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This paper uses deep learning to present a proof-of-concept for data-driven

chemistry in single-molecule magnets (SMMs). Previous discussions within

SMM research have proposed links between molecular structures (crystal

structures) and single-molecule magnetic properties; however, these have only

interpreted the results. Therefore, this study introduces a data-driven approach

to predict the properties of SMM structures using deep learning. The deep-

learning model learns the structural features of the SMM molecules by

extracting the single-molecule magnetic properties from the 3D coordinates

presented in this paper. The model accurately determined whether a molecule

was a single-molecule magnet, with an accuracy rate of approximately 70% in

predicting the SMM properties. The deep-learning model found SMMs from

20 000 metal complexes extracted from the Cambridge Structural Database.

Using deep-learning models for predicting SMM properties and guiding the

design of novel molecules is promising.

1. Introduction

Single-molecule magnets (SMMs) are metal complexes that

exhibit magnetic relaxation behaviour like bulk ferromagnets

as single molecules (Gatteschi et al., 2006; Winpenny & Aromı́,

2006). Molecular-sized nanoscale magnets are expected to find

applications in high-density memory and quantum-computing

devices (Leuenberger & Loss, 2001; Eliseeva & Bünzli, 2011).

The effective activation energy barrier (Ueff) is typically used

to assess magnetization reversal in SMMs (Woodruff et al.,

2013). Owing to the relationship shown in equation (1)

between Ueff, zero-field splitting parameter D and total spin

quantum number S of the molecule (Zhang et al., 2013), D and

S are essential keywords in SMM molecule designs:

U ¼ Dj j S2: ð1Þ

Although early strategies concentrated on multinuclear

complexes of transition metals, such as those represented by

the Mn12 cluster (Sessoli et al., 1993), mononuclear lanthanide

complexes now play a central role (Zhang et al., 2013; Dey et

al., 2018). Ab initio calculations have demonstrated that highly

axial [DyO]+ ions in lanthanide metal complexes display Ueff

values above 3000 K (Ungur & Chibotaru, 2011). Molecules

with Ueff values of approximately 2000 K have been reported

(Randall McClain et al., 2018). However, it is exceedingly

challenging to fabricate molecules that exhibit high Ueff values

because the Ueff of traditional SMMs is typically in the range

of tens to hundreds of kelvin (Tang & Zhang, 2015; Liu et al.,

2015; Parmar et al., 2021). Ueff is affected by quantum

tunnelling and antiferromagnetic interactions, and achieving

control over the structure of lanthanide metal complexes in

crystals is challenging. Currently, there are no established

guidelines for SMM design.
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In the theoretical field, discussions using magnetic proper-

ties obtained from the complete active space self-consistent

field (CASSCF) method (Roos & Malmqvist, 2004) using the

Molcas program (Aquilante et al., 2010) provide insight into

the origin of SMMs. In addition, some techniques leverage the

CASSCF method to estimate Ueff directly (Aravena, 2018; Yin

& Li, 2020). Nevertheless, these methods require substantial

computational resources and time, and selecting computa-

tional conditions is a significant bottleneck. These algorithms

are unsuitable for extensive calculations that require a vast

search space, such as molecular design, because they have only

been utilized to interpret experimental outcomes.

Recently, interest in data-driven chemistry and theory-

predicate research, including machine learning, has grown

(Engel, 2006; Mitchell, 2014). The Chemical Reviews journal

released a special issue on ‘Machine Learning at the Atomic

Scale’ (Ceriotti et al., 2021). The Tsuda group at RIKEN

provided instances of newly designed fluorescent materials

successfully developed using AI and density functional theory

(Sumita et al., 2018; Sumita et al., 2022). However, data-driven

research at the laboratory level has remained unsuccessful.

Machine learning of metal complexes has predominantly

focused on investigating hexacoordinated and tetra-

coordinated complexes (Nandy et al., 2021). However,

addressing the structural changes caused by the spin multi-

plicity and similarity definitions is crucial for effectively

performing machine learning on these complexes. Thus,

extending conventional organic molecule machine learning to

all elements is insufficient (Janet et al., 2019). It is unclear what

AI can do in the SMM field, in which lanthanide ions and

metal complexes with complex structures play central roles.

Here, we concentrate on the SMM research and present a

proof-of-concept for the data-driven chemistry of lanthanide

metal complexes and metal complexes with intricate struc-

tures. A dataset was compiled from papers on salen-type

SMMs from the preceding decade, and deep learning was used

to predict SMM behaviour. The SMM characteristics were

predicted using approximately 20 000 crystal structures of the

Schiff base metal complexes extracted from the Cambridge

Structural Database (CSD). Although many statistical inves-

tigations (Duan et al., 2022) and systematic reviews (Zhang et

al., 2013; Dey et al., 2018) of SMMs have been conducted, this

is the first report of deep learning on the molecular structures

of SMMs. From the CSD, numerous molecules predicted to

display SMM behaviour did indeed exhibit SMM behaviour,

thereby demonstrating the capacity of the model to under-

stand SMM features and ‘discover’ SMMs. Such indications

imply that implementing AI in SMM research could introduce

a novel paradigm shift akin to AlphaGo’s AI (Silver et al.,

2016) that surpassed human players.

2. Methods

2.1. Datasets

Molecules reported as SMMs comprise numerous chemical

species like phthalocyanine complexes, metallocenes and

polyoxometalate complexes (Duan et al., 2022). Salen-type

metal complexes were selected as the focus of this study.

Salen-type ligands can be effortlessly synthesized from alde-

hydes and amines to form complexes with various 3d and 4f

metals. Several SMM structures have been reported, including

mononuclear, binuclear and 3d–4f multinuclear complexes

(Liu et al., 2015). From these varied structures, it is expected

that structures specific to SMMs can be identified.

The dataset was created using approximately 800 papers

from 2011–2021 that were found using the keywords ‘salen +

SMM’ using Google Scholar. Data on the crystal structures

and whether they exhibited SMM behaviour were collected

from these studies, and a dataset was created. Non-SMM

molecules were defined as those that did not exhibit magnetic

relaxation behaviour according to AC magnetic susceptibility

measurements. Tunnelling effects are suppressed under an

appropriate DC magnetic field, increasing the likelihood of

SMM behaviour. If the measurement results exist under both

zero and DC magnetic fields, priority is given to the results

under the zero magnetic field.

CIF files were obtained from the CSD (Groom et al., 2016).

The crystal structures were verified using the Mercury crystal

drawing software (Macrae et al., 2020). The molecular struc-

tures were then converted to molecular structure files (XYZ

files) by excluding non-pertinent molecules such as crystal

water and were utilized as coordinate data. The explanatory

variables were the molecular structures retrieved from the

crystal structures, while the objective variable was the SMM

behaviour.

2.2. Input representation

The input representations of the molecular structures

typically include molecular descriptors, graphs and SMILES

(Elton et al., 2019). This study utilized 3D images (voxels) as

input representations to represent the metal complexes.

Although their memory-intensive requirements compared

with other input representations, voxel usage is expected to

retain the 3D information of the molecules. Their use has been

demonstrated for compounds of different sizes and structures,

including organic molecules, inorganic solids and proteins

(Ryan et al., 2018; Amidi et al., 2018; Kuzminykh et al., 2018; Li

et al., 2021; Park & Seok, 2022). These results represent the

structural features of metal complexes with different central

metals and structures.

The dimensions of the voxels were set to 64 � 64 � 64, with

the element type represented by the assigned colour (RGB

value) for each element. One side of the voxel was established

at 12 Å to preserve the molecular structure. 3D molecular

images were created by placing spherical voxels at 3D atomic

coordinates obtained from the XYZ file, and 3D molecular

images were created (Fig. 1). A balance between voxel reso-

lution and computational resources must be achieved, and an

appropriate voxel size must be determined via trial-and-error

experimentation.

2.3. Model architecture

A 3D convolutional neural network (3D-CNN) was used as

the deep-learning model to create a binary classification
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model that predicts whether a molecule is an SMM based on

its molecular structure (Fig. 2); this multilayer neural network

consists of convolutional layers and fully connected layers.

The input image is output as a scalar value between 0 and 1 by

the last fully connected layer after the 3D convolutional layer

extracts the 3D image features (Jogin et al., 2018). In this

study, SMMs were set to 0 and non-SMMs to 1; however,

which was 0 did not affect the results. ResNet with residue

connections (He et al., 2019) was selected as the network

structure owing to its impressive image classification accuracy.

ResNet can effectively construct deep CNN models with many

layers through residual connections between the convolu-

tional layers. The model comprises multiple Res-blocks

connected via the GAP layer to fully connected layers. The

Res-blocks employ the activation function pre-positioning

type, with the ReLU layer positioned before the confluence.

Furthermore, a bottleneck-type structure was adopted for

these blocks to reduce computational demands. Batch

normalization (Bjorck et al., 2018) and a 20% dropout (Gal &

Ghahramani, 2015) were used to prevent overlearning. The

ReLU function (Agarap, 2019) was used as the activation

function, and the sigmoid function (Cybenko, 1989) was used

as the final layer.

2.4. Model training

As the dataset used in this study was unbalanced data with

SMM:non-SMM of 2:1, undersampling (Mohammed et al.,

2020) was used to reduce the SMM data to eliminate data

unbalances. The dataset was split 6:2:2 into training, validation

and test data. The CNN was trained with the Adam optimiser

using AMSGrad (Reddi et al., 2019) with hyperparameters " =

1 � 10� 7, �1 = 0.9 and �2 = 0.999. The learning rate was

reduced from an initial value of 1� 10� 2 to 1� 10� 5 using the

cosine reduction rate (Loshchilov & Hutter, 2016). The batch

size was set to eight to account for GPU memory. The loss

function used was the cross-entropy error (Bishop, 1995),

which was trained to minimize. The correct response rate and

AUC were used as model evaluation indices. Data augmen-

tation (Shorten & Khoshgoftaar, 2019) was performed during

training to reduce over-learning. As the molecular structure

was obtained in atomic coordinates, voxels were generated

after rotation, scaling and translation to 3D coordinates. By

performing data augmentation, the model is expected to

prevent overlearning and acquire rotational and translational

invariance. The CNN was trained for 1000 epochs. These

hyperparameters were derived by trial and error.

2.5. Software and libraries

All the programs were implemented using Python 3.

TensorFlow 2.0 (Abadi et al., 2016) was used as the machine

learning library. The NumPy (Harris et al., 2020) and SciPy

(Virtanen et al., 2020) libraries were used for coordinate

transformation and voxel generation. Open Babel (O’Boyle et

al., 2011) was used to transform the molecular structure files,

and CSD Python API (Moghadam et al., 2020) was used to

obtain and manipulate the crystal structures. The model

training was performed on a Windows 10 OS workstation with

an Intel Xeon E5-2620 v3 (12 cores, 24 threads) CPU, 128 GB

RAM and a GPU (NVIDIA Tesla K40, 12GB).

3. Results and discussion

3.1. Dataset overview

A histogram of the metal complexes is presented in Fig. 3 to

determine the composition of the molecules included in the

dataset. This classification is based on seven categories: (i)

complexes consisting of a single lanthanide ion, (ii) homo-

nuclear lanthanide ion binuclear complexes, (iii) homonuclear

transition metal binuclear complexes, (iv) 3d–4f complexes,

(v) 4d–4f or 5d–4f complexes, (vi) complexes consisting of a

single transition metal, and (vii) actinide ions (uranium).

Histograms illustrating the number of atoms and nuclei in the

SMMs and non-SMMs are provided in the supporting infor-

mation (Figs. S1 and S2).

Figs. 3, S1 and 2 indicate that the differences were not

pronounced depending on the number of atoms or nuclei.

Histograms depicting complexes containing lanthanide ions

show that those containing Dy ions display a significant

proportion of SMM properties (Fig. S2a), consistent with

several previous results (Zhang et al., 2013; Dey et al., 2018).
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Figure 2
Conceptual diagram of SMM prediction. The CIF file was edited using
crystal drawing software such as Mercury. Crystal water contained in the
crystal was removed, and the structure of only the target complex
molecule was converted into an XYZ file. The XYZ file is converted into
voxels, and 3D-CNN predicts whether it is SMM or non-SMM.

Figure 1
Voxel diagram of the metal complex. Create a 64� 64� 64� 3 array and
specify the colour of each element [R, G, B] for the voxels within a radius
r centred on the atom position. [0,0,0] is specified for empty space. In
addition, the size of the sphere was changed for each element in
proportion to the ionic radius. It is an intuitive and highly versatile
descriptor, requiring no special pre-processing.

http://doi.org/10.1107/S2052252524000770
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Complexes containing Dy, Gd and Tb ions constituted a

significant proportion of the data. However, for the other

lanthanide ions, the quantity of data was minimal, and no

distinctions in the SMM properties due to elemental variations

were discernible. For the 3d–4f complexes, Dy–Zn complexes

are the most prevalent molecules with SMM properties, and

Dy–Cu, Dy–Ni and Tb–Zn complexes are also included.

Alternatively, Dy–d complexes are still prevalent in molecules

lacking SMM properties. However, note that Tb–Cu

complexes were the most common (Figs. S3 and S4). It is

challenging to use traditional machine learning to forecast

SMM properties because of the difficulty in identifying

differences by element or number of nuclei and the presence

of Dy complexes that do not exhibit SMM properties.

3.2. Learning results

The learning curve is illustrated in Fig. S5, indicating posi-

tive progress as the loss decreases with learning. The similarity

between the training and generalization errors suggests that

the deep-learning model is robust to unknown data. The final

accuracy and AUC were approximately 70% (Table 1). The

confusion matrix illustrated in Fig. 4 exhibits substantial

values for the diagonal components. Distinguishing SMMs

from molecular structures alone is challenging, even for the

human eye. Notably, the deep-learning model demonstrated

70% accuracy, and the prediction in this study was based solely

on voxel information generated from the type of element and

its positional relationship.

It is expected that enhancing the descriptors and refining

the learning model will result in improved accuracy. In parti-

cular, utilizing spin and orbital angular momentum is crucial in

magnetism. Previous studies have employed charge distribu-

tions and spin densities to obtain voxel information (Kuzmi-

nykh et al., 2018; Ghosh et al., 2019; Casey et al., 2020).

Quantum chemical calculations can determine these values.

However, such calculations require significant computational

time and resources when dealing with chemical species

containing transition and lanthanide metals. These calcula-

tions are unfeasible for studies involving hundreds or tens of

thousands of molecules, like in this study. In addition, it would

be desirable to compare the performance with the results

obtained using graphs, molecular descriptors and voxels.

However, numerous methods are inadequate for molecules

containing metal ions, necessitating the renovation of

programs. Unfortunately, this action was not performed in the

current investigation because of time restrictions. Further

studies are required to address this issue.

3.3. Visualization of learning results

Grad-CAM (Selvaraju et al., 2017) was used to visualize the

area of focus of the model for the inputs. The Grad-CAM

diagram indicates that the model is concentrated near the

central metal (Fig. 5). Notably, the model recognizes that the

central metal initiates magnetism in metal complexes. Fig. S6

demonstrates the successful and unsuccessful predictions, and

the model does not focus on significantly misguided areas,

even in failed predictions. Furthermore, this model is not

expected to focus on particular ligands or functional groups to

perform optimally in unfamiliar molecular structures.

In contrast, we expected to discover new structural

features that would go beyond the thinking of chemists;

however, for this study, we could only obtain the same

insights. The opaque nature of deep-learning predictions

impedes thorough analysis, leading to tentative conclusions.

However, commonly employed chemoinformatics techniques
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Table 1
Correct answer rate and AUC on training, validation and test data.

ACC AUC

Train 0.7250 0.8185

Valid 0.6875 0.7758
Test 0.7000 0.7269

Figure 4
Confusion matrix in test data.

Figure 3
Histogram of SMM and non-SMM molecules included in the dataset.
Blue indicates SMM molecules, and orange indicates non-SMM mole-
cules. (1) Complexes consisting of a single lanthanoid ion. (2) Homo-
nuclear lanthanide ion dinuclear complexes. (3) Homonuclear transition
metal dinuclear complexes. (4) 3d–4f complexes. (5) 4d–4f complexes or
5d–4f complexes. (6) Complexes consisting of a single transition metal.
(7) Complexes containing actinide ions (uranium).



[graph-neural networks (GNNs) and recurrent neural

networks (RNNs)] frequently lack visualization methods

compared with CNNs. This attribute of CNNs is advantageous

for property prediction, rendering it a potent technique in

fields lacking a comprehensive understanding of the reaction

mechanism, for example in protein–ligand docking and cata-

lysis studies.

3.4. Proof of SMM search with the CSD

Magnetic measurements were conducted in the solid state;

therefore, the SMM molecular design must account for the

molecular structure within the crystal structure. Predicting the

crystal structure of the metal complexes is necessary to design

SMM molecules from scratch. However, a method to achieve

this goal is yet to be established. Fortunately, the CSD

contains one million crystal structures, of which only a small

proportion have undergone AC susceptibility measurements.

Predicting the SMM behaviour of the crystal structures

registered in the CSD was validated as a model case for

designing SMM molecules using deep learning.

Approximately 20 000 crystal structures of metal complexes

containing Schiff bases were obtained using the program

ConQuest. Using the CSD Python API, the molecular struc-

tures of the metal complexes were extracted from the crystal

structures by removing crystalline water and other compo-

nents. The SMM behaviours of the molecular structures

predicted by the learned model are shown in Fig. 6. The focus

was on the top 10 molecules predicted to be the most SMM-

like and the bottom 10 predicted to be the least SMM-like. The

original publications were searched using CCDC numbers,

and the pivotal metal and magnetic measurements are

summarized in Tables 2 and 3. Numerous molecules predicted

to be SMMs were confirmed to exhibit SMM behaviour.

Conversely, many molecules predicted to be non-SMMs have

not been measured for AC susceptibility.

Many of the predicted SMM molecules had structures

comprising multinuclear Dy complexes. According to equa-
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Figure 6
Histogram of predicted SMM properties for approximately 20 000 molecules obtained from the CSD. The closer the frequency is to 0, the more SMM-
like it is predicted to be.

Figure 5
Visualization of CNN prediction results using Grad-CAM. The red blocks
in the image are the parts that make a significant contribution when CNN
makes predictions. It is obtained as voxels 64 � 64 � 64 in size, but was
divided into 64 2D images of 64 � 64 for plotting.



tion (1), a larger total number of spins in the complex leads to

a more significant value of Ueff. This approach is similar to

earlier approaches that enhance the spin multiplicity S using

multinuclear complexes of d-metals. Previous studies have

shown that symmetry reduction occurs with increased nuclei,

and the highest Ueff value was 40 K for ZEZYIO (Lin et al.,

2012). This study conducts learning based on the presence or

absence of SMM behaviour, with no consideration given to the

height of Ueff for simplicity. However, to identify the more

promising SMMs, a dataset that considers Ueff should be able

to select the best SMMs.

It is important to emphasize that the molecular structure

data for the 20 000 molecules used in this study did not include

the data used in training. Moreover, while salen-type ligands

were prominent in the training phase, a more comprehensive

range of ligands (Schiff bases) was included in the 20 000 data

points. Thus, the deep-learning model solely predicted

unknown molecules without knowing the answers, ultimately

selecting the SMM molecules from the CSD. For instance,

novel SMM molecules may be uncovered by re-synthesizing

molecules that have been predicted to be SMMs but have not

been subjected to AC susceptibility and magnetic measure-

ments. The deep-learning-based SMM research model estab-

lished in this study serves as a practical data-driven chemistry

framework.

As referenced in previous research (Sumita et al., 2018,

2022), for AI-assisted molecular design, it is recommended to

use data-independent approaches that involve both (1) AI-

generated molecular structures and (2) prediction of proper-

ties via quantum chemical calculations. AI generates extensive

candidate molecules, ranging from tens to hundreds of

millions, and property predictions are performed via large-

scale supercomputing. The latter is facilitated using super-

computers to predict computational properties. Electronic

structure calculations of organic molecules in solution are

highly accurate and have successfully controlled UV absorp-

tion and created fluorescent molecules (Sumita et al., 2018,

2022). However, solid-state studies on the magnetism of metal

complexes encounter two challenges. The first is the obstacle

in predicting the crystal structures of metal complexes

(Desiraju, 2013; McDonagh et al., 2019). The second is the

challenge of simulating magnetism. Novel breakthroughs must

be made to resolve these issues. As a compromise, this study

designs SMM molecules using molecular structures from a

crystal database and data-driven prediction by deep learning.

However, the data are limited, and the accuracy of the results

depends on the quantity of available data. Moreover, because

the results were data-dependent, they were not significantly

superior to those obtained by conventional molecular design

by conventional chemists. Furthermore, it is not feasible to

acquire innovative SMMs solely by predicting molecules with

well defined crystal structures. Further research is required in

the future.

4. Conclusions

This study conducted deep learning using experimental data

from SMM studies and molecular structures derived from

crystal structures. The deep-learning model successfully

acquired knowledge of the structural features of the SMM and

accurately predicted the SMM behaviour using only 3D

structure and magnetic data. We have demonstrated that

deep-learning models can identify SMM molecules within the

CSD. This study presents a data-driven approach to experi-

mentation instead of relying on subjective evaluations based

on intuition and experience. With further developments and

the integration of generative AI and first-principles calcula-

tions, unprecedented SMMs can be achieved using deep-

learning methods.
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Table 2
The top 10 molecules predicted most likely to be SMM.

‘No’ if reported not, and ‘–’ if AC susceptibility measurements were not
performed.

CCDC Score SMM Metal Reference

1 QURMUN 0.0076 Yes Dy18Zn12 Stavgianoudaki et al. (2016)
2 VUVKEE 0.0189 No† Dy10 Das et al. (2015)
3 REYYEB 0.0228 Yes Dy5Mn4 Alexandropoulos et al. (2013)

4 RECPIB 0.0289 Yes Dy6 Lin et al. (2017)
5 ZEZYIO 0.0327 Yes Dy6 Lin et al. (2012)
6 LOSVOG 0.0331 Yes Dy9 Zou et al. (2015)
7 OPEFOH 0.0441 No Dy6 Schlittenhardt et al. (2021)
8 EZEZUG 0.0453 No† Dy12 Li et al. (2016)
9 YALRAF 0.0472 – UCs Cametti et al. (2005)

10 OPEGAU 0.0475 No Dy6 Schlittenhardt et al. (2021)

† Material exhibits magnetic relaxation behaviour under a DC magnetic field.
Table 3
The bottom 10 molecules predicted least likely to be SMM.

‘No’ if reported not, and ‘–’ if AC susceptibility measurements were not
performed.

CCDC Score SMM Metal Reference

1 PIVGAD 0.9990 – Nd2Cu2 Gheorghe et al. (2007)
2 TOKRAO 0.9990 No Ni15 Muche et al. (2014)
3 VICQUV 0.9991 – Nd2 Zou et al. (2013)

4 VAKLEY 0.9994 – Nd Ling et al. (1989)
5 YUTCAS 0.9994 – Nd2Zn2 Lü et al. (2010)
6 YEBPOL 0.9994 – PrCu2 Gheorghe et al. (2006)
7 XUXNEK 0.9995 – Pr2Cu2 Pointillart et al. (2010)
8 SIGZIU 0.9995 – Nd3Zn6 Song et al. (2018)
9 SIGZEQ 0.9996 – Nd8Zn12 Song et al. (2018)

10 TIYGUF 0.9998 – Nd6Cd18 Yang et al. (2013)
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