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A new method is suggested for obtaining the absolute structure factors from a set of relative in- 
tensities. I t  differs from the method of Wilson in that  it does not depend on any statistical result. 
Formulae are obtained relating the sum of the intensities of all the reflexions with certain integrals 
involving the electron-density distribution in the atoms. The method is applicable both to two- and 
three-dimensional data, but  in practice it is more useful in the former case. The method makes 
use of the available structure-factor tables, and has been verified to be valid in a number of cases 
where the scale factor is known. For the purpose of applying the method to unknown cases, tables of 
the required integrals are given for some of the commoner atoms which occur in organic crystals. 

1. Introduction 

In  crystal-structure analysis,  the  observed intensit ies 
of the various reflexions (hkl), after the necessary cor- 
rections, yield a set of numbers  Ihkl, which are pro- 
port ional  to [FhkzI 2, the constant  of proport ionali ty,  
the scale factor c, being given by  the equat ion 

clhkl = IFhktl ~ (1)  

The only direct method  of obtaining the scale factor, 
without  having  to measure the absolute intensit ies of 
some of the reflexions or comparing them with those 
of a s tandard  crystal,  is t ha t  due to Wilson (1942). 
The method is based on the statistical result  tha t  in 
a small  range of sin 0/), the  mean  of ]Fhkl[ 9 is equal  
to the sum of the mean  squares of the atomic scattering 
factors of the atoms in the uni t  cell for the same range. 
In  m a n y  crystals, the  number  of reflexions in a suit- 
able chosen range m a y  be quite small  (of the order of 
10-20), so tha t  s tat is t ical  methods cannot be str ict ly 
applied to them. 

The present paper  describes a method  which makes  
use of an exact  relat ionship between the sum of the  
squared structure ampl i tudes  of all reflexions and a 
certain integral  involving the electron-density distribu- 
t ion of the atoms in the uni t  cell, a relat ionship which 
does not  assume any  stat is t ical  results. However, i t  
requires a knowledge of the approximate  tempera ture  
factor, but,  if this  is known, the method  is much  
simpler  to apply  t han  Wilson's  method  and yields 
more accurate results. The method  has been tested 
in a number  of known cases and the results obtained 
are very  sat isfactory in every case. 

2. The fundamental  equation 

The electron densi ty  Q(r) at  a point  r inside the uni t  
cell m a y  be represented by  the  Fourier  series 

A C 6  

1 
~(r) = ~ 2`  F a  exp [2st i(BB.r)] ,  (2) 

where Z'~ denotes summat ion  with respect to the 
tr iplet  of integers h ,k ,  1; and B~ is the vector 
ha*+kb*+lc* in the reciprocal space. V is the 
volume of the uni t  cell. 

By  squaring (2) and integrat ing over the uni t  cell 
we have 

f 1 S Q~(r)dV = - i - ~ 2 ` Z ,  FHFB, exp [27d(BB+~,.r)]dV. 
V V H H "  V 

Since the integral  on the r ight -hand side is equal  to 
V6a,_H,, we have  

f ~ d V  = 1 v V 2̀H F B F - n "  (3) 

By  the applicat ion of Friedel 's  Law, F_B = F* ,  this 
reduces to 

S 1 1 q~dV = -f  ~ FHF* = -f  2 ,  2 ,  2 ,  IFh~zl ~ , (4) 
V h k l 

--oo 

a result  which has been given earlier by  Het t ich  (1935). 
Thus we get the following equat ion for the scale 
factor, c: 

d v  I h  k 
- o o  

Similarly,  in the  two-dimensional  projection along 
the c-axis we have 

c = A a2dA 2`,.~,Ihko, (6) 
a l h  k 

where a is the  projected electron densi ty  on the side 
of the  uni t  cell of area A. 

Now, if we assume tha t  the electron densi ty  in the 
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unit cell is obtained by the superposition o f  the 
electron-density distributions of individual atorfis, and 
that  there is very little overlap of the distributions of 
different atoms, then we may write 

2T 

fv@9(r)dV =Z==ll ~dv , (7) 

where N is the number of atoms in the unit cell. The 
corresponding equation 

holds if the atoms are all well resolved in the projec- 
tion. In  three dimensions, the error introduced by this 
assumption is practically negligible. 

Now, it is possible to represent the two integrals 

1 @~dv and I a~da in terms of certain integrals of the 

atomic structure factors. If ~s(r) is the electron den- 
sity of an atom s at distance r from its centre, and 
fs(~) is its atomic scattering factor for a value of 

= 4~sin0/A = 2~r[b[ = 2rtb, then by Fourier in- 
version theorem we have 

@s(r) = _-~/s(~)exp [2~(b.r)]dv*. 

Hence 

: 

Since f is a symmetric function and 

I f exp [2zd{(bx+b~).r}]dvdv* : ~(bl+b2),  
v v It' 

we finally obtain 

f Q~(r)dv=fv/~(~) dv* 
c~ 2 = 4r~ ~o/~(~)b~db (9) 

In a very similar manner we may obtain the expression 

for the two-dimensional ease. 

3. Application of the method  

In  determining the scale factor, using equations (5) 
and (6), one could either use directly the electron- 
density integrals of the individual atoms, or obtain 
them, using (9) and (10), from their tabulated scat- 

tering factors. The contribution to the total integral 
by different atoms could be calculated separately for 
each atom and for different temperature factors. 

Although the electron-density distributions of a 
large number of atoms have been calculated on the 
basis of modern wave mechanical theory (Hartree, 
1928) these are not to be had in explicit algebraic forms 
suitable for integration analytically. Instead, em- 
pirical formulae have been proposed to represent the 
distribution. Thus, it has been suggested (see Booth, 
1945) that  charge distributions obtained by Fourier 
syntheses could be very closely represented by ex- 
pressions of the form 

~s(r) = As exp [--Psr~] , (11) 

and this form, with P = 4.689, has been widely used 
by Booth (1945) in many studies. Obviously the value 
of the exponent as well as the form of the function 
would depend on the temperature factor, and it is not 
clear how the effect of these could be simply incor- 
porated in the above expression. Further, an atom 
with a Gaussian distribution would give an atomic 
scattering factor curve which is also Gaussian. The 
author's examination of a series of atomic scattering 
factor curves with different temperature factors showed 
that  the fall of scattering factor with sin 0/2 was 
much larger, for small values of sin 0/2, and much 
smaller, for large values of sin 0/2, than what would 
be represented by a Gaussian form. In fact, the 
scattering-factor values given by Robertson (1935) for 
hydrocarbons at room temperature were found to be 
represented with remarkable accuracy by an analyt- 
ical expression not of the Gaussian form but of the 
form R exp [-b~]. In view of these difficulties this 
direct method was not pursued further. 

the atomic integrals [l O~dv and I a~da] However, 
can be readily calculated from equations (9) and (10), 
using the tabulated values of the atomic scattering 
factors and the known value of the temperature factor. 
In equations (5) and (6), the Ihkz'S in the denominator 
would refer to the experimental values obtained with- 
out applying the temperature correction, so that  the 
integrals in the numerator should also refer to the 
same temperature. The effect of temperature can 
readily be incorporated in equations (9) and (10), for 
we know that  it changes f(~) to f(~) exp [-B(~/4zt)~], 
which we shall denote by f~(~). Now the value of 
~(~) for various values of ~ are available from standard 

tables for different atoms, and therefore a table of 
integrals on the right-hand side of (9) and (10) can 
be prepared for a number of atoms and for various 
temperature factors, B. Since the scale factor would in 
general have to be determined only for reflexions in 

a zone, the values of I a~da calculated as described 

above are given in Table 1 for the atoms C, H, O, 
N, S, C, Ni and Cu for various temperature factors. 

In applying the method, the following procedure is 
to be followed: 



G O P I N A T H  K A R T H A  

Table 1. Values of ~f~ (~)d~ for some atoms 
o 

819 

2B 0.5 1.0 1.5 2.0 2.5 3.0 3-5 4.0 4"5 5.0 5.5 6-0 6.5 7.0 10.0 

I-I 0.37 0.37 0.35 0.35 0.34 0.34 0"33 0"33 0.32 0.31 0.31 0.30 0"30 0.29 0.27 
C 38.8 32.3 26.5 23.5 21.3 19.7 18.4 17.3 16.3 15.6 14.9 14.4 13.8 13.4 11.3 
1~ 56.1 45.4 39-5 35.5 32-7 30"6 28.9 27.5 26-2 25.2 24.3 23.4 22.7 22.0 18.9 
O 82.4 68.3 60.6 55.4 51.6 48.6 46.1 44.1 42.4 40-8 39.4 38.2 37-1 36.1 31.3 
N a  197 167 150 137 127 119 112 107 101 97 93 89 86 83 69 
S 486 396 342 303 274 251 232 217 203 192 182 173 165 158 127 
C1 561 454 388 343 309 283 261 243 228 215 204 194 185 177 143 
Ni 1780 1401 1194 1058 958 881 818 765 721 682 648 618 590 566 457 
Cu 2033 1617 1387 1234 1121 1032 960 899 847 802 762 727 695 666 538 

Table 2. Results of application of the structure-factor method to some known cases 

,~mt 2 
Crysta l  Author*  Projec- ~ ~ ZIFc] 2 t ion  fl (°) A ~=1 1 ~o ~fB(~)d~ Z[Fc[9 n ZIFolO. 

=19 
Sodium sesqui 

ca rbona te  3 b 90.0 654 × 103 648 × 103 1.01 684 × 10 a 

D Mean 
ZIFo]2 ratio 

0"96 0.98 

H e x a m e t h y l e n e  
d iamine  
d ihydrochlor ide  1 a 90.8 

Aniline 
hydrochlor ide  2 b 90.0 

c¢ Methionine 4 b 90.0 
Methionine 4 b 90.0 

Copper proline 

689 × 10 a 615 × 103 1.12 641 × 103 1.07 1.09 

191 × 10 a 195 × 103 0.98 179 × 103 1.07 1.02 

285 x 103 279 × 10 a 1.02 314 × 103 0.91 0.97 
1140× 10 a 1122x 103 1.02 1105× 10 a 1-03 1.03 

d i h y d r a t o  5 a 108.0 424)< 103 377× 103 1.13 379× 103 1.12 1.12 

* 1: Binnio & Rober t son  (1949); 2: Brown  (1949); 3: Brown,  Peiser & Turner - Jones  (1949); 4: Mathieson (1952); 
5: Math ieson  & Welsh  (1952). 

? Note  t h a t  the  f ini te  in tegral  is used here to  allow for unrecorded  reflexions. 
0 

The temperature factor B may  be approximately 
obtained from a knowledge of the melting point or 
from the value of sin 0/). at  which the average inten- 
sity of the reflexions reduces to, say, 1/1000 of the 
maximum value. That  the exact value of B, provided 
it  is not very small, is not very important  is found 
from the value given in Table 1. The value of the 
@~ or a 2 integrals are then obtained from the table. 
Next  find 

~ ~ I h k z  (or Z ~ I h k 0  etc.) 
h k l h k 

from the observed values of intensities by finding the 
sum of all the observed intensities, the respective multi- 
plicities being taken into account. The ratio of the two 
gives the required scale factor. However, it must be 
remembered tha t  I000 is not directly observed. Conse- 
quently, the corresponding quant i ty  in the atomic 
integral, namely [F00o[ 2, should be omitted. Ob- 
viously ]F000] 9 = Z 9, where Z is the total  number of 
electrons in the unit cell. Hence the scale factor in the 
two-dimensional case is given by equations of the form 

c= A[s=~f a ~ d a ] - Z ~ / ~ I h k o ,  (12, 

where I000 is omitted in summing the intensity values. 
The finiteness of the series -~I could be allowed for 

directly by calculating the finite integrals where 
0 

~m is the maximum value of 4~ sin 0/4 up to which 
the reflexions have been observed. We are justified 
in doing this because the reflexion density is very 
large for large values of ~ so tha t  in these regions the 
mean intensity could be assumed to be the sum of the 
squares of the scattering factors of the various atoms 
in the unit  cell. Further,  any error due to this assump- 
tion is very small since -~I for values of ~ larger than 
~m will usually be very small for most light atoms 
present in organic crystals provided the maximum 
value of ~m obtainable by Cu Kc~ radiation is used. 

4. Tes t  of the val idi ty  of the m e t h o d  
in k n o w n  cases  

To show the extent  to which the assumptions of this 
method are justified, the method has been applied to 
a number of crystal projections where [Fhkz[ values 
have been given on an absolute scale so tha t  c = 1 
in these cases. The results are given in Table 2; both 
Fo and F c values are used in obtaining the sum Z I .  
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I t  is seen tha t  the agreement is satisfactory, the 
values being correct to within 10%. This could be 
regarded as appreciably better than  Wilson's method, 
where the value of c was found to vary  within the 
limit 0.8-1.5 whereas the correct value was expected 
to be unity. I t  is of interest to note tha t  even though 
we have assumed tha t  the plane of projection is per- 
pendicular to the direction of projection in evaluating 
the a2-integral, the agreement is good even in case 
of monoclinic crystals projected along axes other than 
the b axis. This has been so in the case of hexamethyl- 
enediamine dihydrochloride and copper proline di- 
hydrate,  where the plane of projection made angles 
90.8 ° and 108 ° respectively with the direction of 
projection. I t  is easily seen tha t  the actual a2-integral 
in the case of such projections will be less than  the 
value in the case of normal projections, and hence 
c values obtained by the above method are liable to 
be larger than the true value as the angle fl differs 
more and more from the value 90 ° . 

In  the case of unknown crystals, even if tables of 
the integrals 

feom,2f~(,) d ,  ~'m 2 or 1o ~f1(~e)d~ 

are not available they can be readily calculated from the 
tables of atomic scattering factors. An extended table 
of these factors for the lighter atoms, given by Vier- 
roll  & 0grim (1949), has been used by the author in 
preparing the Table 1. 

5. The  advan tages  of the present  m e t h o d  

The equation 

1 2 7  27 27 iFnkzi 2 = 27 ~'fP(~)d~, (13) 
V h k l S=I 0 

- - C O  

and the counterpart in two dimensions, which form 
the basis of the method of calculating the scale factor 
proposed in this paper, are exact relations. Therefore, 
when the temperature factor is known, this provides 
an accurate method of determining the scale factor. 

flow, it can be shown* (Sayre, 1951) tha t  

o h l 
- - 0 0  

~o tha t  w~ get the relationship 

2 7 2 7 2 7  IFhkzl -- 2 7 2 7 2 7  h k l  . (14) 
h b 1 h k l = 

- - C O  - - O O  

Equation (14) is an exact result which holds for atoms 
whose electron density falls to zero in a comparatively 

* The author  is grateful to Dr Cochran for pointing this out.  

short distance. Obviously, however, this form is not 
suitable for computational purposes since, for each 
crystal, the sum on the right-hand side will have to 
be evaluated and the number of terms occurring is very 
large (approximately h r x H × K × L). In  (13), however, 
only a small number (equal to N, the number of atoms 
in the unit cell) of integrals have to be added, once the 
preliminary tables of integrals have been prepared. 
The same tables could be used for all crystals. 

If, however, we confine our attention to a small 
range of sin 0/2, then (14) leads to the statistical result 
of Wilson as a special case, namely 

2¢ 

S=I 

The only advantage of the statistical method over the 
exact method appears to be tha t  it  can be used to 
determine both the scale factor and the temperature 
factor. However, as can be seen from Table 1, the 
exact method is not very sensitive to variations of 
the temperature factor. On the other hand, it  has the 
advantage tha t  it does not depend on any statistical 
result which may not lead to accurate results. Further,  
the present method has the advantage tha t  once the 
tables of the atomic integrals are prepared, the cal- 
culation of the scale factor ' is  much simpler than  in 
Wilson's method. On the other hand, the present 
method, as it stands now, could be used directly only 
for determination of scale factor of zero-level photo- 

graphs by using equations of the form A I (r~dA 
z~v'lFhk012, whereas Wilson's method could be used 
for any layer photographs since his averaging results 
hold for any large number of reflexions, provided the 
choice of reflexions is absolutely random. 

The author wishes to express his thanks to Prof. 
R. S. Krishnan for his kind interest and to Dr G. hi. 
Ramachandran for valuable guidance and help. 
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