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The local Fourier-space relation between diffracted intensity I, diffraction

wavevector q and dose D, ~IIðq;DÞ, is key to probing and understanding radiation

damage by X-rays and energetic particles in both diffraction and imaging

experiments. The models used in protein crystallography for the last 50 years

provide good fits to experimental I(q) versus nominal dose data, but have

unclear physical significance. More recently, a fit to diffraction and imaging

experiments suggested that the maximum tolerable dose varies as q�1 or linearly

with resolution. Here, it is shown that crystallographic data have been strongly

perturbed by the effects of spatially nonuniform crystal irradiation and

diffraction during data collection. Reanalysis shows that these data are

consistent with a purely exponential local dose dependence, ~IIðq;DÞ =

I0(q)exp[�D/De(q)], where De(q) / q� with � ’ 1.7. A physics-based model

for radiation damage, in which damage events occurring at random locations

within a sample each cause energy deposition and blurring of the electron

density within a small volume, predicts this exponential variation with dose for

all q values and a decay exponent � ’ 2 in two and three dimensions, roughly

consistent with both diffraction and imaging experiments over more than two

orders of magnitude in resolution. The B-factor model used to account for

radiation damage in crystallographic scaling programs is consistent with � = 2,

but may not accurately capture the dose dependencies of structure factors under

typical nonuniform illumination conditions. The strong q dependence of

radiation-induced diffraction decays implies that the previously proposed

20–30 MGy dose limit for protein crystallography should be replaced by a

resolution-dependent dose limit that, for atomic resolution data sets, will be

much smaller. The results suggest that the physics underlying basic experimental

trends in radiation damage at T ’ 100 K is straightforward and universal.

Deviations of the local I(q, D) from strictly exponential behavior may provide

mechanistic insights, especially into the radiation-damage processes responsible

for the greatly increased radiation sensitivity observed at T ’ 300 K.

1. Introduction

Radiation damage is a key issue in all diffraction and imaging

methods that illuminate biological samples with energetic

particles such as X-ray photons, electrons, neutrons and

positrons. Absorption and inelastic scattering processes

transfer energy to the sample [quantified as dose D, the energy

deposited per unit sample mass, in grays (Gy), where 1 Gy =

1 J kg�1], with initial energy deposition from each scattering

event confined to a small volume that depends on the energy

transfer (Nave & Hill, 2005; Sanishvili et al., 2011; Finfrock et

al., 2013). Energetic electrons and reactive atomic and mole-

cular species are generated, and diffuse and react, causing

additional chemical, bond-scale damage (Holton, 2009;

Garman, 2010). Accumulation of bond-scale damage causes

degradation of sample order on larger and larger length scales

(Warkentin et al., 2013). In the absence of macroscopically
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disruptive damage processes such as the eruption of hydrogen

bubbles (Massover, 2007; Meents et al., 2009) (for example at

very large dose rates; Warkentin et al., 2017) or fracturing, this

accumulation of damage manifests in imaging as a loss of

image contrast or ‘blurring’, evident first in short length-scale

features and then moving to larger and larger scales. In

diffraction, damage manifests as a decrease in the diffracted

intensity at large angles 2� or large diffraction wavevectors q

that progresses to smaller and smaller q. In addition to these

‘global’ effects of radiation damage, metal sites, disulfide

bonds and other structures within the sample may be parti-

cularly sensitive to damage, giving rise to ‘site-specific’ damage

(Ravelli & McSweeney, 2000; Weik et al., 2000; Burmeister,

2000; Banumathi et al., 2004).

In biomolecular crystallography, radiation damage limits

the amount of diffraction data that can be collected per unit

sample volume and introduces errors in experimental struc-

ture factors. The effects of radiation damage on individual

Bragg peak intensities can be complex (Warkentin et al., 2017).

Aside from global q-dependent intensity decay and differ-

ential decays associated with site-specific damage, measured

Bragg peak intensities depend on radiation-damage-induced

broadening of crystal mosaicity and strain distributions, which

can cause partially illuminated reflections to initially brighten

with dose (Warkentin et al., 2017). They also depend on the

spatial pattern of sample irradiation during data collection

(Bury et al., 2018), which can lead to heterogeneous sample

dose states within the illuminated volume and to measured

diffraction intensities that reflect a complex convolution of

spatially (and, at high dose rates, temporally) nonuniform

damage effects (Warkentin et al., 2017). Current crystallo-

graphic processing software (Evans, 2006; Otwinowski et al.,

2012; Diederichs et al., 2003; Diederichs, 2006) incompletely

accounts for these effects. Refined structural models based on

data with typical maximum resolutions of �2 Å are at least

somewhat insensitive to these experimental errors, as models

obtained from nominally zero-dose XFEL data sets show good

general agreement with those from finite-dose synchrotron

data sets (see, for example, Hirata et al., 2014; Keedy et al.,

2015).

The most commonly used metric for characterizing the

radiation sensitivity of biomolecular crystals is the half-dose

D1/2, which is equal to the dose at which the integrated

intensity within all observed diffraction peaks drops to half

of its zero-dose value. Typical reported half-dose values for

protein crystals are�10–30 MGy at 100 K and 100–400 kGy at

room temperature (Leal et al., 2013). Half-doses depend on

the initial diffraction resolution of the crystal (Howells et al.,

2009), which depends on the crystal quality and size, the X-ray

beam size and the amount of background scatter from air and

surrounding liquid. Experimental half-doses also depend on

the spatial distribution of dose within the crystal, which

depends on the beam intensity profile, on the size and shape of

the crystal and on whether the crystal is fixed or rotated during

data collection (Warkentin et al., 2017; Bury et al., 2018), and

on how dose is defined when irradiation is spatially non-

uniform (Warkentin et al., 2017). Furthermore, the way in

which the half-dose weights the contribution of diffraction

intensities at different q values is not obviously related to their

information content or to their utility in defining and

constraining the final structural model. Consequently, half-

doses are at best a crude metric of radiation sensitivity and

provide at best a rough rule-of-thumb limit in crystallographic

data collection. Other metrics of radiation sensitivity such as

the change in scaling B factor (Kmetko et al., 2006; Leal et al.,

2013), scale (Leal et al., 2013) and decay R factor (Diederichs,

2006) are used, but have related limitations.

Radiation damage has been more fully characterized using

the q-dependent integrated intensity I(q), which is obtained by

integrating sample diffraction within a wavevector shell of

width �q, with values of diffraction resolution d = �/2sin(�)/
1/q rather than q typically quoted (Sliz et al., 2003; Bourenkov

& Popov, 2010; Liebschner et al., 2015). Plots of experimental

I(q) for a given q (or resolution) shell versus time, time-

integrated flux density (in photons cm�2) or nominal dose

typically show an initial linear or exponential decay and then a

more gradual decay at larger times or doses, giving an overall

‘hockey-stick’ shape when plotted on semi-log axes (for

example as in Blake & Phillips, 1962; Warkentin et al., 2017).

The rate of the initial intensity decay with dose increases

with increasing q (increasing resolution, corresponding to a

decreasing numerical value of d). Kinetics-inspired models

(Blake & Phillips, 1962; Hendrickson, 1976; Sygusch & Allaire,

1988) have been used for nearly 50 years to obtain good fits to

measured I(q) versus exposure time or nominal dose, repro-

ducing both the overall ‘hockey-stick’ shape at fixed q and its q

or resolution dependence. However, the physical significance

of the models and the fit parameters obtained have been

unclear.

Recent experiments and analyses have emphasized the

profound effects of nonuniform crystal irradiation during data

collection on measured integrated intensity–dose curves

(Warkentin et al., 2017). For thaumatin and lysozyme crystals

held in a fixed orientation and illuminated using an X-ray

beam with a Gaussian intensity profile, the measured inte-

grated (over all q) intensity versus time, time-integrated flux

density or nominal dose has the ‘hockey-stick’ shape. Simu-

lations show that the Gaussian illumination profile generates

this shape even if the underlying relation between diffracted

intensity and dose is strictly exponential. Since previous

radiation-damage experiments have seldom, if ever, provided

perfectly uniform crystal irradiation (even when the X-ray

beams had nominally ‘top-hat’ profiles), interpretation of their

intensity–dose curves using kinetics-inspired models is now

suspect.

Our goal here is to determine the underlying ‘local’ Fourier-

space relationship between damage and dose, ~IIðq;DÞ, as it

would be measured from a uniformly illuminated crystal. This

relationship plays an analogous role in radiation-damage

studies to the local relation between conductivity and electric

field, �(E), of conducting materials: it is the key to detailed

understanding of damage and its mechanisms. Beginning with

previously published experimental data at T = 100 K, we

account for spatially nonuniform illumination during data
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collection and use this to estimate ~IIðq;DÞ. We then consider a

simple model for radiation damage involving random, local

disordering interactions. This model predicts a purely expo-

nential ~IIðq;DÞ relation, and a decay constant that scales with

q in a manner roughly consistent with experiment. Fits of

previous models (Blake & Phillips, 1962; Hendrickson, 1976;

Sygusch & Allaire, 1988) to experimental intensity versus

resolution and dose data are invalidated as the primary trends

have a different physical origin to that assumed. Experimental

deviations from the predictions of the present model should

illuminate how damage mechanisms evolve between cryogenic

and room or biological temperatures.

2. Materials and methods

2.1. Modeling and fitting experimental data for intensity
versus dose and resolution

In an ideal experiment to measure the local ~IIðq;DÞ relation

in a bulk crystal [where photoelectron escape from the crystal

(Nave & Hill, 2005; Finfrock et al., 2010; Sanishvili et al., 2011)

can be neglected], the entire crystal volume is illuminated with

a fixed and uniform flux-density X-ray beam, and the crystal

thickness along the incident beam direction is small compared

with the X-ray absorption length. Under these illumination

conditions, every crystal region receives the same dose D

regardless of whether the crystal is rotated or held in a fixed

orientation.

In actual experiments (Fig. 1), the X-ray beam may be

smaller than the crystal, the incident flux density within the

beam may be nonuniform (even when nominally flat or ‘top-

hat’ beams are used) and the crystal may be rotated during

data collection. These result in different regions of the crystal

experiencing different (and time-dependent) incident photon

flux densities and dose rates, and accumulating different total

doses D(x, y, z, t) (Diederichs, 2006; Bury et al., 2018). This

leads to spatially nonuniform damage. The measured

diffracted intensity at any time is determined by both the

incident X-ray flux-density distribution and by the distribution

of damage states within the X-ray-illuminated sample volume

(Diederichs, 2006; Warkentin et al., 2017) [which can be

characterized using an incident flux-density-weighted dose

(Zeldin et al., 2013) or, more meaningfully, by a diffraction-

weighted dose (Warkentin et al., 2017)]. Because the local

relation between diffracted intensity and dose is in general

nonlinear, knowing only the measured I(q) versus exposure

time or nominal fluence (in photons mm�2) or nominal dose

and the spatiotemporal pattern of crystal irradiation during

data collection is not sufficient to uniquely determine the local
~IIðq;DÞ relation.

Thus, to analyze previous experimental I(q) data, we (i)

calculate the spatial distribution of sample irradiation and

dose from given experimental details, (ii) define a (somewhat)

general expression for the local ~IIðq;DÞ relation, with adjus-

table parameters, (iii) calculate the diffracted intensity I(q)

versus nominal fluence or dose using this relation and the

calculated dose distribution within the sample, and (iv) refine

the parameters to optimize the quality of the fit to the I(q)

data.

2.2. Calculating experimental dose distributions

To calculate the diffracted flux from a crystal after a given

exposure time, we first need to know the X-ray beam size and

flux-density profile, the crystal size, shape, initial orientation

and location in the X-ray beam, and how the crystal is rotated

during the exposure. Using this information, we can calculate

the total dose (in J kg�1) delivered to each volume element

(voxel) of the crystal after time t: D(r, t). This dose determines

the damage state of the voxel and the diffracted flux (in

photons s�1) that it will produce per unit incident flux density.

The diffracted flux from the crystal at time t is then obtained

by summing the product of the incident flux density at each

voxel and the diffracted flux per unit flux density of that voxel.

As shown in Fig. 1, a crystal of arbitrary shape is illuminated

by an X-ray beam propagating along the x direction. During

irradiation/data collection, the crystal may be rotated about an

axis perpendicular to the beam direction, and we define a

(stationary with respect to beam and detector) coordinate

system oriented as shown with x = 0 located on the rotation

axis and with y = z = 0 at the beam center. Finc[r(t), x, t] is the

incident X-ray photon flux density (photons m�2 s�1), where r

is a vector pointing from the coordinate system origin to the

position of a voxel within the crystal at time t. The incident

X-ray flux density decreases owing to scattering and absorp-

tion as it propagates through the crystal, and so in general is a

function of the position x along the propagation direction.

Each voxel within the crystal is labeled with its initial (t = 0)

Cartesian coordinates r0. As the crystal is rotated about the

axis during data collection, a voxel at location r0 will rotate to

location r(t) = M[’(t)]r0 at time t, where M is a linear rotation

matrix and ’(t) is the rotation angle about the axis. The dose

that has been delivered at time t to a sample voxel initially

located at r0 is given by
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Figure 1
Experiment and simulation setup. A crystal (simulated as a rectangular
prism) is located at x, y, z = 0 and a volume element (voxel) of the crystal
is located at position r. The crystal is illuminated by an X-ray beam with a
top-hat or Gaussian profile, and the incident photon flux at the voxel
position is Finc(r, x, t). Crystal planes with spacing dhkl generate Bragg
scattering at angle 2�hkl, corresponding to a scattering wavevector qhkl =
2�/dhkl. The scattered flux (in photons s�1) from each voxel is ’diff(t, q).



Dðr0; tÞ ¼ k
Rt
0

FincfM½’ðtÞ�r0; x; tg dt; ð1Þ

where the constant k depends on the X-ray energy and on the

atomic composition and density of the crystal, and can be

calculated using RADDOSE-3D (Bury et al., 2018) or standard

tables (Hubbell & Seltzer, 2004). We assume that the X-ray

beam flux density is time-independent and that the crystal is

thin compared with the X-ray attenuation length [a reasonable

approximation when using 10–15 keV X-rays and 50–300 mm

crystals; at 10 keV the beam is attenuated by an average of

17% on passing through 300 mm crystals of the proteins

(lysozyme, thaumatin, apoferritin, HLA, �3 and US2) of

relevance here]. The incident flux density Finc(r, x, t) can then

be written as Finc(�), where � = (y2 + z2)1/2 is the radial

distance from the beam center.

2.3. Calculating diffracted intensities

The crystal diffraction pattern measured on the detector

consists of a large number of bright ‘spots’ corresponding to

Bragg diffraction at angles (2�)hkl for which the scattering

wavevector satisfies qhkl = 2�/dhkl, where dhkl is the spacing of

a diffracting crystal lattice plane. Integrating the detector

photon counts about the incident beam direction in radial bins

of fixed width dq (variable width in detector coordinates) and

dividing by the detector exposure time then gives a photon

flux ’diff(q, t). At t = 0 the decay of ’diff(q, 0) with increasing q

owing to thermal atomic motions and to static crystal disorder

can be approximated by a Debye–Waller factor DWF(B, q).

At time t > 0, the diffraction at scattering wavevector q from

each crystal voxel will be proportional to the incident flux

density Finc(r, x, t) at the position of the voxel and to the

diffracting power of the voxel (the number of diffracted

photons per incident photon), which will depend on the dose

received by the voxel from t = 0 to time t. Let �[D(r0, t), q] be

the factor by which the diffracting power of a voxel at initial

position r0 is reduced by radiation damage. The total

diffracted flux from all crystal voxels at wavevector q per unit

volume of reciprocal space, ’diff(q, t), is then

’diffðq; tÞ /
R

crystal
volume

FincfM½’ðtÞ�r0g �DWFðB; qÞ

� �½Dðr0; tÞ; q� dV0: ð2Þ

We assume that the diffracting power at a given q decays

exponentially with dose,

�½Dðr0; tÞ; q� / exp½�Dðr0; tÞ=DeðqÞ�; ð3Þ

where De(q) determines the decay rate. Experimentally, the

scattered intensity decays more rapidly as q and 2� increase,

corresponding to a more rapid decay of short-wavelength

Fourier components of the unit cell’s electron density. Based

on a fit to experimental data from crystallography and X-ray

imaging, Howells et al. (2009) suggested that De(q)/ 1/q holds

and that the resolution-dependent half-dose is given by

D1/2(d) ’ d � 10 MGy Å�1. We assume a more general

relation

DeðqÞ ¼ K=q�; ð4Þ

and then fit experimental data from crystallography to deter-

mine the exponent �.

The total diffracted photon flux of the crystal �diff is

obtained by integrating (3) over all q as

�diffðtÞ /
Rqmax

qmin

’diffðt; qÞq dq: ð5Þ

2.4. Fitting experimental data

Fitting of reported data for diffracted intensity versus

resolution d and nominal dose/fluence from prior experiments

(Sliz et al., 2003; Bourenkov & Popov, 2010; Liebschner et al.,

2015) was performed as follows, using the parameters given in

Supplementary Tables S1 and S2.

We used either the actual reported beam profile (measured

by scanning a slit across the beam) or else a profile matching

the stated shape and width parameters (Supplementary Table

S1). A ‘top-hat’ profile was represented as Finc(r) = F0 for

� < �max (or |y| < ymax, |z| < zmax) and 0 otherwise, and a

Gaussian profile by

FincðrÞ ¼ F0 exp �
y2

2�2
y

þ
z2

2�2
z

� �� �
: ð6Þ

Each crystal was divided into cubic voxels, with roughly

100 voxels in each dimension. Crystals were assumed to be

rectangular prisms with reported dimensions (Supplementary

Table S1). Prisms were oriented as reported, and if no orien-

tation was specified the orientation was adjusted to obtain the

best fit to the intensity data (Section S1, supporting informa-

tion). As a check, calculations were also performed assuming

cylindrical crystals with their axes corresponding to the rota-

tion axis.

The reported experiments either repeatedly oscillated the

crystal through a small angle (e.g. 2�), collecting one or more

frames for each oscillation and returning to the starting

orientation before collecting the next set of frames, or else

continuously rotated the crystal during data collection (e.g. by

60� with 1� rotation per diffraction frame). The former method

gives a more uniform dose distribution in the irradiated and

diffracting crystal regions. For simulations with repeated

oscillations through an angular wedge, the simulation time

step was set to 1/1000 of the total exposure time for the entire

set of oscillations, the crystal was rotated 1/10 of its total

oscillation in the wedge (e.g. by 0.5� for a 5� oscillation) in

each step, and after every ten steps the rotation angle was

reset to the starting angle of the wedge. For simulations with

continuous rotations, the crystal was rotated by 1/100 of its

maximum rotation in each simulation step. The diffracted flux

versus q, ’diff(tn, q), the total diffracted flux ’diff(tn) and a

nominal dose (an average over the voxels that have received

nonzero dose) corresponding to the reported dose were

calculated at each step. Supplementary Fig. S2 shows example

dose distributions for a cylindrical crystal held in a fixed
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orientation and when rotated, when illuminated with flat-top

and isotropic Gaussian beams.

Reported Bragg intensity data were integrated within

resolution shells bounded by upper and lower d values.

Reported incident beam profiles and diffracted intensity

versus resolution shell and fluence/dose plots were digitized

using the software WebPlotDigitizer (A. Rohatgi; https://

automeris.io/WebPlotDigitizer/). Diffracted intensities in each

shell were normalized by their zero-dose extrapolation,

eliminating both the Debye–Waller factor DWF(B, q) in (2) as

well as the Lorentz–polarization correction to the measured

intensities, which was not consistently applied in all studies.

The resulting normalized plots only show variations with

resolution shell (q) and fluence or dose owing to radiation

damage.

2.5. A simple physics-based model for radiation damage

The primary model used to analyze global radiation damage

to protein crystals for the last 50 years is due to Blake &

Phillips (1962) and Hendrickson (1976), with an additional

extension proposed later (Sygusch & Allaire, 1988). As shown

in Supplementary Fig. S1, an undamaged crystal becomes

disordered at ‘rate’ k1 (proportional to the volume fraction of

crystal disordered per unit dose). This damaged crystal

continues to exhibit Bragg diffraction, but its intensities

decrease with increasing q as I(q) = I0 exp(�Bdisorder q2), where

Bdisorder is a (fixed) average B-factor increase in the disordered

regions. Disordered crystal becomes completely amorphous

and ceases to generate Bragg diffraction [I(q) = 0] at ‘rate’ k2.

Undamaged crystal can also proceed directly to the amor-

phous state at rate k3. The resulting diffracted intensity versus

q and dose D is given by

Iðq;DÞ

Iðq; 0Þ
¼ exp½�ðk1 þ k3ÞD� þ

k1

k1 þ k3 � k2

� expð�k2DÞf1� exp½�ðk1 þ k3 � k2ÞD�g

� expð�Bdisorderq
2
Þ: ð7Þ

With four adjustable parameters, this model has provided

good fits to reported I(q) versus nominal dose data, including

to the ‘hockey-stick’ dose dependence evident for data at

larger q or in higher (smaller numeric) resolution shells (Blake

& Phillips, 1962; Hendrickson, 1976; Sliz et al., 2003; Bour-

enkov & Popov, 2010; Warkentin & Thorne, 2010; Liebschner

et al., 2015; Owen et al., 2014; Warkentin et al., 2017). However,

the connection of this model to underlying damage processes

is opaque and the physical significance of the obtained fit

parameters is unclear.

We thus considered a very simple model that captures some

essential physical aspects of radiation damage. Incident X-ray

photons interact with the sample at random times and loca-

tions. Each interaction ejects a photoelectron, which then

generates lower energy secondary electrons within a volume

(determined by the photoelectron mean free path) of a few

micrometres. These secondary electrons then diffuse, break

bonds and create free radicals that can diffuse and cause

additional damage. Experiments using X-ray microbeams

(Sanishvili et al., 2011; Finfrock et al., 2013) show that the

resulting perturbations to electron densities from those of the

original, undamaged crystal, as reflected in the degradation of

the diffraction properties, are confined to within a length

comparable in magnitude to the photoelectron mean free

path, even at room temperature (Warkentin et al., 2017) where

diffusion occurs freely.

To model damage, we thus assume that X-ray photon

interactions occur at random locations in the crystal. We

model the effect of each interaction as a modest ‘blurring’ of

the real-space electron density within a finite region around

each interaction point. The number of such interactions per

unit crystal volume determines the dose D. We calculate the

Fourier transform of the electron density of the crystal and

evaluate the integrated Bragg intensity within q (or resolu-

tion) shells and plot this versus dose D. Simulations were

performed in two dimensions, using m � m arrays of unit cells

containing a grayscale image of a flea (Fig. 5), and in three

dimensions, using unit cells obtained by discretizing the

protein in PDB entry 3e4h (Wang et al., 2009): tetragonal

crystals of the 29-residue plant protein cyclotide varv F at

1.8 Å resolution (Supplementary Fig. S6).

In two dimensions, for each X-ray hit a Gaussian spatial

filter was applied to a small n � n pixel interaction region

centered at a randomly chosen crystal location (xi, yj) as shown

in Supplementary Fig. S7. FFTs of the crystal were periodi-

cally calculated as hits accumulated. The simulations were

continued until the random hits caused the diffraction peaks in

the highest resolution shell to fall below the background level,

which corresponded to roughly 5–10 hits per pixel. A similar

procedure was followed for the computationally more inten-

sive three-dimensional simulations. Details of the simulations

are given in Section S2 of the supporting information.

3. Results

3.1. Fitting experimental intensity versus dose data

Experimental data for intensity in resolution shells versus

dose at T ’ 100 K from three previous studies were analyzed,

modeled and fitted using the approach in Sections 2.1–2.5.

Supplementary Tables S1 and S2 give the experimental details

for each reference and our model parameters. We focused on

cryogenic temperature data because crystals of different

proteins are comparably radiation sensitive, damage is inde-

pendent of dose rate and because free-radical diffusion and

relaxation of protein and lattice structure following bond-scale

damage are strongly constrained by the frozen solvent matrix,

so that the overall behavior should be simpler and more

consistent between protein crystals than at 300 K.

3.1.1. Liebschner et al. (2015). Liebschner et al. (2015)

reported the most optimally executed experiments of those

examined here. Data were collected from thaumatin crystals at

100 K by repeatedly oscillating the crystals through the same

2� range. Their measured beam profile (their Fig. 1, repro-

duced here as Supplementary Fig. S3) was nominally flat-

topped but had significant tails, and the full widths at half
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maximum (FWHMs) were much smaller than the crystal

dimensions. Fig. 2 shows their data for normalized integrated

intensity in resolution shells versus nominal dose. As the

resolution of the shell increases, the initial decay rate with

dose becomes more rapid, and deviations above exponential

behavior become evident at smaller doses.

The solid lines in Fig. 2(a) show the calculated intensities

assuming a top-hat incident beam profile, a 2� oscillation and

an exponent � = 1 for the q (resolution) dependence of the

diffracted intensity decay with dose in (4). The calculated dose

variation is nearly perfectly exponential and thus does not

capture the large deviations from exponential behavior at

higher resolutions and doses. By using the measured beam

profile [Fig. 2(b)], the non-exponential behavior at higher

resolutions is qualitatively reproduced. However, in both

Figs. 2(a) and 2(b) the choice of � = 1, motivated by the results

of Howells et al. (2009), seriously underestimates the observed

increase in decay rate with increasing resolution. As shown in

Fig. 2(c), relaxing this constraint yields a best-fit value of

�’ 1.7 and agreement with the data that is generally excellent

in all resolution shells.

3.1.2. Sliz et al. (2003). Sliz et al. (2003) collected data at

100 K from crystals of three different proteins: the ternary

US2–HLA-A2–Tax peptide complex (referred to as ‘US2’),

HLA-A2 with a bound melanoma decamer peptide (referred

to as ‘HLA’) and viral polymerase �3 from reovirus (referred

to as ‘�3’). The focused and collimated X-ray beam was

assumed to have a top-hat form in the collimated horizontal

direction and a Gaussian form in the focused vertical direc-

tion. The crystals were oscillated by only 1�, and all were

larger than the beam. Intensities were plotted versus incident

fluence (photons mm�2, proportional to dose) and data at low

and high fluences were separately reported.

As shown in Fig. 3 and Supplementary Fig. S5, these data

again show a faster increase in decay with resolution than can

be accounted for with � = 1. Fit values were 1.7 for US2, 1.6 for

HLA and 1.2 for �3. Poorer fits at all resolutions and much

larger uncertainties in ‘best-fit’ � values than for the data of

Liebschner and coworkers result because of obvious problems

with the original data, and because the beam profiles and

initial crystal orientations were not reported. Intensities for all

three proteins show an initial plateau (US2) or reduced slope

(HLA and �3) versus fluence. Similar behavior observed for

thaumatin and lysozyme crystals has been attributed to the

Figure 2
Experimental data (solid circles) for integrated intensity in resolution shells versus dose for thaumatin crystals at 100 K, as measured by Liebschner et al.
(2015). Absolute intensities in each resolution shell (Fig. 4 in the original manuscript) have been normalized by the first (approximately zero-dose)
intensity point; non-normalized data are shown in Supplementary Fig. S4. The solid lines indicate results from simulations assuming (a) a perfect top-hat
incident X-ray beam profile and an exponent � = 1 in (4), (b) the measured beam profile (Fig. 1 in the original manuscript, reproduced as Supplementary
Fig. S3) and � = 1, and (c) the measured beam profile and a best-fit exponent � = 1.7.



effects of dose-dependent mosaicity broadening and cell

expansion (Warkentin et al., 2017), which is not accounted for

by scaling algorithms or by our modeling.

3.1.3. Bourenkov & Popov (2010). Bourenkov & Popov

(2010) collected data at 100 K from crystals of insulin, P19-

siRNA, FAE and FtsH. Crystals of the first three were rotated

during exposure by a total angle of between 35 and 300�, with

0.5–1� rotation per frame. Large rotations are not ideal for our

modeling because the dose distribution within and diffraction

from the illuminated volume will have a larger dependence on

the detailed crystal shape and initial orientation than when

crystals are oscillated through a small angle. Crystals of FtsH

were both rotated and translated (after each 30�, by an

unknown amount) perpendicular to the beam direction, and

their data were not modeled. Crystals were illuminated by a

nominally Gaussian beam with dimensions that were equal to

or smaller than the largest crystal dimension. Beam profiles

and initial crystal orientations were not reported. Despite

many uncertainties the model calculations yield good fits to

the data for all three crystals (Fig. 4), with best-fit exponents of

� = 1.4, 1.6 and 1.8 for insulin, P19 and FAE, respectively.

3.2. Simulations of radiation damage

Figs. 5 and 6 show the results of simulations of our model for

radiation damage as a sequence of random, local Gaussian
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Figure 3
Experimental data in the low-dose (solid circles) and high-dose (open circles) regions for integrated intensity in resolution shells versus incident fluence
(in photons mm�2, proportional to dose) reported by Sliz et al. (2003) (Fig. 1 in the original manuscript) for crystals of US2 and HLA at 100 K. The solid
lines indicate results from simulations assuming a top-hat incident beam profile in the horizontal direction and a Gaussian profile in the vertical direction
(based on descriptions of the experimental setup), with (a), (b) � = 1 and (c), (d) ‘best-fit’ values chosen based on visual comparison.
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blurs and corresponding to a condition of spatially uniform

irradiation. Fig. 5(a) shows four unit cells of an initial, un-

damaged 16 � 16 cell two-dimensional crystal. Its diffraction

(proportional to the square of the FFT amplitudes) has strong

peaks extending out to the maximum q or resolution of the

initial image. After some large number of hits, the real-space

density is blurred throughout the crystal and its diffraction

decays much more rapidly with q. Movies of the evolution of

the electron density of the crystal and its diffraction are

provided as Supplementary Movies S1 and S2.

Figs. 6(a) and 6(c) give results in two and three dimensions,

respectively, for the predicted diffracted intensity in a reso-

lution shell versus dose. In both two and three dimensions, the

diffracted intensity within a resolution shell has a strictly

exponential decay with dose, consistent with our assumption

for the behavior of the local ~IIðq;DÞ in fitting the data in Figs. 2,

3 and 4. Figs. 6(b) and 6(d) give results in two and three

dimensions, respectively, for the half-dose in a given resolution

shell versus resolution, determined from plots as in Figs. 6(a)

and 6(c) as the dose at which the intensity in a given resolution

shell drops to half of its initial value. Except at the highest

(lowest numerical value) resolutions, in both two and three

dimensions the half-dose varies with resolution d approxi-

mately as D1/2(d) / d� with an apparent low-resolution

asymptote of �’ 2; best-fit values to the near-linear regions in

the two- and three-dimensional results are � ’ 1.96 and 1.86,

respectively. These results do not change when the Gaussian

blur is replaced by a uniform blur (Supplementary Fig. S8).

Deviations from simple power-law behavior at the highest

(lowest numerical value) resolutions depend on the Gaussian

width, with larger widths causing deviations at lower resolu-

tions. Similar results were obtained using other two-

dimensional images and using other PDB entries as the basis

for the three-dimensional unit cell.

4. Discussion

4.1. The local Ĩ (q, D) relation: dose dependence

By assuming a purely exponential local dependence of

diffracted intensity on dose of the form ~IIðq;DÞ =

I0(q)exp[�D/De(q)] with De(q) = K/q�, and accounting for

Figure 4
Experimental data (solid circles) for integrated intensity in resolution shells versus dose for crystals of insulin, P19 and FAE at 100 K, as measured by
Bourenkov & Popov (2010) (Figs. 3, 4 and 6 in the original paper). Crystals were rotated continuously during irradiation as for crystallographic data
collection. Oscillations in the data may be owing to irregular crystal shapes and large rotations that produce complex dose distributions within the X-ray-
illuminated volume. The solid lines indicate the results from simulations with best-fit exponents � of (a) 1.4, (b) 1.6 and (c) 1.8.



the nonuniform pattern of crystal

irradiation during data collection, we

obtain good fits to experimental I(q)

versus nominal dose/fluence relations

measured for several protein crystals at

T = 100 K under diverse data-collection

conditions. Deviations of the calculated

dose/fluence dependence from the data

may arise because the actual crystal

shapes and initial crystal orientations

(which were not given or adequately

described) deviate from those assumed,

and because of issues in data collection

and processing that cause measured

intensities to deviate from the actual

dose-dependent structure factors

(Warkentin et al., 2017). Consequently,

based on the available data at 100 K,

there is no reason to believe that the

local ~IIðq;DÞ relation at T ’ 100 K is

anything but purely exponential in all

resolution shells over the resolution and

dose range relevant in biomolecular

crystallography.

The present analysis also shows that

even relatively small deviations of the

profile of an X-ray beam from an ‘ideal’

top-hat form can have a substantial

effect on the dose dependence of the

intensity at larger doses and higher

resolutions. This is particularly evident

in the fits to the data of Liebschner and coworkers in Fig. 2;

using the actual profile of the nominally top-hat beam

dramatically improves the fit quality.

4.2. The local Ĩ (q, D) relation: q dependence

Howells et al. (2009) presented a summary of available data

for resolution-dependent maximum tolerable doses, obtained

from published half-dose values in biomolecular crystallo-

graphy and from X-ray and electron imaging studies. These

results, spanning resolutions from �2 to 700 Å, show large

scatter but are roughly consistent with a linear resolution

dependence corresponding to De(q) = K/q� with � = 1.

The present analysis shows that data for protein crystallo-

graphy with resolutions between �1 and 10 Å are unam-

biguously inconsistent with � = 1, and yield best-fit values of

between �1.4 and 1.8, with the most ‘ideal’ data of Liebschner

and coworkers yielding a value of �1.7.

Fig. 7 summarizes the results for half-dose versus resolution

at 100 K, deduced from previous I(q) measurements using the

methods of Sections 2.1–2.5 (solid symbols) or as originally

reported (open symbols). These half-dose values are for

diffraction within resolution shells, rather than overall half-

dose values obtained by integrating the entire diffraction

pattern over all resolutions. The data between 1 and 10 Å are

well described by � ’ 2, with a best-fit value of 1.86; the only

data that appreciably deviate from this fit are those first

reported by Howells and coworkers. Extrapolating the � =

1.86 fit from 1 to 600 Å yields a half-dose of �3 � 1011 Gy and

using � = 2 gives �7� 1011 Gy. This compares with a reported

overall half-dose value (obtained by integrating over all

resolutions) in X-ray imaging of cells to this resolution of

5 � 1011 Gy (Maser et al., 2000) and with a value of only �1�

1010 Gy based on the best fit in Howells and coworkers (their

Fig. 3) with � = 1.

4.3. The local Ĩ (q, D) relation: connection to ‘kinetic’ models

The ‘kinetic’ models of Blake & Phillips (1962),

Hendrickson (1976) and Sygusch & Allaire (1988) all impli-

citly assume uniform sample irradiation, and so should not

have been used to fit experimental data that were collected

under conditions of substantially nonuniform illumination.

The present analysis shows that the local ~IIðq;DÞ is consistent

with a purely exponential dose dependence for all q at 100 K

and that the dose scale for intensity at a given q varies as a

power of q. Equation (7) cannot replicate these features with

any sensible parameter choices. The deviations from expo-

nential behavior that these models have proved so successful

at fitting are owing to nonuniform sample irradiation (and

possibly also to data-processing errors), which these models
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Figure 5
Simulation of radiation damage to a two-dimensional crystal formed of images of a flea (from
Robert Hooke’s Micrographia). Each ‘hit’ corresponds to the application of a local Gaussian blur at
a randomly selected location (Supplementary Fig. S7). (a) Four unit cells (each 1024� 512 pixels) of
the undamaged two-dimensional crystal (left) and the square of the FFT amplitude, proportional to
the diffracted intensity, of a 16 � 16 cell crystal (right). (b) After receiving a large number of hits
(>>1 per pixel) the electron density has been blurred and the high-resolution (large q) diffraction
peaks have faded out. A full video of the evolution of the crystal and its diffraction pattern with
dose is given in Supplementary Movies S1 and S2.



do not include. These models are thus inconsistent with

experiment at T = 100 K and should no longer be used.

4.4. The ‘dose limit’ in biomolecular crystallography

Based upon experience in cryoelectron microscopy,

Henderson (1990) suggested that the maximum tolerable dose

in X-ray cryocrystallography, beyond which diffraction would

be seriously degraded, would be roughly 20 MGy (Henderson,

1990). Teng & Moffat (2000, 2002), using perhaps the most

nearly ideal irradiation conditions to date – a beam with a 2�

width much larger than their crystal size (250 mm versus

100 mm), giving nearly uniform illumination of the entire

crystal volume – obtained a T = 100 K half-dose of �17 MGy

for lysozyme crystals diffracting to 1.6 Å resolution. Based on

diffraction statistics they suggested a dose limit of �10 MGy

be used in macromolecular crystallography. Burmeister (2000)

obtained a T = 100 K half-dose of �21 MGy for myrosinase

crystals diffracting to 2.0 Å resolution. Owen et al. (2006)

obtained half doses of 40 and 48 MGy for holoferritin and

apoferritin crystals diffracting to �2.3 Å, and based on

examination of diffraction statistics and electron-density maps
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Figure 6
Simulation results for the random Gaussian blur model of radiation damage applied to (a, b) a two-dimensional crystal formed of pixelated images of a
flea and (c, d) a three-dimensional crystal formed of a pixelated electron-density map for PDB entry 3e4h. In both two and three dimensions, the
intensity within a given resolution shell decays exponentially with dose, and the half-dose varies with resolution d approximately as D1/2(d) / d�, with �
approaching 2 at low resolutions (large numeric values of resolution). The best-fit values in the near-linear region are � = 1.95 and � = 1.86 in (c) and (d),
respectively. Simulation details are given in the supporting information.



suggested that a maximum dose of �30 MGy be used.

Liebschner et al. (2015) using a nearly flat-top beam, obtained

a half-dose of 18.5 MGy for thaumatin crystals diffracting to

2.1 Å. Warkentin et al. (2017), using a Gaussian microbeam

with no crystal oscillation and correcting for the effects of the

Gaussian beam profile, obtained half-doses of 10 MGy for

lysozyme crystals diffracting to 1.4 Å and 13 MGy for thau-

matin crystals diffracting to 1.6 Å. Many other half-dose

measurements have been reported but have generally

involved substantially nonuniform crystal irradiation, which

can make measured half-doses substantially larger than the

true, local half-dose that would be measured under conditions

of purely uniform irradiation (Warkentin et al., 2017).

Our conclusion based these previous studies is that

diffraction half-doses at T = 100 K for crystals diffracting to

�1.5–2 Å are �15–20 MGy, and that the �10 MGy dose limit

suggested by Teng and Moffat is appropriate. However, the

30 MGy ‘Garman limit’ reported by Owen et al., rather than

the 10 MGy limit of Teng and Moffat, has been by far the most

widely cited, and has become the accepted standard dose limit.

It far exceeds the dose that would be required to severely

degrade diffraction in the highest resolution shells of, for

example, the overwhelming majority of PDB entries, which

have a median refined resolution of �2.0 Å.

As shown in Fig. 7, using the local half-dose in a given

resolution shell as a more meaningful and robust metric, we

find that the dose limit at T = 100 K increases from�2–3 MGy

at 1 Å to 8 MGy at 2 Å, 16 MGy at 3 Å and 30 MGy at 4 Å.

Half-doses obtained by integrating over all resolutions up to

the maximum available resolution are somewhat larger than

but track these values; for lysozyme crystals diffracting to a

maximum resolution of 1.4 Å the half-dose is �10 MGy

(Warkentin et al., 2017). These resolution-dependent dose

limits should be used as rules of thumb in place of the previous

20 or 30 MGy limit when determining exposure strategies in

crystallographic measurements.

Why were the half-doses reported by Owen et al. so much

larger than were obtained in the other measurements? As

noted previously (Warkentin et al., 2014), the data sets

analysed had a resolution limit of 2.3 Å, somewhat lower than

those used in other studies; this can account for roughly half

the difference with half-dose values measured by Teng and

Moffat (Teng & Moffat, 2000) and Warkentin et al. (Warkentin

et al., 2017). Owen et al. used a 100� 100 mm X-ray beam, and

stated that the beam profile on the beamline used for their

studies ‘has been determined to be a top-hat shape’, citing

Arzt et al. (Arzt et al., 2005) for the profile. However, the

beamline profiles reported in Fig. 4 of Arzt et al., are not top

hat (normally produced through collimation or slitting of a

defocused beam). They are standard focused profiles. With

tight focusing to 31 (V) � 47 (H) mm [Arzt et al., 2005; Fig.

4(a)], the beam profile was roughly Gaussian in the vertical

and somewhat flattened in the horizontal; with a 100� 100 mm

FWHM spot size as used by Owen et al., the profile may have

been more nearly Gaussian in both horizontal and vertical

[Arzt et al., 2005; Fig. 4(b)]. Since the beam size was much

smaller than the �200 mm of the holo- and apoferritin crystals

examined, the crystals may thus have been nonuniformly

irradiated, and this may have increased the apparent half-dose

relative to the true, local half-dose by a factor close to two.

Which experimental dose should be compared with these

limits, for a crystal diffracting to a given maximum resolution?

In nearly all crystallographic data collection the crystal is

nonuniformly irradiated owing to nonuniform flux density in

the beam and owing to crystal rotation. Using RADDOSE-3D

or simple code (written in, for example, MATLAB) based on

(1), and knowing the incident X-ray flux-density profile, the

approximate crystal dimensions and the crystal rotation or

oscillation pattern, the dose distribution within a crystal

during a given data collection can easily be calculated.

RADDOSE-3D currently calculates the maximum dose (at

any position) received within the X-ray-illuminated crystal

volume, the average dose within the illuminated volume, the

average dose within the crystal and an incident flux-density-

weighted dose (Zeldin et al., 2013). The most conservative

choice is to use the maximum dose. The average dose within

the illuminated volume and within the crystal can both yield

problematically small dose estimates when the crystal is larger

than the beam and when the beam has a non-top-hat (e.g.

Gaussian) profile.

A more robust measure of average dose is the diffraction-

weighted dose (Warkentin et al., 2017), which weights the dose

received at each location after an exposure time t by its

contribution to the measured diffraction at time t, and thus

appropriately downweights contributions from regions that,

either owing to weak incident illumination or owing to

radiation damage, contribute little to the measured diffraction.

The diffraction-weighted dose is given by
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Figure 7
Experimental half-doses versus resolution obtained from several
previous crystallographic studies (Bourenkov & Popov, 2010; Liebschner
et al., 2015; Sliz et al., 2003; Teng & Moffat, 2000; Warkentin & Thorne,
2010; Coughlan et al., 2015, 2016; Howells et al., 2009; Nave et al., 2016;
Owen et al., 2006), analyzed accounting for their dose distribution (solid
circles) or used as reported (open circles). Aside from the data of Howells
et al. (2009) at resolution beyond 10 Å, the overall trend is in good
agreement with � = 2, with a best-fit exponent of 1.86.



DWDðtÞ ¼

Rt
0

R
crystal

Dðr; t0ÞSðr; t0ÞFincðr; t0Þ d3r � dt0

Rt
0

R
crystal

Sðr; t0ÞFincðr; t0Þ d3r � dt0
: ð8Þ

Here, S(r, t) = S[D(r, t)] is the diffracted flux (in all reflections)

per unit illuminated crystal volume per unit incident flux

density at position r and time t, and the denominator gives the

total number of scattered photons up to time t (not the total

diffracted intensity as stated by Warkentin and coworkers). As

assumed by Warkentin and coworkers and supported by the

present analysis, S(r, t) decays exponentially with dose D.

However, since the highest resolution diffraction peaks fade

out at the smallest doses, they are down-weighted in the

definition of (8). If the effects of dose within a given resolution

shell centered at some q are of primary interest, then the

weighting diffraction can be restricted to that q, e.g.

DWDðq; tÞ ¼

Rt
0

R
crystal

Dðr; t0Þsðr; q; t0ÞFincðr; t0Þ d3r � dt0

Rt
0

R
crystal

sðr; q; t0ÞFincðr; t0Þ d3r � dt0
; ð9Þ

where

Sðr; tÞ ¼
R
q

sðr; q; tÞ � q dq

and, averaging over reflections at a given q as in our model in

Section 2.3, s(r, q, t) 	 �[D(r, t), q] � DWF(B, q).

4.5. Mechanisms underlying the local I(q, D) relation

Global radiation damage to biomolecular crystals at 100 K

is robust: it does not have an appreciable dependence on any

properties of the biomolecule (e.g. primary sequence and fold)

or of the crystal (e.g. packing density, solvent content and

composition). Each X-ray absorption or inelastic scattering

event generates secondary electrons and damage in a volume

of many cubic micrometres containing a large number of

biomolecules and unit cells. The frozen solvent network

prevents relaxation of the structure following each damage

event on any but the shortest length scales. As a result, one

might expect that a fairly simple physical damage model would

be required to reproduce the essential features of the decay of

diffraction with dose at 100 K.

This expectation is borne out by the present results. A

model of sequential random damage interactions that cause

local blurring of the electron density reproduces all salient

trends of the available data for global radiation damage,

including both its dose and q dependence (to within uncer-

tainties arising from how available data were collected).

The apparent asymptote of the simulation results to � = 2 at

large q in Fig. 6 can be readily understood. In the limit of each

pixel or voxel having received a large number of hits N, the

fractional fluctuations in the number of hits (or blurs) per

voxel N1/2/N will become small, and the blurring of the elec-

tron density will become nearly uniform throughout the

sample. The uniformity of the blurring will be greater for long-

wavelength (large numeric resolution, small q) Fourier

components of the electron density, since these average over

fluctuations in a larger volume. Instead of our elementary

damage event corresponding to a local blurring in a small

volume of the crystal, in this large-dose, low-resolution limit

we can assume a simpler model in which our elementary

damage event delivers a uniform dose D0 that produces a

uniform blurring throughout the crystal. After n of these

events, the total dose received by the sample is Dn = nD0, and

the electron density satisfies �(r, Dn) = �(r, Dn�1) 
 G(r),

where the blur kernel G(r) is convolved with the real-space

density. The Fourier transform of the electron density and thus

the diffracted intensity will have the form I(q, Dn) = I(q, 0) �

[G0(q)]2n. Taking G(r) and thus G0(q) as isotropic Gaussians,

the diffracted intensity can be written as

Iðq;DnÞ / Iðq; 0Þ � expð�4�2�2q2nÞ

/ Iðq; 0Þ � exp½�Dn=DeðqÞ�; ð10Þ

where

DeðqÞ / 1=q2: ð11Þ

Thus, this simplified model predicts an exponential depen-

dence of intensity on dose and an exponent � = 2 in (4).

Above the protein–solvent glass transition near 200 K,

damage processes involving relaxations on large length scales

and longer, temperature-dependent timescales may quali-

tatively change the evolution of disorder with dose, especially

at large doses. Deviations of the local ~IIðq;DÞ, determined by

deconvolving the effects of nonuniform irradiation, from the

predictions of the simple model used here should provide a

useful starting point for the study of these damage processes.

4.6. Implications for crystallographic data analysis

Diffraction scaling programs used in crystallography

attempt to correct for changes in Bragg intensities owing to

radiation damage. An early approach assumed a linear

variation of peak intensity with frame number or dose and

used measurements of equivalent peaks in different frames to

extrapolate back to the zero-dose intensity. A second

approach assumes that the decay of intensities with dose can

be described by a linearly increasing B factor, I(�, n) =

I0[B(n)sin2(�)/�2], where B(n) = (1 � n)B0 + nB1 and n, the

frame number, is proportional to dose (Otwinowski & Minor,

1997; Evans, 2006). This can be rewritten as

Iðq; nÞ ¼ I0 exp �
B0q2

16�2

� �
exp �

ðB1 � B0Þnq2

16�2

� �

¼ Iðq; 0Þ exp½�n=neðqÞ� ð12Þ

with ne(q) / 1/q2. This matches the result of our model and is

consistent (within experimental uncertainties) with the local
~IIðq;DÞ relation we deduced from previous experiments.

This correction can be calculated separately for each set of

symmetry-related peaks and their Friedel mates, assuming that

all peaks in this set have the same decay rate (Diederichs,

2006). This requires that the multiplicity of the data set be
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sufficiently high and that observations of equivalent reflec-

tions are well spaced over the data set.

The difficulty in these approaches in accounting for radia-

tion damage is that the measured peak intensities (even when

fully recorded) may not have an exponential dependence on

frame number (Owen et al., 2014; Warkentin et al., 2017), the

dose state of the diffracting crystal region does not in general

vary linearly with frame number (Warkentin et al., 2017), and

both of these effects are by far the largest for the highest

resolution data. Because the crystal is nonuniformly irradiated

and nonuniformly damaged, diffraction in any frame reflects a

nonlinear weighting of structure factors from crystal regions in

various states of decay. Since the local De(q)/ 1/q2, the effects

of nonuniform irradiation are much more pronounced, and

become evident at much smaller exposures, for the highest

resolution structure factors. The size, shape and position in

reciprocal space of a structure-factor peak evolve with dose,

because mosaicity, the spread in lattice constants within the

illuminated volume, and the average lattice constant generally

increase with dose. Depending on the incident beam diver-

gence and energy spread, the initial crystal mosaicity and its

rate of increase with dose, the incident beam fluence or dose

per frame and the sample rotation per frame, the resulting

intensity variations with exposure time can introduce large

errors in nominally fully recorded peak intensities. Recording

high-multiplicity data can average over these effects, but there

is no reason to expect that the ‘average’ for a set of equivalent

reflections, or its extrapolation to frame n = 0 based on

damage models implemented in current scaling programs, will

correspond to the n = 0 structure factor, especially in the

highest resolution shells. This may contribute to the rapid

degradation of R factors within each shell as the resolution

limit of a data set is approached (Holton et al., 2014).

The good news, evident from the present work, is that our

understanding of radiation damage is improving. It should

soon be possible to implement much more sophisticated

models, and perhaps also improved crystallographic data-

collection protocols that include the measurement of key

damage-related parameters, to allow more accurate correction

of measured intensities. This could help close the R-factor gap

between protein and small-molecule structures. Whether the

corrections are large enough to significantly impact structural

models and mechanistic understanding remains to be deter-

mined.

5. Conclusions

We have shown that the experimentally observed diffracted

intensity decays and their resolution or q dependence, arising

from radiation damage to biomolecular crystals, can be

explained by assuming a locally exponential relation ~IIðq;DÞ

between diffracted intensity and dose with a half-dose

D1/2(q)/ 1/q� where �’ 1.7, and by accounting for the effects

of non-uniform irradiation, damage and diffraction during

data collection. The very strong dependence of D1/2(q) on q

increases the effects of both radiation damage and of non-

uniform irradiation on measured intensities (and the structure

factors derived from them) in the highest resolution shells.

Consequently, the 20–30 MGy Henderson or Garman dose

limit, which has long been used as a rule of thumb in crys-

tallography, should be replaced with a metric that depends on

the initial maximum resolution of a data set, and the appli-

cation of this metric should account for nonuniform irradia-

tion and diffraction during data collection. Radiation-damage

models that have been long used to fit data for I(q) versus dose

implicitly assume uniform sample irradiation and do not apply.

Both an exponential dose dependence for ~IIðq;DÞ and

D1/2(q) / 1/q� with � ’ 2 follow from perhaps the simplest

physically plausible model, in which damage events cause

random, local blurring of the electron density. Experimental

deviations from these model predictions, especially at

temperatures above the protein–solvent glass transition where

radiation sensitivity rapidly increases, should guide the

development of a more complete model.
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