
research papers

190 https://doi.org/10.1107/S205225252400054X IUCrJ (2024). 11, 190–201

IUCrJ
ISSN 2052-2525

PHYSICSjFELS

Received 7 August 2023

Accepted 15 January 2024

Edited by G. Williams, Brookhaven National

Laboratory, USA

Keywords: protein serial crystallography; data

reduction; data compression; data quality

evaluation.

Supporting information: this article has

supporting information at www.iucrj.org

Published under a CC BY 4.0 licence

Data reduction in protein serial crystallography

Marina Galchenkova,a Alexandra Tolstikova,b Bjarne Klopprogge,a Janina

Sprenger,a Dominik Oberthuer,a Wolfgang Brehm,a Thomas A. White,b Anton

Barty,b Henry N. Chapmana,c,d and Oleksandr Yefanova*

aCenter for Free-Electron Laser Science CFEL, Deutsche Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg,

Germany, bDeutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany, cDepartment of Physics,

Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany, and dUniversität Hamburg, Luruper Chaussee

149, 22761 Hamburg, Germany. *Correspondence e-mail: oleksandr.yefanov@cfel.de

Serial crystallography (SX) has become an established technique for protein

structure determination, especially when dealing with small or radiation-

sensitive crystals and investigating fast or irreversible protein dynamics. The

advent of newly developed multi-megapixel X-ray area detectors, capable of

capturing over 1000 images per second, has brought about substantial benefits.

However, this advancement also entails a notable increase in the volume of

collected data. Today, up to 2 PB of data per experiment could be easily

obtained under efficient operating conditions. The combined costs associated

with storing data from multiple experiments provide a compelling incentive to

develop strategies that effectively reduce the amount of data stored on disk

while maintaining the quality of scientific outcomes. Lossless data-compression

methods are designed to preserve the information content of the data but often

struggle to achieve a high compression ratio when applied to experimental data

that contain noise. Conversely, lossy compression methods offer the potential to

greatly reduce the data volume. Nonetheless, it is vital to thoroughly assess the

impact of data quality and scientific outcomes when employing lossy compres-

sion, as it inherently involves discarding information. The evaluation of lossy

compression effects on data requires proper data quality metrics. In our

research, we assess various approaches for both lossless and lossy compression

techniques applied to SX data, and equally importantly, we describe metrics

suitable for evaluating SX data quality.

1. Introduction

Serial crystallography (SX) has emerged as a standard tool for

studying small or radiation-sensitive crystals and investigating

protein dynamics in recent years (Chapman et al., 2011; Boutet

et al., 2012; Chapman, 2019). This progress has been facilitated

by the advancements in X-ray sources, including X-ray free-

electron lasers (FELs) and fourth-generation synchrotrons.

These modern X-ray sources generate high-intensity and

coherent X-ray beams, coupled with improved focusing optics

that enhance the flux density at the sample. As a result, the

exposure time needed to capture measurable signals has

significantly decreased.

Equally significant has been the concurrent advancement in

detector technology. Modern detectors, such as EIGER

(Dinapoli et al., 2011), JUNGFRAU (Mozzanica et al., 2018),

Lambda (Pennicard et al., 2013), ePix (Dragone et al., 2013),

AGIPD (Henrich et al., 2011), LPD (Hart et al., 2012) or DSSC

(Porro et al., 2010), have the capability to capture thousands of

images per second. The development of these detectors,

coupled with the aforementioned high-intensity photon

sources, enables the collection of valuable images at a
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kilohertz frame rate (Tolstikova et al., 2019). Combined with

the tiling of detector modules to increase the number of pixels

(up to 16 million pixels for EIGER or JUNGFRAU), this

leads to very high overall data rates (Leonarski et al., 2020).

As an example, the EIGER2 XE 16M detector, developed by

Dectris for synchrotron facilities, generates 16 megapixel

images at a frame rate of 400 images per second. When

uncompressed, the user gets a staggering data rate of

13.5 GB s� 1. Considering the continuous operation typical in

serial crystallography (SX), this amounts to approximately

1 PB per day of data. In the case of XFEL facilities, each of the

two JUNGFRAU 16M detectors installed at SwissFEL can

operate at a remarkable 2 kHz, generating data rates of up to

60 GB s� 1. This equates to a potential accumulation of close

to 4 PB per day by each detector. However, SwissFEL cannot

be operated at such an extreme speed, which alleviates the

burden on data storage systems. New detectors like ePixHR at

LCLS2 and AGIPD 4M at European XFEL are expected to

generate data at similar rates. Though it is technically feasible

to save such data streams, the cumulative cost of doing so

imposes a substantial burden on operational budgets. As a

result, there is a compelling motivation to explore data-

reduction strategies that preserve data while ensuring the

quality of scientific outcomes remains unaffected.

Data reduction is a comprehensive concept that encom-

passes a range of techniques designed to decrease the size or

complexity of a dataset while retaining essential information.

These methods can include data compression, summarization,

filtering, feature selection and dimensionality reduction. Often

data-reduction strategies are divided into two big subgroups

such as lossless and lossy algorithms.

In order to efficiently apply any data-reduction method, it is

crucial to understand the data being processed. A typical

diffraction pattern in SX comprises bright and sharply defined

Bragg peaks, which originate from the studied crystals, and a

relatively smooth background that arises from various factors,

such as the sample delivery medium, disordered structure and

solvent within the crystal, and parasitic scattering from the

beamline. The intensities observed in various regions of the

diffraction pattern can vary significantly, often differing by

several orders of magnitude. Additionally, the useful signal

represented by the Bragg peaks at high scattering angles may

be comparable to the background noise. These features of

diffraction patterns in SX affect the applicability of different

compression algorithms.

Lossless compression techniques are frequently employed

to reduce the size of scientific data, particularly when the

signals recorded in each pixel of the detector are mostly zero

or constant. However, constant signals are rarely observed in

typical SX diffraction patterns. As a consequence, the effec-

tiveness of lossless compression schemes is significantly

diminished in this particular case. On the other hand, applying

standard image compression techniques directly to SX data is

challenging due to the significant signal variation observed in

neighboring pixels, particularly near Bragg peaks. Thus, to

achieve efficient data compression in SX, alternative

compression approaches that are specifically designed to

handle the sparse nature, high dynamic range, high noise level

and sharp intensity changes observed in diffraction patterns

are needed.

Our focus here is to evaluate different lossless and lossy

data-compression methods and determine the appropriate

metrics for evaluating the impact of lossy compression on the

final SX data quality. Our research found that an effective

strategy for data reduction in the case of strongly diffracting

crystals is to selectively save only the images that exhibit a

substantial number of Bragg peaks. Certainly, it is imperative

to preserve all metadata necessary for subsequent processing

of the condensed dataset (Bernstein et al., 2020). As described

below, this approach demonstrates remarkable efficacy, even

when reprocessing previously collected data using new algo-

rithms. Furthermore, our analysis shows that a non-linear

reduction in the precision of the measured diffraction pattern

intensities is the second most effective strategy for achieving

lossy compression. Moreover, we show that binning, which

effectively enlarges the pixel size, is highly effective, especially

when applied to diffraction data obtained from crystals with

small unit cells and measured using multiple-megapixel

detectors.

Our research underscores the importance of considering the

potential risks associated with particular lossy data-reduction

schemes. Specifically, strategies that involve reducing the

number of collected patterns or selectively saving determined

Bragg peaks may lead to notable deterioration in the quality

of the data. Therefore, it is essential to carefully weigh the

trade-offs between data reduction and the preservation of

crucial scientific information when implementing these

schemes.

2. Methods and approach

2.1. Selection of compression schemes

The topic of data compression is generally a vast and well

researched area with many algorithms available for different

types of data. Detailed reviews of mostly lossless methods

applied to different scientific datasets can be found in the

literature (Delaunay et al., 2019; Duwe et al., 2020). Here, we

focus on data-compression methods applicable to or available

in the context of serial crystallography.

Compression schemes typically reduce data volume by

exploiting symmetries or redundancies in the data. Thus, the

best type of compression to use for a given application

depends on the nature of the data being compressed and the

information deemed important to retain. Identifying a

universal lossy compression scheme is thus difficult since the

choice depends on what information must be retained and

what can be discarded. For example, high-quality JPEG-type

compression is widely used in medical imaging (Wiseman &

Fredj, 2001), and compression factors of 6–8 can be obtained

without affecting the diagnosis using conventional JPEG 2000

(Rabbani & Joshi, 2002; Marone et al., 2020) and JPEG XR

(https://jpeg.org/jpegxr/index.html) compression methods. The

appearance of compression artifacts after applying lossy
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compression is not so important here since JPEG is designed

to preserve common visual features of such images. However,

JPEG compression is poor for diffraction pattern analysis

because the intensity of scientific interest is concentrated in

localized Bragg peaks rather than image-like features. In

X-ray tomography, azimuthal regrouping of input images

followed by CBF byte-offset compression has proven its

effectiveness (Kieffer et al., 2018), thereby exploiting the

known rotational properties of a tomographic dataset.

However, this assumption often cannot be made for other

types of data.

In this paper, we focus our attention on the following

compression schemes suitable to reduce the volume of SX

data. Specifically, we consider the following.

(1) Lossless compression algorithms commonly available

for the HDF5 library including gzip, bzip2, zstd and lz4 with

and without bit-shuffle, and different combinations of Blosc

(lz4, lz4hc, blosclz, snappy, zlib and zstd).

(2) Data-reduction schemes including non-hit rejection

(saving only the diffraction patterns with detectable crystal

diffraction), measuring less data (reduced number of frames)

and saving only found peaks in diffraction patterns.

(3) Lossy compression schemes including binning (effec-

tively increasing the pixel size and reducing the number of

pixels at the detector), quantization (saving only several

discrete levels of intensity) and quantization with data rear-

rangement (saving the intensity value of each pixel re-

arranged as a single byte).

We study the effect of each compression type on resultant

data and structural model quality obtained with test SFX

datasets.

2.2. Selection of appropriate data quality metrics

Accurately assessing the potential loss of scientific content

resulting from the application of lossy data compression

necessitates a comprehensive set of metrics specifically

designed to measure the extent of information loss. It is

necessary to quantify not only whether the quality of the final

molecular structure is affected, but also whether the ability to

perform any of the many intermediate analysis steps, for

example, peak finding or estimating background signal, is

compromised due to loss of data quality.

The determination of macromolecular structures from

X-ray diffraction patterns is by now a mature and well

developed topic with accepted data quality metrics applied at

various stages along the data-processing pipeline (Karplus &

Diederichs, 2012, 2015; Assmann et al., 2016). Therefore, we

use the following data quality metrics and guides already

established for SX and conventional macromolecular crystal-

lography (MX) data processing:

(1) Measured data quality and reproducibility: I/�(I),

completeness, Rsplit, CC* or CC1/2.

(2) Model refinement quality (R values): Rfree/Rwork.

(3) Visual inspection of the reconstructed electron density

maps.

(4) The strength of the anomalous diffraction signal and the

ability to perform de novo phasing and/or structure refine-

ment.

The first set of metrics evaluates the quality and repro-

ducibility of the merged data and is usually plotted as a

function of the resolution (Karplus & Diederichs, 2012,

2015). These metrics are also used for selecting an optimal

high-resolution cut-off. One important consideration to use

these metrics: the resolution of the measured dataset

should not be limited by the geometry of the experiment.

Although these metrics can offer insights into data quality

when structure refinement is unavailable, note that they

alone cannot guarantee the successful reconstruction of

electron density or the accuracy of any resulting structure

(Diederichs & Karplus, 1997).

The quality of the derived structural maps is of paramount

importance for interpreting protein structures. Therefore, it is

important to compare how well the derived structure matches

the experimental data. For this purpose, the model-refinement

R value (the second metric from the aforementioned list)

measures the agreement between the observed and calculated

structure factor moduli (Brünger, 1992; Karplus & Diederichs,

2012). Going one step further, protein crystallographers

introduced the Rfree metric which measures how well a subset

of data omitted from the refinement process is explained by

the final model to indicate possible over-fitting or incorrect

results.

Ultimately, the quality of the reconstructed map is inter-

preted by an expert. Here, it is occasionally observed that

refinement quality assessed by R values alone can lead to

incorrect conclusions about the model quality. For example,

expert inspection of the structure may reveal nonphysical

chemistry such as overlaps of atoms or bonds, or conversely

the presence or absence of extra electron density such as

structural solvent which must be included in the structural

model to further improve agreement with the experiment.

Thus, the third method of visually inspecting the quality of the

reconstructed electron density is vital. Unfortunately, it is not

so easy to automate this method, and it requires an expert to

decide if the electron density looks reasonable.

Therefore, we turn to an additional method based on the

strength of the anomalous signal and the ability to perform ab

initio reconstruction of the structure as an effective method

for determining whether information has been lost during data

manipulation. The anomalous signal in single/multi-wave-

length anomalous diffraction (SAD/MAD) datasets is usually

weak, and the method of de novo phasing can work only if the

error in the determination of the structure factors is lower

than the Bijvoet differences. This method of structure deter-

mination is known to require a higher data quality than, for

example, molecular replacement, making it a good test of

whether lossy compression has adversely affected the data. To

further increase the sensitivity of this approach, we start with a

subset of the data that is only large enough for the de novo

phasing pipeline to work, so that any meaningful deterioration

in data quality will lead to an inability to reconstruct the

structure (Nass et al., 2020).
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We have used all four quality checks to test different lossy

compression algorithms. Some applications, such as binding

screening studies, may be more robust to small data errors and

suffice if Rfree/Rwork are exceeded (metric 2), whereas cutting-

edge cases such as de novo structure determination of sensi-

tive time-resolved structural studies may require a higher data

fidelity such as those measured by anomalous differences

(metric 4). We further hope this suggested set of metrics and

guides will be used to compare other compression schemes not

studied here, ideally using the same open datasets.

2.3. Selection of test datasets

An ideal protein crystal diffraction pattern measured using

a noiseless detector would be very sparse, consisting of bright

Bragg peaks with zero background. Such a diffraction pattern

is easily compressible by most existing lossless compression

algorithms. By contrast, in real crystallography experiments

the background recorded in each diffraction pattern is quite

high and is often comparable to the strength of the measured

Bragg peaks. Statistical noise in the background leads to

significant intensity differences between neighboring pixels.

Furthermore, the integrating detectors used at XFELs do not

count incoming photons but rather accumulate the charge

deposited in a single femtosecond-duration exposure. Accu-

mulated charge including intrinsic electronic noise sources is

not directly converted to individual photon counts but esti-

mated after the detector is read out. Experience shows that

compression of experimental SX diffraction data rarely

reaches a compression factor better than 5 using lossless

algorithms.

To capture these challenges, we selected four representative

SX datasets covering a range of detector technologies (both

counting and integrating), photon sources (including

synchrotron and FELs) and varied sample-delivery methods.

These methods include tape drive (Henkel et al., 2023;

Zielinski et al., 2022), lipidic cubic phase (LCP) jet (Weierstall

et al., 2014) and gas dynamic virtual nozzle (GVDN) jet

(DePonte et al., 2008). The dataset specifics are enumerated in

Table 1. Notably, three of the datasets listed are available for

download from the CXIDB (Maia, 2012), and the associated

code, deposited in GitHub (https://github.com/galchenm/

binningANDcompression.git), facilitates the examination of

all compression methods detailed in this study. The selection

of tested samples (Table 1) is purposeful, aiming to evaluate

diverse algorithms across different unit cells. Detailed unit-cell

parameters and space groups can be found in Table S1 of the

supporting information.

These test cases cover a representative sample of current

protein crystallography datasets, including cryo-crystal-

lography, where the background is high and a counting

detector is usually used (similar to the second test dataset). In

our discussion, we have selected comparisons between data-

sets that we found to best illustrate the challenges posted for

different algorithms based on our practical experience

working with different compression schemes and datasets.

This avoids the combinatorial explosion of testing all algo-

rithms against all datasets, enabling us to focus our attention

on the key issues rather than presenting large tables of

exhaustive comparisons.

3. Results

3.1. Lossless compression

Lossless compression approaches are commonly used for

compressing scientific data. By definition, no information is

lost and the original data can be restored verbatim. The only

question is therefore the achievable compression rate (CR)

and speed, which are both highly dependent on the statistical

properties of the data to be compressed.

We observe that lossless compression schemes vary signifi-

cantly in effectiveness depending on the experimental SX data

to which they are applied. From our sample datasets, two

extreme cases for lossless compression were the EIGER 16M

detector and the AGIPD. The EIGER 16M is a counting

detector that registers zero counts without incident photons

and integer values corresponding to the number of photons

incident on a pixel. On the other hand, the AGIPD is an

integrating detector with three different gain stages for which

calibrated data are stored in a floating-point format, and the

value in a pixel might be even negative due to the subtraction

of non-constant dark signal. For integer data (EIGER 16M,

CS-PAD or AGIPD rounded to integer values), compression

ratios of higher than 4 can be achieved using zstd or bzip2, and

in some cases can be higher than 10. Commonly available in
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Table 1
Datasets used for the different tests.

Facility
(beamline)

Energy of
X-rays
(keV) Detector

Data
type

Sample
delivery

Background
level Samples

PDB entry,
CXIDB ID Reference

Petra III (P11) 12 EIGER2 16M
(counting, photons)

Integer Tape drive Low Lysozyme,
lactamase,
ferritin, MPro

– Unpublished

SwissFEL (Alvra) 4.57 JUNGFRAU 16M
(integrating, photons)

Integers LCP High Thaumatin 6s19, CXIDB 104
(runs 12–41)

Nass et al. (2020)

LCLS (CXI) 9.4 CS-PAD 2.3M

(integrating, ADUs)

Integers GDVN Moderate Lysozyme 4et8, CXIDB 17

(runs 305–396)

Boutet et al. (2012)

EuXFEL (SPB) 9.3 AGIPD 1M
(integrating, ADUs)

Floating
point

GDVN Moderate Lysozyme,
granulovirus

6ftr, CXIDB 98
(runs 96–98)

Yefanov et al. (2019)
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HDF5, gzip compression (level 6) demonstrates quite good

results. Conversely, the achievable compression ratio for

floating point type data (AGIPD detector) reaches only 1.3

with gzip level 6.

A complete table with the results of the lossless compres-

sion algorithms tested against our reference datasets can be

found in Table S2. We observe that the conversion to photons

(integers) is an important factor in determining compression

efficiency even if this conversion is itself a form of lossy

compression, as expected.

Another important parameter for lossless compression is

speed, which is especially critical for online data processing

and real time compression (Fig. S1 of the supporting infor-

mation). The tests were performed using blocks of 1000 frames

from the two extreme cases above: EIGER 16M and AGIPD

1M detectors. The results indicate that most of the tested

compression algorithms demonstrated similar performances,

with the exception of bzip2, which usually produces the best

compression ratio. But the best compromise of the compres-

sion/decompression speed versus compression ratio was

observed for the blosc, zstd and bit-shuffle algorithms. For

more information, see Fig. S1.

3.2. Rejection of non-hits (vetoing)

In serial crystallography, it is common that not all detector

frames contain crystal diffraction. This is due to the sample

being passed across the X-ray beam and intersecting with the

beam at random. Whether any individual detector frame

contains diffraction is a matter of chance. The hit rate, namely

the fraction of measured frames containing useful crystal

diffraction, is one of the important characteristics of an SX

experiment and is related to the sample concentration, flow

rate and relative size of the X-ray beam, among other factors.

In practice, the hit rate during experiments is frequently rather

low, typically ranging between 0.1 and 10%. This observation

leads to the obvious conclusion that the volume of data can be

reduced by discarding data frames without any crystal

diffraction.

The urgent question is how to save collected data: do we

need to store only frames containing obvious crystal diffrac-

tion, or should all the data be retained? Could we expect that

more advanced data-processing algorithms could help to

obtain better results in the future? To answer these questions,

we re-processed the first high-resolution SFX dataset

measured in 2011 (Boutet et al., 2012) using a recent SX

processing pipeline (CrystFEL version 0.10.1 and Phenix

version 1.13). This reprocessing was performed in three

different ways.

(1) Using the data as deposited at the CXIDB for the

original paper (third row in Table 1).

(2) Repeating processing from raw data archived to tape for

all measured data using modern detector calibration and hit-

finding methods applied to all data frames and re-processed

with the new algorithms.

(3) Repeating processing as described in (2), but using only

the same data frames as deposited for the original paper.

The structure refinement of reprocessed data were

performed with phenix.refine (Phenix version 1.13) with

parameters such as ‘xray_data.high_resolution = 1.6’ and

‘xray_data.low_resolution = 20’ using PDB entry 6ftr

(Wiedorn et al., 2018) as the search model. The results are

summarized in Table 2.

From Table 2 we can see that the original paper reported

lower-quality results than after any re-processing of the data

performed now. Note that the results in Table 2 are limited by

the geometry of the experiment – the resolution of 1.49 Å

corresponds to the corners of the detector (Fig. S2). Deter-

mining the resolution cut-off point is primarily a subjective

process. However, we consider all the quality metrics

mentioned above in order to reach a reasonable compromise.

The reconstructed electron density and the structural model

between the original and the re-processed data are shown in

Fig. 1 (additional examples can be found in Fig. S3). One

example given (Asp52) is an active-site residue essential for

the enzyme mechanism of lysozyme (Held & Van Smaalen,

2014). Re-processing data results in electron density maps that

allow us to resolve alternative conformations of Asp52, which

allows more accurate interpretation of biological function.

The quality improvement is not surprising since Boutet et al.

(2012) reported the first-ever high-resolution SFX structure,

and data-processing software has significantly improved in the

following years. There are several reasons for the improve-

ment in result quality: new algorithms for indexing (including

indexing multiple crystals per pattern) and integration

implemented in CrystFEL (White et al., 2016), better knowl-

edge of the detector geometry (Yefanov et al., 2015) and a

different strategy for background subtraction (see Fig. S4).

Note that the re-processing of the deposited MTZ file (PDB

entry 4et8) using a more recent version of Phenix did not
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Figure 1
Comparison of electron density maps (2Fo � Fc, contour level � = 1.5) of
lysozyme in the original structure (PDB entry 4et8; 1.90 Å yellow mesh
and model) and the reprocessed data using all frames (1.49 Å, blue mesh
and model). (a) and (b) Active-site residue Asp52 could be modeled with
an alternative conformation using the reprocessed data. (c) and (d)
Another section of the structure around Tyr23 with the same maps as
described above (but with contour level � = 0.8) shows more detailed
density for the aromatic amino acids when using the reprocessed data.
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result in substantial improvements in the reconstructed

structure: published Rfree/Rwork = 0.229/0.196 versus Phenix

(version 1.20) Rfree/Rwork = 0.2109/0.1730 (additional

comparison of the results achieved using different versions of

Phenix are presented in Table S3). Based on this observation,

we can conclude that the significant improvement observed in

the reconstructed structure can be attributed to the processing

of actual diffraction frames.

An important observation is that an improved identification

of frames containing crystal diffraction (the ‘hit finding’ step)

did not lead to a significant improvement in data quality. This

is because hits are identified based on the simple metric of the

presence of Bragg peaks. Most of the additional patterns

found by repeating hit finding on all raw data only served to

identify frames containing weak diffraction corresponding to

small crystals or crystals hit by the tail of the X-ray beam.

Weak patterns provide less information than the strong

patterns found in the initial analysis, especially at high reso-

lution, thus contributing little to improving the quality of the

refined structure.

As a check, we reprocessed several other datasets from the

same beam time as well as from some other LCLS beam times

(not reported in detail here). Comparison with the originally

published datasets always demonstrated that new processing

would lead to significantly better results: we have observed the

improvement of the achievable resolution by up to 1 Å: from

3.5 to 2.5 Å in the case of a protein with a large unit cell

(article in preparation). However, repeating the selection of

data frames to process (hit finding) usually resulted in

marginal improvement, if any.

We therefore conclude that for strongly diffracting crystals

it is indeed a good compromise to save only frames with clear

diffraction peaks but to save these data in the ‘raw’ data

format so that improvements in detector calibration can be

applied from the raw data later.

For the case of weakly diffracting crystals, the situation is

more complicated because there is always the potential that

weakly diffracting frames may not be found (Ayyer et al.,

2015) and additional information may be identified in the

diffraction patterns after the experiment, such as diffuse

scattering outside of Bragg peaks (Ayyer et al., 2016). The

decision as to whether this justifies the retention of all weakly

diffracting data is one that each experiment team will have to

make.

3.3. Measuring less data

Measuring more data frames in an SX experiment generally

leads to higher-quality results due to averaging a greater

number of observations. But an associated question during

any experiment is: when have sufficient data been collected to

answer the scientific question at hand? Measuring only

enough data to answer a scientific question reduces experi-

ment time and minimizes the amount of data collected to only

the amount needed. Indeed, one of the common questions

during SX beam time is when to stop data collection. In order

to address this question, it is necessary to assess the impact of

reducing the number of measured frames (Tolstikova et al.,

2019; Zielinski et al., 2022).

The effect of measuring fewer data frames can readily be

checked for any single dataset by integrating progressively

smaller data subsets. Fig. 2 shows the quality metrics CC* and

Rsplit versus resolution as well as Rfree/Rwork metrics for the

different subsets of lactamase data measured during one of the

tape-drive (Beyerlein et al., 2017; Henkel et al., 2023; Zielinski

et al., 2022) SX experiments at the P11 beamline of PETRA3.

The initial dataset consists of 200 000 diffraction patterns and

is processed as smaller subsets equivalent to less measurement

time (Table 3). This dataset was collected as a single 25 min
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Figure 2
Data quality metrics CC* (from 0 to 1, higher is better) and Rsplit (up to 100%, lower is better) for the different fractions of the measured dataset of
lactamase (first row in Table 1). The insets show the histogram of achievable resolution for each pattern.



acquisition with an EIGER2 X 16M detector operated at

133 Hz.

The degradation in data quality with fewer patterns is rather

obvious from Fig. 2 and is to be expected given the fact that

redundant measurements improve statistical metrics such as

CC*/Rsplit and thus the quality of the obtained data. We can

conclude that while the strategy of limiting measurement time

is understandable, measuring more data always improves data

quality in line with known statistics. Therefore, the lossy

reduction idea to save space just by measuring fewer data is, in

fact, not optimal because it results in lower quality (see Fig. 2).

On the other hand, the improvement of the resolution

achievable using 1563 patterns (1/128) versus all 200 000

patterns is from 1.8 to 1.58 Å (0.22 Å difference). Therefore,

the decision to halt data acquisition should be made based on

the specific scientific inquiries of the study.

For the evaluation of data quality corresponding to the

number of indexed lattices, the stream after ambigator (White

et al., 2016) was split randomly at 1/4, 1/8, 1/16, 1/32, 1/64 and

1/128 and then subjected to scaling and merging. Phenix

(Adams et al., 2010) (‘phenix.reflection_file_editor’) was used

to add the same set of Rfree-flags to each resulting dataset, and

all datasets were refined with phenix.refine, using the same

starting model, parameters and resolution cut-off (as set by

the highest-resolution shell still containing useful data for the

1/128 dataset). Polygon (Urzhumtseva et al., 2009),

MolProbity (Davis et al., 2007) and Coot were used for

validation of the final model.

3.4. Storing only detectable Bragg peaks

Another proposed data-reduction scheme is to save only

the information around peaks found in each measured

diffraction pattern. The idea is that only Bragg peak infor-

mation affects the structure, so it should only be necessary to

save information around the Bragg peaks.

Fig. 2 shows that adopting such a strategy will limit the

achievable resolution. For this dataset, if we limit ourselves to

only using the found peaks, the achievable per pattern reso-

lution would reach 2 Å (5 nm� 1) for only a very small number

of patterns (see the resolution histogram in the inset), while

the entire dataset achieves a resolution of 1.58 Å according to

CC* cut-off decision. It is well known that redundant

measurement of weak data improves the overall resolution

achieved beyond the resolution, at which peaks can be

detected before integrating (Gati et al., 2017). As a conse-

quence, compression schemes based on saving full detector

data only around detectable peaks (Underwood et al., 2023)

will artificially limit the resolution. For example, by processing

the stream file from Table 2 to include only reflections from

each pattern found in the initial peak search, the resulting

resolution dropped to 1.62 Å and Rwork/Rfree increased to

0.236/0.292. In other words, we conclude that retaining data

from only detected peaks noticeably decreases the structure

quality.

3.5. Binning to lower the number of detector pixels

Reducing the pixel count by binning data to fewer pixels is

commonly used when it is known that the detector has a finer

pixel pitch than is strictly necessary for the current measure-

ments. For example, when the beamline is equipped with a

16M detector but a 4M detector would suffice for the

experiment, it is possible to bin the data after measurement.

Alternatively, if the detector is capable of selectively recording

a specific region of interest (ROI), and the beamline geometry

permits moving the detector closer to the sample, it becomes

feasible to save solely the designated small ROI. In both cases

the separation between Bragg peaks has to remain adequate

for data processing and the shape of the Bragg peaks need not

be resolved. For experiments with a monochromatic X-ray

beam, such minimum distance should be on the order of 5–10

pixels. Therefore, many datasets, especially for proteins with

small unit-cell parameters, can be binned.

Binned data (Table S4 and Fig. S5) indicate that 2 � 2 pixel

binning for the tested datasets measured with 16M detector

did not degrade the data quality for the samples we used, but

the data volume was reduced by a factor of 3–4. The one

caveat is that it might be more difficult to detect the peaks

after binning; therefore, we have developed a procedure in

which the positions of the peaks are found before binning,

recalculated into the coordinates of the binned image and

saved within the output HDF5 file. Those saved positions can

be later used for indexing.

3.6. Quantization of detector output

The quantization of data refers to the reduction of the bit

depth of the saved data to a lower number of discrete values,

reducing unnecessary precision in the stored values such as

remapping 32 bit integers to 16 or 8 bit values, or converting

floating point data to integers. In photon science, a common

form of quantization is the conversion of the electrical signal

to photon counts. This is performed in the electronics of

counting detectors (PILATUS, EIGER), where each pixel

directly counts the number of incident photons at high speed.

As previously noted, such data compresses well using lossless

compression schemes compared with data saved in floating

point format. And, in general, data with fewer discrete values

compress better using most of the lossless compression

schemes.
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Table 2
Different processing of the lysozyme dataset from 2011.

Dataset Hits/indexed /crystals Resolution limit (Å) Rsplit/ Completeness Rfree/Rwork

Originally published results (CXIDB ID 17) 66442/12247/12247 1.9 0.158 (NA)/98.3% (96.6%) 0.229/0.196

Fully reprocessed all frames from raw data 108814/71488/137074 1.49 0.029 (0.15)/100% (100%) 0.189/0.168
Fully reprocessed same frames as original 66442/59070/123977 1.51 0.029 (0.14)/99.9% (97.87%) 0.195/0.172



Since counting detectors are not suited for the short pulse

lengths found at XFEL sources, integrating detectors that

integrate the deposited charge in each pixel during the

exposure are used. Converting the deposited charge into the

number of incident photons helps to reduce the data precision

required; however, this operation relies on good calibration of

detectors and is not necessarily a trivial task, there is a

tendency to save actual digitizer readout for later photon

conversion.

Our tests on quantization indicate that reducing the data

precision of integrating detectors can be highly effective at

enabling data compression. Results are presented in Table S5,

where we test not only conversion to photons but also more

aggressive reduction of data precision. For the AGIPD

detector, even a quite high quantization level [1024 analog-to-

digital units (ADUs) per quantum, which corresponds to

approximately 14 photons at 9 keV] still achieves reasonably

good data quality: Rfree/Rwork of 0.1753/0.1543 with a

compression ratio of 64, compared with Rfree/Rwork of 0.1670/

0.1497 for the original data.

To assess the impact of quantization in comparison with the

previously outlined strategy of collecting a reduced dataset,

we conducted the following test: quantization to 64 and 1024

ADUs was applied for both the entire dataset (comprising

190 000 diffraction patterns) and its 1/16 fraction (refer to

Table S6 and Fig. S6). Although the volume of the 1/16 subset

was nearly equivalent to the volume of the data rounded to

1024 ADUs, the data quality was superior in the latter dataset.

This is evident in the higher achievable resolution and

improved statistics even at lower resolutions (see Fig. S6). The

findings demonstrate that prioritizing the acquisition of a

sufficient number of patterns is more important than precise

recording of the diffracted intensities.

3.7. Non-uniform quantization

An even higher compression ratio can be achieved by

selecting the levels for quantization in a non-uniform way.

Diffraction from crystals usually consists of some background

(typically smooth) and rather sharp Bragg peaks. As

mentioned earlier, a high dynamic range is usually needed to

record such diffraction, with the intensity of the Bragg peaks

varying from rather high (at low resolution) to very low (at

high resolution). However, though single photon counting

may be useful in weak reflections, it is not necessarily needed

in the bright Bragg peaks. For this reason, special X-ray

detectors (AGIPD, JUNGFRAU, ePIX) were developed that

have variable gains per pixel to be able to record single

photons at low flux as well as very high intensities (up to

10 000 photons per pixel) at high flux in a single image.

The tolerable relative error of the peak intensity drives the

required precision. Thus, at low photon counts the quantiza-

tion levels are rather dense, while at the higher fluxes, the

levels are comparatively sparse, in proportion to the counting

noise. In the measured data this can be achieved by keeping

the value of just a few of the most significant bits (starting
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Figure 3
Plot of quality metrics Rsplit and CC* for the original data of thaumatin (see Table 1), binned and rounded to 1, 2, 3 of the most significant bits. Under the
plot, the histograms of found peak intensities over 1/d (peakograms) for different datasets are presented.



from the first non-zero bit) in the integer representation of the

measured intensity. For positive values, the simplest method is

to preserve the most significant bit with the value of ‘1’ and set

all other bits to 0. To obtain better results, rounding to the

nearest value of 1, 2 or 3 most significant bits is utilized instead

of truncation (see the examples in Table S7). The histograms

in Fig. 3 provide an illustrative example of pixel intensities at

different distances from the center of the detector. Note that

this rounding technique alone does not decrease the data size.

However, the modified data become highly compressible using

various lossless compression algorithms (as indicated in

Table 4).

The proposed compression applied to the data discussed

previously had almost no influence on data quality metrics

such as CC* or Rfree/Rwork (see Table S8). Therefore, for this

test, we have chosen the technique that is much more sensitive

to data quality: SAD. We have used the thaumatin dataset

(second row in Table 1). The structures for different datasets

after applying lossy compression algorithms of thaumatin

were solved by SAD phasing and refinement using the Crank2

pipeline (Skubák & Pannu, 2013) with default settings. As can

be seen from Fig. 3, the quality of the data did not degrade

much after applying rounding to several of the most significant

bits. The results presented in Table 4 demonstrate that even

the SAD data can still be used successfully if only two

significant bits are saved (more statistics can be found in Table

S9 and the reconstructed structures in Fig. S7). At the same

time, saving just the single most significant bit is not enough

for the same dataset – as can be seen from the last row of Table

4, the Rfree/Rwork are very high in this case.

Retaining only the most significant bits is quite similar to

the way the data are represented by floating-point numbers,

thus we have also represented the integer data in a floating-

point-like way – we have converted the 32 bit integers into

8 bit floating-point values: one bit for the sign, 5 bits for the

exponent and 2 more bits for the mantissa. From the numbers

in Table 4, one can see that such conversion allows one to

compress data even better. One very important benefit of the

proposed lossy compression scheme is its speed. The trunca-

tion of the least significant bits requires very little computa-

tion. Indeed, the conversion may lend itself to implementation

directly in hardware, such that it could even be realized within

the detector.

4. Discussion

Several of the data-reduction techniques described above are

already in use by various research groups, indicating some

level of acceptance of the compromises involved. For example,

users typically copy only diffraction patterns that contain

diffraction (hits) after the SFX experiments at LCLS, SACLA

or the European XFEL. This is done in the knowledge that the

facility stores the entire raw data for 10 years. However, even

at synchrotron facilities such as APS or ESRF, raw data are

ultimately deleted after some time. We often collect data using

the JUNGFRAU 1M detector at 1 kHz speed, resulting in up

to 50 TB of raw files per experiment. After hit-finding and

lossless compression, we copy only 2–5 TB of data and delete

everything else. This strategy does not adversely affect data

quality, as justified by our tests.

For multi-megapixel detectors such as the EIGER 16M or

JUNGFRAU 16M, binning data to a smaller detector is

effective provided the crystal unit cell permits sufficient

separation between Bragg peaks. We use this approach toge-

ther with saving only hits for our SSX experiments performed

at the P11 beamline of the Petra III synchrotron, where we

routinely achieve a compression ratio of 5–7 from binning and

non-hits rejection on top of the compression factor of 5–6

achieved by the bit-shuffle filtered LZ4 compression used by

Dectris or gzip. This gives a total compression ratio of up to 40

times compared with saving raw data, with no noticeable

degradation in scientific output. Currently, the optimization of

hit-finding parameters requires some human interaction, but it

should be possible to eventually automate this step.

Even higher CRs are possible by quantizing the detector

output into fewer discrete levels. This method works well for

SX data because SX relies on statistical measurements: in

effect, it is more important to measure more patterns than to

measure the intensity in each pattern more precisely. This is

because the error in the determination of the exact integrated

intensities of the Bragg peaks is rather high for SX, mostly due

to the unknown partiality and possible error in the determi-

nation of the precise crystal orientation (Kirian et al., 2010;

White, 2014; Spence, 2020). Additionally, one can perform the

quantization in a non-linear way to have finer increments at

low intensity and coarser increments for strong signals

following noise on counting statistics. In this way, the low

signal data are saved almost without losing the precision which

is very important for data measured at high resolution close to

the detector edges.
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Table 4
Lossy compression of SAD data of thaumatin.

CR achieved using gzip (compression level 6) and shuffle.

Type CCano Rsplit/CC* Rwork/Rfree

No. of

residues CR

CR,

8 bits

Raw 0.327 5.97%/0.998 0.223/0.282 209 1 –
Binned 0.320 6.35%/0.998 0.217/0.283 208 5 –
Binned, 3 bits 0.247 6.65%/0.998 0.238/0.299 205 32.18 36.34

Binned, 2 bits 0.271 6.81%/0.998 0.270/0.334 205 38.84 45.06
Binned, 1 bit 0.251 7.94%/0.998 0.531/0.551 181 49 59.28

Table 3
The impact of the number of measured diffraction patterns on the final
data quality.

Different fractions of the original lactamase dataset (200 000 patterns) were
processed.

Part No. of patterns/hits Indexed patterns/crystals Rwork/Rfree

All 199606/198088 187826/505329 0.1561/0.1881
1/4 49902/49531 46947/126301 0.1576/0.1866
1/8 24951/24759 23477/63191 0.1603/0.1936

1/16 12475/12387 11759/31731 0.1688/0.1944
1/32 6238/6193 5888/15859 0.1728/0.2048
1/64 3119/3098 2929/7895 0.1794/0.2122
1/128 1559/1550 1450/3968 0.1932/0.2202



Conversely, saving data only around found Bragg peaks

results in a significant loss of data quality. The final model

resolution often extends beyond found peaks due to the

presence of a weak signal at Bragg peak locations in individual

diffraction patterns which nevertheless integrates above noise

levels when many observations of the same reflection are

averaged. Alternatively, saving only predicted peak positions

necessitates flawless indexing – a requirement that, as illu-

strated in this paper, is not consistently met. Moreover, relying

solely on the preservation of predicted peaks fails to leverage

the advantages offered by emerging indexing algorithms.

Similarly, reducing the measurement time and, thus, the

number of measured diffraction patterns reduces data

following statistics: fewer measured patterns means fewer

observations of each reflection and thus a reduction in signal-

to-noise of the merged reflection intensity.

So far, this discussion has considered only methods to

reduce the volume of raw data frames by compressing or

rejecting individual diffraction patterns. Even better data

reduction can be achieved if the original diffraction patterns

are discarded and only intermediate calculation results are

retained. For example, in rotational crystallography it is

common to look at only the resulting merged reflection data

and the original diffraction patterns are almost never revisited.

Similarly, efforts are underway in SX to perform all indexing

and integration in real time, obviating the need to ever save

individual diffraction patterns. If this can be done, the

compression ratios achieved can be enormous – instead of

many terabytes of raw files, less than 10 MB are saved. This

approach is usually applied during or after the experiment

(minutes to months delay). In this case, however, it is not

possible to revisit the original data at a later time. Such

approaches can only be adopted when there exists a very well

established pipeline, and all calibration factors, including the

geometry of the experiment (Yefanov et al., 2015) and the

detector response, are very well known. Although this is not

yet the case for SX experiments, an investment in robust

geometry and detector calibration combined with an estab-

lished analysis pipeline could significantly reduce saved data

volumes in the future. It could be applied if the costs for

eventually re-doing the experiment are lower than those for

the storage of data.

However, we have also shown that software improves over

time and careful reprocessing of previously collected data

might deliver much better results at a later point in time. For

example, we showed that reprocessing the lysozyme dataset

measured in 2011 leads to a much higher resolution than

originally obtained, provided the raw frames containing

crystal diffraction were available. Even some structural

features, that were not observed during the initial analysis,

were resolved after the reprocessing. The question of how

much data should be stored and for how long is undoubtedly a

matter of debate that will continue for quite some time.

Finally, we note that the compression schemes described in

this paper should also be applicable to protein crystallography

with electron or neutron diffraction. Some of the methods can

be useful for other techniques that use diffraction and 2D

detectors. However, as each analysis chain is different, it is

hard to generalize and the effect of compression or data

reduction on each technique should be considered separately.

5. Conclusions

Although it is currently still technically feasible to save all

detector output, the cost of doing so is continually growing as

X-ray detectors become faster and the number of pixels is

increasing. At some point, it will therefore be necessary to

decide what data to retain. Our analysis here in the context of

SX shows that lossless compression alone is of some use in

reducing data volumes, but is highly dependent on the

detector and experiment and is ultimately limited in the CRs

that can be achieved.

To assess the effect of lossy compression schemes, we used a

set of data metrics capable of assessing the loss of information

due to the application of various compression schemes. This

required a careful understanding of the specific analysis

techniques but is nevertheless an essential step in evaluating

different compression algorithms. We checked metrics such as

data quality and reproducibility (signal-to-noise ratio, Rsplit,

CC*), the quality of the reconstructed structure factors

(Rfree/Rwork), and the possibility to use the anomalous signal

for ab initio structure reconstruction (SAD phasing). It is of

utmost importance to employ each of the data quality metrics

mentioned in a proper manner. For example, one has to ensure

that the achievable resolution is not limited by the geometry

of the experiment (detector edge resolution). Failure to

address such limitations may render certain quality metrics

insensitive to potential degradation in data quality.

We find that saving the raw detector frames containing

strong crystal diffraction is highly effective when it comes to

reproducing results at a later stage. Discarding blank frames

has little effect on data quality even if some of those ‘blank’

frames may be found to contain weak diffraction using more

advanced algorithms developed at a later time. Conversely,

retaining information from only locations of found Bragg

peaks in each pattern has a significantly detrimental effect on

data quality.

Lowering the number of pixels in the detector is an obvious

saving of data space provided it is compatible with the crystal

being studied. Where data are saved in floating point ADUs,

quantization to integer numbers of photons is highly effective

in reducing data volumes as the additional precision of sub-

single-photon counting accuracy is not required for SX

measurements. Also, compression of the dynamic range of

measurements in a non-linear manner following statistical

noise is highly effective, so that weak reflections are still

accurately measured, but there is less precision in the

measurement of strong intensities. This is achieved in practice

by saving only several of the most significant bits of the values

measured by each pixel. In this way, the low signal data are

saved almost without losing the precision, which is very

important for data measured at high resolution close to the

detector edges. In principle, such a scheme is similar to the

multiple-gain mode used in modern detectors for capturing
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high dynamic range signals while keeping high sensitivity for

low signals but applied with many more levels in the software

after the measurement is made. This data-reduction approach

is very computationally efficient, therefore it might be

implemented inside new detectors.

By combining the above data-reduction methods including

real time hit finding, binning, quantization to photons and

non-linear reduction of the dynamical range, it should be

possible to continue retaining individual detector frames for

later study while also reducing the volume of data which must

be permanently retained at facilities or user groups worldwide.
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