., 2000; Brown & Mishin, 2007; Mishin et

al., 2010). Meanwhile, both full and partial dislocations are

generated during deformation, in agreement with our analysis

of the 1st- and 2nd-NNs.

4. General procedure to determine the deformation
pathway graph

Based on the two examples shown above, we present here the

general procedure to determine the CDG, DPG and defect

structures for a given crystal with a given deformation mode

(usually the energetically most favorable one).

(i) Ascertain the point group of the crystal. Determine a

subgroup of the point group with all proper rotations (matrix

representation) and determine the generators of this subgroup

(e.g. h1).

(ii) For a given deformation, determine a lattice-invariant

deformation matrix with a determinant of 1 (e.g. d1).

(iii) Using both the generators of the proper rotation group

and the lattice-invariant deformation as a new generating set,

we can obtain the CDG (e.g. D).

(iv) Draw the Cayley graph of the CDG (e.g. G) with the

generating set determined in (iii).

(v) Simplify the Cayley graph to the DPG (e.g. GH ) through

a graph homomorphism.

(vi) Determine the defect structures between mth-NNs

using geometric compatibility conditions.

The above method for constructing CDGs and DPGs can be

applied to any given crystal system. In step (i), the generator

of the point group of a given crystal can be found in the Bilbao

Crystallographic Server (Aroyo, Kirov et al., 2006; Aroyo,

Perez-Mato et al., 2006; Aroyo et al., 2011). The choice of the

energetically favorable deformation mode in step (ii) may not

be unique in a given crystal, and is usually calculated based on

experimental observations (see Appendix B for more details).

Steps (iii), (iv) and (v) can be performed following the stan-

dard methods of group theory and graph theory. The mathe-

matical details for step (vi) can be found in classical phase-

transformation crystallography theory (Wechsler et al., 1953;

Bowles & Mackenzie, 1954; Wayman, 1964; Bhattacharya,

2004).

5. Summary

In this article, we have proposed a new theoretical framework

to describe symmetry change and defect generation during

plastic deformation of crystals. Using a combination of group

theory and graph theory, we have established a crystal

deformation group and a deformation pathway graph, which

provide a systematic approach to predict the types of crys-

talline defect generated by the deformation. The new

approach has been applied to f.c.c. crystals, and it has been

demonstrated that a variety of types of twin boundary can be

generated by deformation (besides conventional partial and

full dislocations), e.g. �3, �11, �5, �17b, �19a etc., which

have been compared with experimental observations. The

application of the deformation pathway graph could provide a

new theoretical tool to guide defect engineering of crystalline

materials.

APPENDIX A
Mathematics for the determination of defect structures
in f.c.c. crystals

The equation to determine the defect between two structural

states is

QFFj � FFi ¼ b� n; ð11Þ

where FFj and FFi are the deformation gradient matrices of the

structural states j and i [in Fig. 5 and equation (10)], respec-

tively.

When i = 2 and j = 3, the solutions are

b1 ¼ �
1
3

1

2

1

2
64

3
75

n1 ¼

0

1

0

2
64

3
75

8>>>>>>>>><
>>>>>>>>>:

;

b2 ¼
1
3

1

�2

1

2
64

3
75

n2 ¼

0

0

1

2
64

3
75

8>>>>>>>>><
>>>>>>>>>:

;

Q1 ¼

0:6667 0:3333 0:6667

�0:6667 0:6667 0:3333

�0:3333 �0:6667 0:6667

2
64

3
75;

Q2 ¼

0:3333 0:6667 0:6667

�0:6667 0:6667 �0:3333

�0:6667 �0:3333 0:6667

2
64

3
75

8>>>>>>>>><
>>>>>>>>>:

ð12Þ

When i = 2 and j = 4, the solutions are

b1 ¼
1
2

1

�1

0

2
64

3
75

n1 ¼

1

1

1

2
64

3
75

8>>>>>>>>><
>>>>>>>>>:

;

b2 ¼
1

11

1

7

�4

2
64

3
75

n2 ¼

1

�1

0

2
64

3
75

8>>>>>>>>><
>>>>>>>>>:

;

Q1 ¼

1 0 0

0 0 1

0 �1 0

2
64

3
75

Q2 ¼

0:54545 �0:54545 �0:63636

0:81818 0:18182 0:54545

�0:18182 �0:81818 0:54545

2
64

3
75

8>>>>>>>>><
>>>>>>>>>:

ð13Þ

Note that all the above results are in the FF1 index. Fig. 6 is

generated with the visualization software OVITO, using the

above results.
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APPENDIX B
Determination of crystal deformation groups in b.c.c.
crystals

The choice of deformation mode is critical for the determi-

nation of a CDG, which is not unique for a given crystal. For a

b.c.c. crystal, we consider two typical deformation modes,

1/6h111i{112} and 1/2h111i{110}, and the corresponding group

generators are

db:c:c:�1 ¼

2
3 � 1

3 �
2
3

� 1
3

2
3 � 2

3

2
3

2
3

1
3

2
64

3
75 Iþ

1

6

1

1

1

2
64

3
75�

1

1

�2

2
64

3
75

0
B@

1
CA

¼

11
18 � 7

18 �
5
9

� 7
18

11
18 � 5

9

17
18

17
18 � 2

9

2
64

3
75 ð14Þ

db:c:c:�2 ¼ Iþ
1

2

1

1

1

2
4

3
5�

�1

1

0

2
4

3
5 ¼

0:5 0:5 0

�0:5 1:5 0

�0:5 0:5 1

2
4

3
5 ð15Þ

There are three ways of generating a CDG for a b.c.c.

crystal. If the 1/6h111i{112} deformation is dominant, the

generating set of the CDG includes db.c.c.�1,

Sb:c:c:�1 ¼

�1 0 0

0 �1 0

0 0 1

2
64

3
75;

�1 0 0

0 1 0

0 0 �1

2
64

3
75;

0 0 1

1 0 0

0 1 0

2
64

3
75;

0 1 0

1 0 0

0 0 �1

2
64

3
75;

11
18 � 7

18 �
5
9

� 7
18

11
18 � 5

9

17
18

17
18 � 2

9

2
64

3
75

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

ð16Þ

It can be shown that the 1st-NN in its corresponding DPG

generates a �3 twin using the compatibility condition.

If the 1/2h111i{110} deformation is dominant, the gener-

ating set includes db.c.c.�2,

Sb:c:c:�2 ¼

�1 0 0

0 �1 0

0 0 1

2
64

3
75;

�1 0 0

0 1 0

0 0 �1

2
64

3
75;

0 0 1

1 0 0

0 1 0

2
64

3
75;

0 1 0

1 0 0

0 0 �1

2
64

3
75;

0:5 0:5 0

�0:5 1:5 0

�0:5 0:5 1

2
64

3
75

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

ð17Þ

It can be shown that the 1st-NN in the corresponding DPG

generates �1 and �11 twins using the compatibility condition.

In the literature, both �3 and �11 twins are typically observed

experimentally (Christian & Mahajan, 1995; Lai et al., 2016).

If the two deformation modes are competing, the gener-

ating set includes both db.c.c.�1 and db.c.c.�2,

Sb:c:c:�12 ¼

�1 0 0

0 �1 0

0 0 1

2
64

3
75;

�1 0 0

0 1 0

0 0 �1

2
64

3
75;

0 0 1

1 0 0

0 1 0

2
64

3
75;

0 1 0

1 0 0

0 0 �1

2
64

3
75;

11
18 � 7

18 �
5
9

� 7
18

11
18 � 5

9

17
18

17
18 � 2

9

2
64

3
75;

0:5 0:5 0

�0:5 1:5 0

�0:5 0:5 1

2
64

3
75

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
ð18Þ

The DPG corresponding to the above group-generating set

is complex, and will be determined in future work.
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