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constructed according to the general designs suggested 
by Lipson & Beevers (1936), Beevers & Lipson (1952) 
or Patterson & Tunell (1942). 

Table 2 compares the numerical values of 18 struc- 
ture factors as computed with strips accurate to 0.01 
and to 0.001. The parameters are again those given 
in Table 1, and the formulas for F(Okl) and F(hkO) 
with k+l  odd are given by equations (3) and (4). 
Columns B and C compare directly the approximate 
numerical values derived with the small set of strips 
with the exact values computed using the large set 
for parameters accurate to three places. In view of the 
anticipated discrepancies at larger indices, the quality 
of the agreement is rather surprising. Even for the 
planes (630), (830) and (047) the errors need not cause 
concern save in the final stages of the parameter- 
refining process. The only logical explanation for this 
unexpectedly good agreement at the higher indices is 
that  the errors in the trigonometric products for the 

various atoms, being random in sign and magnitude, 
tend to cancel each other on the average. For this 
reason the small set of strips may have a special value 
in solving complex structures involving many para- 
meters. The lack of significant differences between the 
values in columns A and B demonstrates that  in the 
earlier stages of parameter refinement one may assume 
the constancy of fc/fo and frr/fo with impunity. 
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It  is shown that A. J. C. Wilson's equation, ( I )  = Xf ~, is valid only if d(hkl) is smaller than the 
smallest interatomic distance in the crystal. The correct equation for ( I )  for use at large d's is 
derived. It is shown that the equation, (I> = 2:F~, where 2'g is the scattering power of a glob of 
atoms, is nearly correct for d's larger than twice the shortest interatomic distance and smaller than the 
shortest distance between centers of globs. This last statement is most nearly true for globs that 
consist of 'spherical tops of scattering matter', i.e. whose second moment of scattering is the same 
for all directions. 

Introduct ion  

In 1942, Wilson (1942) announced the discovery of a 
relation between the average of the squared magni- 
tudes of the structure factors of a crystal and the 
atomic scattering factors. This relationship has the 
form: 

N 
<I) = ~ ' f~(s ) .  (1) 

j=l  

In (1), (I> is the average value of [F(hkl)[ 2 for all 
values Of h, k and 1 for which s = 1/d(hkl) lies between 
s and s+ds, 1V is the number of atoms in one unit cell 
of the crystal and fj(s) is the scattering factor of the 
j t h  atom. In a later paper Wilson (1949) pointed out 
that  in practical cases relation (1) is not valid at small 
values of s (large values of d(hkl)) and suggested a 
limiting value of s beyond which (1) could be safely 

* Cont r ibut ion  No. 1 f rom the  Prote in  St ruc ture  Project .  

applied. In the present paper, the interpretation of 
</> is discussed for the small values of s which can 
occur in the data from crystals with large unit cells. 

In the following paragraphs, the exact equation 
corresponding to (1) will be derived and will be found 
to contain additional terms which become larger as the 
product sr~j decreases (where rij is the distance between 
the ith and j th  atoms), but which are unimportant 
for large values of sr~j. I t  will then be shown-- 
qual i ta t ive lyqthat  equation (1) is generally valid only 
if the minimum value of srii is unity. Consequently, 
equation (1) is useful only if, for each of the structure 
factors used in the averaging, d(hkl) is less than about 
1.5 /~ for organic crystals, or about 2 /~ for most 
others; for larger values of d(hkl) equation (1) can be 
quite inaccurate and is therefore useless. In  particular, 
most crystalline proteins give diffraction effects only for 
d(hkl) greater than 1.5 A and data from such crystals 
should never be interpreted by the use of equation (1). 
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Having shown tha t  equation (1) is not even ap- 
proximately true for small values of s, an interpreta- 
tion of <I> under these conditions will be presented. 

THE MEANING OF THE AVERAGE OF IF I  ~" 

Derivation of the.equation for <I> 

The structure factor F ( s ) =  F(hkl) of a crystal can 
be related to the coordinates xj, y~, z~ of the AT atoms 
in a unit cell by the formula: 

F(hkl) = ~ '  f~(hkl) exp [2~i(hx/+ky~+lz;)] , (2) 
i = 1  

or, in vector notation: 

2~ 

F(s). = .Z f~(s) exp [2~is.  r~], (3) 
j = l  

s = h a * + k b * + l c *  
where 

and 
r i = xia + yjb + zjc 

with a*-,.b*, e* the vector triple reciprocal to a, b, 
which, ih turn define the unit cell of the crystal. In 
(~), ~ =  Isl andfj(s) is written instead offj(s) to indi- 
cate tha t  the scattering power of an atom is assumed 
to be spherically symmetrical. 

Let IF(s) l  2 be written I(s). Then: 

A" 

I(s) = , Z f i 2 ( s )+ .Z~ f~ ( s ) f j , ( s ) exp  [ 2 n i s . ( r j - r : ) ] .  (4) 

The value of <I> is obtained by averaging all the v~lues 
of I(s) for which s lies between s and s+ds.  Obviously, 
the terms in the expression for I(s)  which do not 
depend on the direction of s are not affected by the 
averaging process, but  the others must be con- 
sidered more carefully. The factor of the form 
exp [2~ris. ( r j - r j . ) ]  which occurs in each term of the 
double sum on the right of (4) has an average equal 
to (sin 2:rsrff)/2:rsrff, if all directions of s are allowed. 
Here, r:j, = [rj-rj.].  Unfortunately, only those direc- 
tions of s are allowed which correspond to integral 
values of h, k, 1 in s = ha* +kb* +/c*;  however, if 8 
is larger than twice the largest of la*l, Ib*l, Ic*[, 
there will, in practical cases, be enough of these values 
to approximate a continuous distribution of directions 
for s. With this assumption, then" 

(I) = ~'., ff(~)+ Zj,:Z f:(~)f).(s) sin2~srir27~srij.. (5) 

The double sum on the right of (5) obviously be- 
comes small as s increases, so that,  if s is large enough, 
(5) becomes identical with (1). On the other hand, if 
srj: is less than  0.5, the corresponding term in the 
double sum is positive and becomes larger as s. de- 
creases. Clearly, then, equation (1) is almost surely 
inaccUrate, if srff < 0.5 for any appreciable number 
of atom pairs in the crystal. I t  would be expected, 
and experience shows, tha t  if srff is greater than uni ty  

for all atom pairs, then equation (1) is sufficiently 
exact for practical purposes. For instance, in organic 
substances there are many bonds between neighboring 
atoms of length about 1.5 A; in consequence, equation 
(1) can be used only for the par t  of the diffraction 
pat tern with s > ~ A -1, i.e. with d(hkl) < 1-5 A. This 
statement is equally true of proteins, the crystals of 
which rarely, if ever, produce diffraction effects corre- 
sponding to d(hkl) < 1.5/~; the application of equation 
(1) to the data from protein crystals is, therefore, 
always incorrect. 

The radial distribution function 

A completely proper use of the values of <I> is pro- 
vided by the well known radial distribution function. 
This function, D(r)dr, is the total  number of pairs of 
particles in the crystal for which the interparticle 
distance lies between r and r+dr.  For instance, if the 
unit cell of a crystal contains two point atoms of 
scattering power 3 and 2, respectively, separated by  
1 _~, the curve of D(r) against r will show sharp maxima 
at r = 0 and r = 1 A with weights of 32+2 ~ = 13 and 
2 x 3+3  × 2 = 12, respectively (and at other values of 
r corresponding to the separations between atoms in 
different cells). This function can be calculated from 
<I> by means of the formula: 

, O C  

D(r) = 8~r ~ s<I> sin 2zesrds . (6) 
d 0 

This is a well known result (Warren & Gingrich, 1934) 
and need not be discussed at length in this article; 
it seems sufficient to point out tha t  valuable informa- 
tion concerning possible structures can be obtained 
in this way directly from the intensity data. 

The concept of 'globs' 

Another way of interpreting the values of <I> is based 
on the use of 'globs'. A glob is a group of atoms in the 
crystal which can be chosen in various ways depending 
on the problem at hand. Let Fg(s) be the scattering 
factor of the gth glob in the unit cell. The positions 
of its atoms are most conveniently defined by vectors 
rgt which are the distances from the centroid of 
scattering of the gth glob to the tth atom of tha t  
same glob. Let rg be the position vector of the centroid 
of scattering of the glob. Then, if the atom j of the 
crystal is also the atom 9¢, we have r~ = r g + r ~ ,  

In these terms: 

where 

(7 

F(s) = ~ Fg(s) exp [2:ris .rg],  (7) 
g = l  

$'g(s) = .~fgt(a) exp [2~is.rgt] .  (8) 
t = l  

Here G is the number of globs in the unit cell of the 
crystal and N 9 is the number of atoms in the 9th glob. 
In these terms, I(s) = IF(s)[ 2 can be writ ten: 



DAVID H A R K E R  733 

I ( s )  = 2; IF/s)I~+2;Z Fg(s)F~,(s) 
g g4=g ' 

x exp [2~is-( rg-r¢)]  . (9) 

The double sum in (9) can be rewritten in the form 

• 2 ; Z  f j ( s ) f j , ( s ) e x p  [2~is. (ri-r~,)] 
j j, 

if it is understood that  j and j '  refer to atoms in dif- 
ferent globs. I t  is now possible to average (9) over all 
directions of s, so as to obtain: 

<I> = 2 IFg(S)12+Z,  Z f j ( s ) f j , ( s )  sin 2~srj_________jj, (10) 
g i J" 27esrji" ' 

where, again, j and j '  refer to atoms in different globs. 
The number of terms in the double sum of (10) which 
contain small values of r z, is much smaller than the 
corresponding number of terms in (5), so that, in 
practice, this double sum is unimportant for much 
smaller values of s and it is possible to write 

<I> -- Z IFg(S)l ~ (11) 
g 

as a good approximation for considerably smaller 
values of s than those for which (1) is valid. 

Suppose, for example, that  a crystal has a large 
unit cell containing a large organic molecule consisting 
of several known radicals joined together into an 
unknown configuration. These radicals could be con- 
sidered as globs, and equation (11) used, in order to 
verify the presence of these radicals in the structure 
and to determine the absolute intensity scale in a 
range of d(hkl )  smaller than that  in which (1) is 
applicable. 

Spherical  g lobs  

If the glob scattering factor Fg(s) is independent of 
the direction of s, equation (11) can be given a still 
greater range of validity, for then the process of aver- 
aging equation (9) over all directions of s can be done, 
without rewriting the double sum, to give cSrectly" 

<I> = 2; F~(s)+ 2; 2; Fg(s)F¢(s) sin 2~Srgg, (12) 
g g , g ,  2 7 ~ s r g g ,  

In (12), F~(s) is written instead of [Fg(s)] ~, because 
/'g(S) is independent of direction and is therefore a real 
number unaffected by the averaging process. I t  is seen 
that  the double sum consists only of terins containing 
rgg, and that  it will, therefore, be unimportant for 
values of sr  W > 1. Consequently, in the range of s 
such that  d(hkl )  is smaller than the smallest distance 
between glob centers, we have 

</> = 2; F~(s) (13) 
g 

and the globs themselves could be used as scattering 
elements in the theory of structure determination, 
just as atoms are used at present. Of course, an atomic 
grouping can never be strictly spherical, but it is sur- 

prising how far from spherical a glob can be and still 
produce essentially spherical diffraction effects over 
wide ranges of s = 1 /d(hkl ) .  

The conditions under which a glob produces spherical 
diffraction effects will now be investigated. Let (8) be 
expanded as a power series, thus: 

Fg(S) = 2; f t ( s )  exp [27ds. rt] 
t = l  

= Z f,(s) 2; (2~is .  rt)" 
t = l  n=O • 

oo 2_i~n 2( 
= / :  - ~ -  2/A(s)(s.ry 

n = 0  • t = l  

=ZA(s)+2~is.t=l ,=l"Zft(8)r' + - - ~ - - t ~ t s )  (s.ry + 

higher terms.  (14) 

(The subscript g has been dropped on the right side of 
(14) since no ambiguity is possible.) The first term in 
the expansion is independent of the direction of s, 
because atoms are sufficiently spherical, and the second 
term vanishes, because the origin of the vectors rt is 
at the glob's centroid of scattering. The third term is 
independent of the direction of s, if the glob is a spheri- 
cal top, i.e. if its 'second moment of scattering' is 
constant for all directions of s. In this case, 

N N 

2;f , (s ) (s ' r , )  2 = ~s  2 2 ;  f , ( s ) r ~ .  (15) 
t = l  t = l  

The higher terms are small, unless s. r t is large; indeed, 
if the glob has a center of symmetry, all the terms with 
n odd vanish. Consequently, if the second moment of 
scattering is zero, i.e. for ' spher ica l  glob',  it is possible 
to write (14) as follows: 

N /V 

Fg(s) = 2;A(s)-~(2m) 2 2; A(s)r~ + higher terms.  06) 
t = l  t = l  

I t  is interesting that  the first two terms of (16) are in 
agreement with the approximation: 

sin 2 ~ s r  t 
Fg( s )  = 2;ft(s) ~ (17) 

t=l 27~srt 

Formula (17) would be exact, if each atom in the glob 
were smeared out over the surface of a spherical shell 
of radius equal to the atom's distance from the glob 
center. 

How well does the approximate formula (17) hold 
in practical cases ? Two examples are presented below. 
The glob in the first example is somewhat extreme in 
that  its distribution of scattering material is about as 
unsymmetrical as is possible for a spherical top. I t  
consists of four point scatterers of relative powers 
1, 2, 3 and 4 at the corners of a small distorted tetra- 
hedron centered at the lattice points. The Cartesian 
coordinates of these scattering points are given in 
Table 1; also given in Table 1 are the trimetric coor- 
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Scattering 
power 

y 
1 
2 
3 
4 

XC 

0 
o 

- 0 . 4 ×  ]/5 
o . 3 ×  ]/5 

Table 1. C o o r d i n a ~  o f  scatterers in  a f o u r - p o i n t  spherical  top 

Cartesian Trimetric 
coordinates (A) coordinates* 

^ 

Yc zc x = xc/a o y = yc/b o 
0.7 × ]/2 0.2 × ]/70 0"00 0.07 
0.7 × ]/2 --0.1 × ]/70 0"00 0"07 

- -0"3 × ]/2 0 - - 0 . 0 8  - - 0 . 0 3  
- - 0 . 3  × ]/2 0 0 .06  - -0"03 

* Referred to an orthorhombic cell with 

a o = 5]/5,  b o = 10]/2,  c o = (10 /7 ) ] /70  h .  

t The radius of gyration of the glob is 1.122 A. 

Z = ZC/C 0 
0.14 

--0.07 
0.00 
0-00 

R a d i u s  
(A)I- 

1.944 
1.296 
0.990 
0-794 

10- 

Fg(s) 
5 

0 

! 

! • " • = . -  

• . . . .  • . . ~  

• . .  

0~1 0:2 0:3 0~ 

Fig. 1. Comparison of iF I (dots) with equation (17) (curve) for the distorted tetrahedron. 

dinates of these points when referred to an or thorhom- 
bic lat t ice of axial  lengths:  a 0 = 5V5, b 0 = 10~/2, 
c o = (10/7)V70/i .  

The s t ructure  described in Table 1 is triclinic, bu t  
the  or thorhombic latt ice was chosen for computa t ional  
convenience. 

St ructure  factors were computed  for this h3Tothet i-  
cal crystal  s t ructure  by  means of equat ion (2); their  
magni tudes  are plot ted  as points in Fig. 1. Ap- 
proximate  s t ructure  factors were also computed by  
means of equat ion (17), since for this case equat ion (7) 
becomes F(s)  = Fg(s ). The values of Fg(s) are plot ted  
as a smooth curve in Fig. 1. I t  is seen t h a t  the  points 
lie quite close to the curve for values of s up to 0.26, 

but then begin to diverge seriously. The radius o4 
g ~ a t i o n ,  R, of the  glob is 1.122 J~, so t h a t  for s R  < 0.3, 
the  approximat ion represented by  formula (17) is 
adequate,  even in this extreme case. 

The second example is t h a t  of a regular  octahedron 
of scattering points centered at  the origin of a simple 
cubic lattice. The six vertices of this octahedron are at  
0, 0, +-~½; 0, ± ~ ,  0; ± ~ ,  0, 0 in t r imetr ic  coordinates. 
If the  length of one uni t  cell edge is 25 /i ,  the  octa- 
hedron will be 1.77 / i  on an edge - -a  possible inter- 
atomic distance. (This compares with the following 

lengths of the  edges of the te t rahedron  of the  f i rs t  
example:  (1)-(2), 2.51 A; (1)-(3), 2.36 / i ;  (1)-(4), 
2.29 A; (2)-(3), 1-87/ i ;  (2)-(4), 1 .78 / i ;  (3)-(4), 1-57/i . )  
Fig. 2 presents a plot  of the values of iF] for this 
crystal,  together  with a curve showing the  glob 
approximat ion  to F.  I t  is seen t h a t  in this case the  
approximat ion  is excellent for values of s up to a t  least 
0.3, i.e. for values of s R  less t han  0.4 since R = 1 .25/ i .  

Having shown t h a t  the s t ructure  factors of spherical 
tops of scattering ma t t e r  produce essentially spheri- 
cally symmetr ica l  scattering effects, it  is, therefore, 
appropr ia te  to use equat ion (13) in par t  of the  range 
where Wilson's equat ion (1) fails. The two examples 
t rea ted  in the last  few paragraphs  can be used to show, 

qualitatively, the range in which equation (13) can 
be used. 

Figs. 3 and 4 are plots of (1)  calculated, respectively,  
from the s t ructure  factors of the te t rahedron  of Fig. 1 
and the octahedron of Fig. 2. (The values of ~I)  are 
shown by  small circles.) The approximat ion of equa- 
t ion (17) for Fg(s) was used to calculate F~g(s) which is 
p lo t ted  on each of Figs. 3 and 4 as a full line; the  
approximat ion  of equat ion (1) is p lot ted  as a broken 
line. I t  is immedia te ly  obvious t h a t  equat ion (1) is 
valid for sr~i >~ 1, while equat ion (17) gives good 
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0 
0 0:1 0:2 

$ 

- ~ : ~ . . "  .. "'-. . 

• " •: . ~ .  o ° , "" *° . s p o  

o o $ o 

0:3 0-4. 

Fig. 2. Comparison of IFI (dots) with equation (17) (curve) for the regular octahedron. 
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Fig. 3. Comparison of (I)  (small circles) with the square of equation (17) (full curve) and with equation (1) (broken line) 
for the distorted tetrahedron. 

Fig. 4. Comparison of (I)  (small circles) with the square of equation (17) (full curve) and with equation (1) (broken line) 
for the regular octahedron. 

results if srij ~ ½; in the intervening region the values 
of ( / )  trend smoothly from one approximation to the 
other. (Of course, at all values of s, equation (5) is 
valid.) 

If, in the examples just treated, there had been 
more than one glob per unit cell, the approximation 
of equations (12) or (13) would have become poor for 
values of srgg, ~ 1. In other words, these approxima- 
tions are useful in the range of d(hkl) between the 
smallest interglob distance and twice the smallest 
interatomic distance. 

D i s c u s s i o n  

A common device in the treatment of X-ray diffraction 
data, before using them for structure determination, 
is that  of dividing the IF(s)l~'s by the quantity 
(Zfj(s)) 2. Tiffs results in numbers which are ap- 
proximately the IF(s)J2's to be expected from a crystal 

composed of point atoms, instead of real atoms with 
electron clouds having some extent in space; the 
point atoms have the positions of the atoms in the 
real crystal (and also their thermal motions, unless 
corrections for this have been included in the values of 
fj(s)). If all the atoms in a crystal are (nearly) the same, 
(~,fj(s)) ~ can be written N2f2(s), which is the same as 
NZf~(s) in this case. Therefore, in the range of validity 
of equation (1), this expression is equal to N ( I ) .  
(Indeed, the use of this equality automatically corrects 
for the thermal motion of the atoms, if this is the same 
for all atoms.) Consequently, if the experimental 
values of JF(s)[ 2 are divided by N(I~ in the range 
d(hkl) ~ rij, the resulting numbers are the [F(s)[2's 
of the point-atom crystal. Furthermore, this process 
can be used to place the diffraction data from the 
crystal on an absolute scale, as pointed out by Wilson 
(1942). 

In a similar way, the ]F(s)12's of a crystal containing 
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scattering poihts at  the positions of glob centers can 
be derived from the  ]F(s)12's of the real crystal through 
dividing by  G<I> in the range 2r~j < d(hkl)< rff, 
provided tha t  the globs in the crystal are 'spherical' 
and all alike. This raises the question of the existence 
of spherical globs in crystals. 

One can say at  once tha t  the  glob concept is useful 
only in connection with crystals with large unit cells 
as there must be a large number of interplanar spacings 
greater than  3/~. The unit cells of such crystals contain 
a large number of atoms,* which can be grouped into 
globs in many different ways. If, in interpreting the 
values of <I>, it  is assumed tha t  the glob factors are 
spherical (Fg(s) = Fg(S)), the globs themselves must 
be (nearly) spherical globs and correspond to only 
certain ways of ~viding the atoms in the cell into 
groups. I t  is probable tha t  some structures do not 
provide any way of  assigning the atoms to groups so 
as to make spherical  globs, but it seems likely tha t  
many complex structures can provide nearly spherical 
globs b y  somo~method of subdivision. The assumption 
tha t  < . ~ ) = : ~ ( s )  corresponds to selecting a method 
of distributing/the atoms into spherical globs, all with 
the same~ seVs of interatomic distances. 

When the structure of a crystal can be thoughl~ of 
as a set of similar globs in various positions and with 
different orientations, each of the structure factors 
is very probably near the value 

F(s) = ~ $'g(s) exp [2rds.rg] (18) 
~=1 

* In  organic crystals, the number of reflections with d > 3 A 
is about ten times the number of atoms in the unit cell, not 
counting hydrogen. 

obtained from formula (7) by replacing each Fg(s) by 
its average over all orientations. This statement is true, 
even if the globs are quite far from being spherical, 
provided enough different orientations of the globs 
are present. In such a case: 

iv 
<I> = : (F--~)) 2 = G(F-~) )  2 , (19) 

g=l 

which is almost the same as (11), because 

sin 2gsr~i, = sin 2~r_____sr_~-. sin 27tsrj, 

27~sr z, 2resrj 2~sr~, 
(20) 

where the bar over the left hand term indicates 
averaging rff over all directions of r i and r~,. Conse- 
quently, a satisfactory approximation to a point-glob 
crystal is obtained by dividing the IF(s)I~'s by G(I> 
in this case also, which can occur qlfite frequently in 
complicated crystals. 
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The unit cell of diphenylene naphthacene is monoclinie, with a ----- 11.0+0-05, b = 5.15±0-03, 
c -- 19,6+0,10 A, fl - 12fi °. The space group is P2~/c, and in the unit cell are two molecules, each 
lying on a centre of symmetry. The structure was solved by optical-transform methods, and the 
atomic positions were found with the aid of the (010) and (100) Fourier projections. 

Introduct ion 

This compound is one of a number investigated largely 
by  optical diffraction methods (Hanson, Taylor & 
Lipson, 1952). The procedure by  which the approx- 
imate structure was determined is discussed elsewhere 
(Hanson, Lipson & Taylor, 1953), and will not be 
considered here. 

Unit  cell  and space  group 

The sample supplied consisted of a number of lath- 
like, blue, opaque crystals; although these were ex- 
tremely thin, and showed a slight tendency to bend, 
no difficulty was experienced in selecting single crys- 
tals suitable for X-ray examination. 


