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the variation in side-chain or main-chain configura- 
tion. 

The author wishes to express his gratitude to Dr 
Mark A. Stahmann of the College of Agriculture at 
the University of Wisconsin for making available a 
sample of poly-e-carbobenzoxy-L-lysine for use in this 
investigation and to Profs. Linus Pauling and Robert 
B. Corey of the California Institute of Technology for 
their many helpful criticisms. 

References 
BAMFORD, C. H., BROWl~, L., ELLIOTT, A., HANBY, W. E. 

& TROTTER, I .F .  Private communication. 
BAM_FORD, C.H., I-IANBY, W.E.  & HAPPEY, F. (1951). 

Proc. Roy. Soc. A, 205, 47. 
EDSALL, J .T .  (1952). Nature, Lond. 170, 53. 
PAUT,I~G, L. & COREr, R.B.  (1951). Proc. Nat. Acad. 

Sci., Wash. 37, 241. 
YA~_EL, H. L., JR., PAULING, L. & COREr, R. B. (1952). 

Nature, Lond. 169, 920. 

Acta Cryst. (1953). 6, 727 

A Simple but Versatile Strip Technique for Calculatint~ Structure Factors 

BY LEROY ALEXANDER 

Mellon Institute of Industrial Research, Pittsburgh 13, Pennsylvania, U .S .A .  

(Received 6 February 1953 and in revised form 25 March 1953) 

Two new sets of strips especially designed for the  rapid calculation of s tructure factors are de- 
scribed. The smaller set, consisting of but  150 basic strips, requires tha t  the  parameters  be expressed 
wi th  two-place accuracy, as in the  earlier stages of a s tructure analysis. The second set consists of 
1500 basic strips and provides for the calculation of exact  s tructure factors for parameters  accurate 
to 0.001. These new strips overcome several weaknesses inherent  in the  application of Beevers-  
Lipson 3 ° Fourier  strips to structure-factor calculations. Ei ther  set permits  the calculation of 
s tructure factors involving terms of the impor tan t  product  type,  sin 2~hx.sin 2uky, etc., at  the 
rate of 20-25 per hour in typical cases. 

1. Introduction 

Beevers & Lipson (1952) have recently shown how a 
set of standard Fourier strips at 3 ° intervals (Beevers, 
1952) can be applied to the calculation of structure 
factors. Although their procedure represents a definite 
step forward in reducing the labor of such calculations, 
it nevertheless lacks the desired degree of versatility 
in several respects. The method is chiefly of value in 
evaluating simple structure factor formulas consisting 
of terms of the types sin 2rehx or cos 2rehx. The 
frequently occurring formulas involving product terms, 
such as sin 2~hx.sin 2x/cy for example, cannot be 
handled in such a straightforward manner. Instead, 
they must be solved by first computing numerically 
and accurately the sine or cosine functions corre- 
sponding to the larger of the two cell dimensions 
involved, sa2, the function of y, after which these 
factors are made the amplitudes of a set of strips used 
to compute the final sum by way of a summation in x, 
the parameter corresponding to the shorter cell dimen- 
sion. This hybrid method of computation is not only 
cumbersome and inherently unsystematic in character, 
but it still leads to undesirably large errors if the 
shorter dimension is much larger than 6 ~. In view of 
the large unit-cell dimensions encountered in many 
present-day structural investigations, particularly 
among organic compounds, this represents a rather 
severe limitation of the method. 

Beevers & Lipson (1952) also describe a modified 
procedure for increasing the accuracy, but it more than 
doubles the computational work besides increasing the 
likelihood of errors. A less serious drawback of both 
these methods for calculating structure factors is that  
no strips are available for direct calculations at para- 
meters exceeding 0.25, with the result that  special 
rules must be observed governing the choice of strips 
and changes in sign in the range 0.25-1.00. The several 
objections just cited combine to make the computa- 
tional procedures far from routine. Surely a high degree 
of routineness should be a feature of any really valuable 
aid to structure factor calculations, because the 
probability of errors occurring is more or less propor- 
tional to the extent to which the human element must 
be reckoned with in the operations. 

2. New s tructure- factor  s tr ips  

Most of the above objections stem from the fact that  
the Beevers-Lipson method seeks to apply standard 
Fourier strips to the solution of a problem for which 
they were not primarily designed. To be specific, 
Fourier strips must bear values of A sin nhO and 
A cos nhO corresponding to variations in nO of from 
0 to ~/2 radians and to variations in h of from 1 to 
at least 30, which means that  a net range in the argu- 
ment nhO of about 0 to 15~ radians is needed. For 6 ° 
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strips the mlnimum angular increment between num- 
bers on any given strip occurs on a strip for which 
h = 1 and amounts to ~ / ( 2 x 1 5 ) =  0.033~r; for 3 ° 
strips it is ~ / ( 2 × 3 0 ) =  0.016z. On the other hand, 
for directness and convenience in the calculation of 
structure factors the strips should bear values of 
sin 2zchx and cos 2~hx corresponding to variations in 
x of from 0 to 1 and in h of from 0 to at least 20, which 
means that  a net range in the argument 2z~hx of at 
least 0 to 40z radians is required. Furthermore, the 
attainment of the necessary accuracy requires that  the 
angular increment between successive numbers on a 
strip should be no larger than that  corresponding to 
Ax = 0-001, or consequently A(2~x) = 0.002~, which 
is much smaller than the smallest angular steps of 
0.033z and 0.016~ on the 6 ° and 3 ° Fourier strips 
respectively. A further point of difference in the re- 
quirements of the two applications is that  separate 
sets of Fourier strips are required for amplitudes 
ranging from at least - 9 9  to +99, whereas only a 
single common amplitude is needful in structure- 
factor calculations according to the method to be 
described. I t  is evident, then, that  less than 1% of 
the strips in a standard X~ourier set would be utilized 
in the calculation of structure factors. 

I t  seemed to the present author that  the several 
important points of difference between the require- 
ments of Fourier summations on the one hand and 
structure-factor calculations on the other were suffi- 
cient grounds for the construction of a new set of strips 
based on a numerical scheme similar to that  of the 
Beevers-Lipson Fourier strips but specifically de- 
signed to meet the altered requirements. Such strips 
have been constructed in this laboratory, the first trial 
set being designed for approximate calculations and 
consisting basically of but 100 sine and 50 cosine strips 
(not allowing for the occasional need for two or more 
identical strips) for parameters from 0.01 to 1.00 by  
steps of 0.01. Such a set can be made up by hand in a 
few hours' time, and, with the aid of any modern cal- 
culating machine capable of accumulating products, it 
enables the user to compute trial structure factors in- 
volving sums of products of the types cos 2r~hx. cos 2zky, 
sin 2r~hx.sin 2~ky, or cos 2r~hx. sin 2~ky at the rate 
of 20-25 per hour even when two or three kinds of 
atoms are included. Structure factors involving sums 
of terms of the type sin 2rlhx.sin 2~ky.sin 2relz can 
evidently not be computed with equal speed; not only 

are more mathematical operations involved, but the 
triple products cannot be accumulated automatically 
by most calculating machines.* This set of 150 basic 

* Some calculating machines permit  the computat ion of a 
three-factor product  with only three entries into the machine, 
while others require four. The referee has pointed out tha t  with 
machines of the lat ter  type the number  of entries can be 
reduced to three if the backs of the strips bear the reciprocals 
of the quantities appearing on the front  sides. Then, for 
example, the product  sin 2ghx. sin 2gky. sin 2glz can be com- 
puted by  means of the operation 

strips will be hereafter designated the small set to 
distinguish it from the large set of 1500 basic strips 
for accurate calculations, to be described below. 

The small set of strips can be of surprising utility 
in the early stages of an analysis when trial structures 
are being tested for approximate agreement between 
Fo and Ft. The rounding-off of parameters to two 
places, which is mandatory in applying this set of 
strips, results in the frequent creation of serious errors 
in Fc at the larger indices; hence it is not desirable 
to extend the number of values of sin 2r~hx or cos 2r~hx 
on each strip beyong h = 8. Furthermore, two-place 
accuracy in these numbers is adequate for either the 
small or large sets of strips for the reason that  this 
permits the attainment of a precision in Fc consider- 
ably greater than the accuracy with which the scatter- 
ing factors are known or that  with which Fo can be 
measured. 

For the refinement of lattice parameters, however, 
it is required that  the increment in x be not larger than 
0.001, as pointed out earlier. This necessitates the 
preparation of 1000 sine and 500 cosine strips for the 
basic set, or possibly 4500 strips in a working set if 
allowance is made for the need of as many as three 
strips of a kind. The strips of this large set must be 
longer in order to provide space for numbers corre- 
sponding to h values from 1 to 20. Extending the range 
to h - - 3 0  is not justifiable without a simultaneous 
improvement of the discrimination in x, say, from 
0.001 to 0.0005. Such longer strips are, in addition, 
more awkward to handle and store. 

3. Construct ional  detai ls  

The construction of the strips and a typical structure- 
factor calculation will be described in terms of the 
small set of strips. The numerical arrangement is the 
same as on a Beevers-Lipson Fourier strip except that  
both the odd and even values of n in sin nhO or 
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cos nhO appear on one side of the strip. There is a 
different sine strip for each value of x from 0.01 to 

sin 2~hx. sin 2gky 

1/sin 2~lz 
which requires only three entries. The amount  of t ime saved 
by  this device varies with the particular calculating machine 
used. 
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1.00, and the successive numbers from left to right on 
a strip are the two-place values of sin 2zhx corre- 
sponding to h = 1, 2, 3, 4, 5, 6, 7 and 8. The cosine 
strips are made up similarly except tha t  only 50 are 
required in the basic set because of the symmetry  of 
cos 2ghx about x = 0. Thus one strip serves for 
x = 0.01 and 0.99, another for 0.02 and 0.98, and so 
on. For tunate ly  it  is not  necessary to compute 
sin 2~hx and cos 2~hx for the many  combinations of 
h and x values; these quantities can be transcribed 
directly from tables published some years ago by 
Buerger (1941). Typical sine and cosine strips are 
shown in Fig. 1. The letter at the left end of each strip 
identifies it  as sine (S) or cosine (C), and the small 
figures following the letter specify the parameter.  
Circled quantities are negative. A decimal point is 
understood to precede each number with the exception 
of 1 and 1, which represent 100 and 100 and are 
writ ten in the abbreviated form in the interests of 
neatness and space economy. Possible confusion with 

0.01 and 0.01 is avoided since these quantities are 
writ ten as 01, respectively uncircled and circled. 
Convenient dimensions for the strips of the small set, 
which may  be cut from light cardboard, are ½ × 5½ in. 

4. Me thod  of calculation and e x a m p l e  

The calculative procedure can be best understood by 
referring to an actual example. For  this purpose an 
organic structure now under investigation in this 
laboratory will be used. The space-group symmetry  
is C~h-P21/c , and the unit  cell contains four molecules 
comprised of 4 carbon, 5 oxygen, 2 nitrogen and 
6 hydrogen atoms. Disregarding the hydrogen atoms, 
all the other atoms occupy sets of general 4(e) posi- 
tions, making 33 parameters to be determined. The 
general structure-factor expression for this space group 
symmetry  involves a trigonometric component, 

A = 4cos2~(hx+lz+¼(b+l)}cos2z{by-¼(k+l)},  (1) 

which, for (0El) reflections with k+l  odd, simplifies 
to the form 

A = - 4  sin 2~ky. sin 2~lz. (2) 

The final structure-factor formula for this case is then 

.F(Okl) = .,~,fnAn = - 4 ~ ' f n  sin 2~ky~.sin 2~lzn, (3) 
n n 

b + l  being odd. Similarly for (hkO) reflections with k 
odd, the formula is 

F(hk0) = - 4  ~ fn sin 2~hx~. sin 2~ky~. (4) 
n 

Suppose the parameters to be tested are those given 
in Table 1. Consider the computation of the structure 
factors of (0kl) reflections with b + l  = 2 n + l .  The 
small set of strips is used by first rounding off each 
y and z parameter  to two places and then selecting 
the proper sine strips and assembling them in two 
banks placed side by side, one for y and one for z 
parameters, as il lustrated in Fig. 2. To compute 
F(032), for example, one employs the calculating 
machine to mult iply the first number appearing in the 

Table 1. Trial parameters 

Atom x y z 
C~ 0.456 0.492 0.078 
C 4 0.322 0.500 0" 111 
C 5 0.210 0"668 0.022 
C 6 0.216 0.745 0.962 
02 0.587 0-410 0.106 
04 0.305 0-430 0.166 
05 0.075 0.750 0.995 
O e 0.110 0.896 0.867 
07 0" 120 0-625 0.188 
N~ 0.348 0.656 0-992 
N 3 0-447 0.410 0.140 

No. 3 column of the y strips, 0-19, by the first number 
appearing in the No. 2 column of the z strips, 0.84. 
Next  one multiplies the second pair of numbers in 
the same two columns and adds this product to the 
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first, and so on until  one has accumulated the four 
products of the carbon atoms. This partial  total  is 
written down, and then the oxygen and nitrogen cross- 
products are summed and the two totals written down. 
The calculator is next used to multiply the trigonomet- 
ric sum for each kind of atom by the proper scattering 
factor, the total  of these three products being taken. 
This grand sum for all the atoms is finally multiplied 
by - 4  to yield the structure factor, F(032). 

An approximate but speedier way of allowing for the 
differences in scattering power of the ' three  groups of 
atoms is to take advantage of the fact "that the ratios 
fc/fo and f~/fo are nearly constant over a considerable 
angular range and equal respectively to about 0.6 and 
0.8. When this plan is used, the trigonometric sum for 
carbon is multiplied by 0.6 rather thanfc  and the sum 
for nitrogen by 0.8 instead off~. These two quantities 
are added to the trigonometric sum for oxygen, and 
this grand sum is multiplied by th~ factor - 4 f o  to 
give the structure factor. This procedure saves time 
in the early stages of a structure analysis involving 
carbon, nitrogen and oxygen by eliminating the need 
for taking account of the variations in fc and f~ 
with (sin 0)/4. I t  should be observed, however, tha t  
this approximate method is less satisfactory when the 
2*_ru",ture comprises both light and heavy atoms. 

The order in which the computations are performed 
on the calculating machine is now illustrated by means 
of the planes (032). Preliminary data available: 

(sin 0)/). = 0.410. fc -~ 1.87, fo = 2.82, f~ = 2.25. 

Step 1. Carbon,_((.19 × .84) + (0 × .98) + ('06 × -25) 
+ (1 × .48) = -0 .31 .  

Step 2. Oxygen, (-99 × .98) + (.97 × .84) + (1 × 0) 
+(.95 × 1)+(.__64×.69) = +2.29. 

Step 3. l~itrogen, (.13 × .13)+(.99 × .98) = +0.99. 
Step 4. ( -0 .31  × 1.87)+(2.29 × 2.82)+(0.99 × 2.25) -- 

+8.11. 
Step 5. $'(032) = ~4×8-11 = -32.4 .  

In  case the simplification is adopted tha t  fc/fo 
0-6 and f~/fo = 0.8, steps 4 and 5 are replaced by:  

Step 4'. ( -0 .31  × 0.6) + (2.29 × 1.0) + (0.99 × 0.8) = 
+2.89. 

Step 5'. F(032) = - 4  × 2.82 × 2.89 = -32 .6 .  

5. Eva lua t ion  of the m e t h o d  

Once the necessary strips have been selected and 
arranged and the values of fc, fo and f~ obtained 
from a grapK-or table, the calculations for a given 
reflection of Ch:e type shown above can be performed 
within two minutes. I t  should be emphasized tha t  in 
the present method a minimum of time is consumed 
in doing mental  and paper arithmetic; of the arith- 
metic given above, only the quantities 1.87, 2.82, 2.25, 
-0-31,  +2.29, +0.99 and -32 .4  need be written down. 
The calculating machine does the rest. 

The large set of strips can be handled in exactly 

the same way and with nearly the same speed, except 
tha t  the greater length of the strips makes them some- 
what less convenient to handle. For this reason it is 
advantageous to make them somewhat narrower than 
the strips of the small set, which also has the effect 
of reducing the needed length. Dimensions of ~ × 8 in. 
are suggested. The author has used a rack of the type 
described by Patterson & Tunell (1942) for holding 
the strips of the small set in position during the 
computations, but  a smaller more easily handled 
mounting frame would be a distinct advantage. The 
most flexible scheme would make use of six such 
frames, three for sin 27ehx, sin 2ztky and sin 2xdz, and 
three for the corresponding cosines. The strips could 
be initially set up on the six frames for a set of para- 
meters to be tested, after which the structure factors 
for all types of reflections could be calculated by 
choosing the proper pairs or trios of frames. After the 
two or three sets of strips have been arranged side- 
by-side for the calculations (see Fig. 2), it  has been 
found helpful to cover all the numbers except the 
particular columns represented in the index triplet 
by means of vertically slotted cardboard masks, and 
to employ a horizontal straight-edge to avoid errors in 
selecting the proper pair or trio of numbers to be 
multiplied from the two or three sets of strips. When 
using the longer strips of the large set this la t ter  
expedient can hardly be dispensed with. Storage of the 
strips in a manner providing for utmost  convenience 
in their selection and replacement after use is abso- 
lutely necessary to the success of this or any other 
strip method. Boxes with sloping sides and containing 
a separate hole for strips of each parameter  can be 

Table 2. Values of 18 structure factors as computed 
by different methods 

M et hod  A. Str ips  for  p a r a m e t e r s  to  0.01; 
folfo = 0.6 and  f~l fo-  0"8 assumed.  

M e t h o d  B. St r ips  for  p a r a m e t e r s  to  0.01; 
I-Iartroe va lues  of f c ,  fl~, and  f o  used.  

Me thod  C. Str ips  for  p a r a m e t e r s  to  0"001; 
H a r t r e e  values  of f c ,  fN, and  f o  used.  

Calcula ted  va lues  of F 
^ 

(hkl) A B O 
210 47-0 46-6 46.7 
310 35.4 36-6 37.0 
410 6-3 7-1 7-4 
510 --  5"0 --  4-8 --  4"0 

610 16.9 17.0 I8,6 
810 - -22 .0  - -24 .4  --24-5 
230 7.5 7.3 7.3 
530 --18-2 - -19 .8  - -21 .9  
630 --  1.7 --  2.4 - -  4-8 
830 13-2 16-0 10-9 
012 --41-3 - -41 .0  - -41-9 
014 --15-9 - -17 .8  - -19-0 
021 3"7 3"4 3.2 
023 15.5 15.4 15-7 
032 - -32-6 - -32-4  - -31 .0  
036 32-7 33-9 36.3 
041 13.1 13.9 12.8 
047 4.4 5.1 3.2 
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constructed according to the general designs suggested 
by Lipson & Beevers (1936), Beevers & Lipson (1952) 
or Patterson & Tunell (1942). 

Table 2 compares the numerical values of 18 struc- 
ture factors as computed with strips accurate to 0.01 
and to 0.001. The parameters are again those given 
in Table 1, and the formulas for F(Okl) and F(hkO) 
with k+l  odd are given by equations (3) and (4). 
Columns B and C compare directly the approximate 
numerical values derived with the small set of strips 
with the exact values computed using the large set 
for parameters accurate to three places. In view of the 
anticipated discrepancies at larger indices, the quality 
of the agreement is rather surprising. Even for the 
planes (630), (830) and (047) the errors need not cause 
concern save in the final stages of the parameter- 
refining process. The only logical explanation for this 
unexpectedly good agreement at the higher indices is 
that  the errors in the trigonometric products for the 

various atoms, being random in sign and magnitude, 
tend to cancel each other on the average. For this 
reason the small set of strips may have a special value 
in solving complex structures involving many para- 
meters. The lack of significant differences between the 
values in columns A and B demonstrates that  in the 
earlier stages of parameter refinement one may assume 
the constancy of fc/fo and frr/fo with impunity. 
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The Meaning of the Average of IF] 2 for Large Values of the Interplanar Spacing* 

BY DAVID HARKER 

Polytechnic Institute of Brooklyn, Brooklyn 1, N .Y . ,  U .S .A .  

(Received 13 January 1953) 

It  is shown that A. J. C. Wilson's equation, ( I )  = Xf ~, is valid only if d(hkl) is smaller than the 
smallest interatomic distance in the crystal. The correct equation for ( I )  for use at large d's is 
derived. It is shown that the equation, (I> = 2:F~, where 2'g is the scattering power of a glob of 
atoms, is nearly correct for d's larger than twice the shortest interatomic distance and smaller than the 
shortest distance between centers of globs. This last statement is most nearly true for globs that 
consist of 'spherical tops of scattering matter', i.e. whose second moment of scattering is the same 
for all directions. 

Introduct ion  

In 1942, Wilson (1942) announced the discovery of a 
relation between the average of the squared magni- 
tudes of the structure factors of a crystal and the 
atomic scattering factors. This relationship has the 
form: 

N 
<I) = ~ ' f~(s ) .  (1) 

j=l  

In (1), (I> is the average value of [F(hkl)[ 2 for all 
values Of h, k and 1 for which s = 1/d(hkl) lies between 
s and s+ds, 1V is the number of atoms in one unit cell 
of the crystal and fj(s) is the scattering factor of the 
j t h  atom. In a later paper Wilson (1949) pointed out 
that  in practical cases relation (1) is not valid at small 
values of s (large values of d(hkl)) and suggested a 
limiting value of s beyond which (1) could be safely 

* Cont r ibut ion  No. 1 f rom the  Prote in  St ruc ture  Project .  

applied. In the present paper, the interpretation of 
</> is discussed for the small values of s which can 
occur in the data from crystals with large unit cells. 

In the following paragraphs, the exact equation 
corresponding to (1) will be derived and will be found 
to contain additional terms which become larger as the 
product sr~j decreases (where rij is the distance between 
the ith and j th  atoms), but which are unimportant 
for large values of sr~j. I t  will then be shown-- 
qual i ta t ive lyqthat  equation (1) is generally valid only 
if the minimum value of srii is unity. Consequently, 
equation (1) is useful only if, for each of the structure 
factors used in the averaging, d(hkl) is less than about 
1.5 /~ for organic crystals, or about 2 /~ for most 
others; for larger values of d(hkl) equation (1) can be 
quite inaccurate and is therefore useless. In  particular, 
most crystalline proteins give diffraction effects only for 
d(hkl) greater than 1.5 A and data from such crystals 
should never be interpreted by the use of equation (1). 


