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The Form Birefringence of Macromolecules  
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Perutz has shown that  the birefringence changes when the water in a haemoglobin crystal is re- 
placed by salt solution. The effect of this substitution in the birefringenee is calculated and com- 
pared with Perutz's observations. There is agreement as to the order of magnitude of the effect, 
but  the optical data indicated a more elongated molecule (a/b ,-~ 1.45) than that  deduced from the 
X-ray data (a/b ,.~ 1.3). This discrepancy is not to be stressed, since the form of the molecule is 
not yet certain and the measurements of change in birefringence are very approximate. A further 
exploration of the effect may  yield a useful method of estimating the form of other protein mole- 
cules. 

1 

In  the  preceding paper  Perutz (1953) has  measured 
the change in birefringence which occurs when a salt  
solution replaces water  between the molecules of the 
haemoglobin crystal.  The observed birefringence is 
considered to be due par t ly  to an intrinsic birefringence 
of the  molecule itself, and par t ly  to the elongated 
form of large molecules of high refractive index which 
are immersed in a l iquid of lower refractive index. 
Calculations of the  form birefringence, and of its 
var ia t ion when the refractive index of the l iquid is 
varied, are made  in this  note and compared with 
Perutz ' s  observations. 

If  paral lel  spheroids with major  and minor  axes 
a and b and dielectric constant  ~9 are arranged in a 
regular way in a l iquid of somewhat  lower dielectric 
constant  el, t hey  are polarized to a greater extent  
when the  electric field is parallel  to the long axis t han  
when it  is paral lel  to a short axis. The appropriate  
equations are derived in § 2 of this note, where it  is 
shown tha t  

f(e~-ex) 
e = ezJr 1 + ( 1 - ~ ~ z ) / s z } L  ' 

e being the  mean  dielectric constant,  f the  fraction of 
the  volume occupied by  the spheroids, and L a de- 
polarizing coefficient depending on the ratio a/b. L~, 
the  depolarizing coefficient for an electric field parallel  
to a, is less t han  L~ and L r when the spheroid is prolate. 
By  subst i tu t ing the  values of L in the formula,  and 
put t ing  nv = e=, n~ = e~, we can evaluate  the form 
bixefringence (n~-n~) or (n~-n=), which of course in 
this  case is of the posit ive type. 

The observed birefringence is the resul tant  of the 
intr insic birefringence and  the form birefringence, and 
we cannot  compare the  calculated form birefringence 
with observation because the intrinsic birefringence is 
not  known. We can, however, calculate the change in 
form birefringence A (n~-n~) when the  refractive index 
of the  l iquid is varied, and  compare this with Perutz 's  

observations. The form birefringence diminishes when 
salt  solution is subst i tu ted for water because nz, the  
refractive index of the  liquid, approaches n2, the  re- 
fractive index of the  protein. I t  should vanish  when 
n z is equal  to n 2. The intrinsic birefringence remains  
unchanged.  

We have assumed a value 1.60 for n~, the refractive 
index of protein, based on measurements  by  Adair  & 
Adair  (1934) of the  refractive index of protein solu- 
tions. This value m a y  be somewhat  uncertain,  bu t  a 
test  shows tha t  the calculated values of A(n~-n=) are 
affected only to a slight extent  by  comparat ively  large 
changes in the  value assumed for n~. For  instance if 
ne is in error by  0.05, the  calculated value of A(n~-n~) 
would be changed by  only 5?/0, which is much  less 
t han  the  error of the observations. A complication 
arises because the protein molecule is believed to be 
surrounded by  a water  layer into which the salt  does 
not  enter;  the  effect of this  water  layer is considered 
in the nex t  section where i t  is shown tha t  as a conse- 
quence of its presence the 'matching '  refractive index 
is 1.53 and  not  1.60. 
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Fig.  1. C a l c u l a t e d  v a r i a t i o n  of ~d(n~--no,)with n~ fo r  a/b r a t i o s  
of 1-2, 1.4, 1-6. 

The calculated var ia t ion of form birefringence with 
refractive index is shown in Fig. 1 for axial  ratios of 
1.6, 1.4, 1.2. The exper imenta l  measurements  of 
Perutz give the var ia t ion for a change of refractive 
index from 1.370 to 1.397. The measured change 
A(n~-n=) = A(n~-n~) is 0.0008+0.0002. This value 
indicates an axial  ratio between 1-3 and 1.6. The 
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axial ratio for the haemoglobin molecule deduced 
from packing considerations (Bragg & Perutz, 1952a, b) 
is 1.3, and the agreement is as satisfactory as can be 
expected in view of the difficulty of measuring the 
change in birefringence accurately and the uncertainty 
as to the precise form of the molecule. In  principle, 
therefore, measurements of form birefringence seem 
to afford a useful method of studying molecular shape 
in protein crystals. 

2 
(a) We are concerned here to derive an expression 

for the mean refractive index, and its anisotropy, of 
an array of similarly oriented transparent  ellipsoids, 
of refractive index n~, embedded in a medium of 
refractive index nx, the ellipsoids occupying a fraction 
f of the total  volume. This problem, as was kindly 
pointed out to us by Dr M. F. Perutz, has already 
been tackled by  Wiener (1912), using a method similar 
to tha t  which will be used below; but in view of the 
great length of the paper in which his result is con- 
tained, and the unfamiliarity of his notation, his work 
has remained largely unknown. I t  seems therefore to 
be of value to summarize the steps by which the result 
may be obtained, and to discuss its applicability to 
the present problem. 

(b) First we consider a single ellipsoid of dielectric 
constant e~ (= n~) immersed in an infinite medium of 
dielectric constant el (= n~). If a uniform electric field, 
F,  be applied parallel to one of the principal axes of 
the ellipsoid, the field within the ellipsoid, Ei, may be 
shown (Stratton, 1941, p. 213) to be uniform, and 
given by the expression 

F 
E~ = 1 +{(~-~1) /~1}L  ' (1) 

where L, the depolarizing coefficient, is a geometrical 
constant depending on the ratios of the axes of the 
ellipsoid. Values of L have been tabulated by Stoner 
(1945); a few values are given in Table 1 for an 
ellipsoid of revolution having F parallel and perpen- 
dicular to the axis of revolution, a/b being the ratio 
of the polar to the equatorial axis. Since for any 
ellipsoid the sum of the three principal values of L is 
unity, we have tha t  L , + 2 L .  = 1. 

Table 1 

a/b Lll Lj. 
Plane 0 1 0 

0-7 0.432 0.284 
Oblate spheroids 0-8 0.394 0.303 

0.9 0.362 0.319 
Sphere 1-0 0-333 0"333 

1-1 0"308 0"346 
1"2 0"286 0"357 

Pre la te  spheroids 1-3 0.266 0.367 

1-4 0.249 0.376 
Cylinder oo 0 0.500 

I t  may  also be shown tha t  the presence of the 
ellipsoid is equivalent to the addition of a dipole of 
moment 

V ( ~ - ~ ) F  
4g 1 + ( ( ~ - e l ) / s l ) L  ' 

V being the volume of the ellipsoid, 

from which it follows tha t  if the medium contains a 
few such ellipsoids, sufficiently far apart  for their 
mutual  interactions to be negligible so tha t  F may  be 
put  equal to the external applied field, E0, then the 
mean dielectric constant of the mixture is given by 
the expression 

= el-4-1 +{(~2-~1)/~1}L'  (2) 

where f is the volume fraction occupied by the ellip- 
soids. 

(c) Now for an assembly of fairly closely packed 
ellipsoids it is not permissible t5 regard F, the average 
field acting on an ellipsoid, as the same as the applied 
field E 0, and we must consider in this section the 
correction needed, which is equivalent to the well 
known Lorentz correction. For this purpose we con- 
sider a fairly sparse random array of oriented ellipsoids. 
I t  seems reasonable to suppose tha t  the addition of 
one more ellipsoid at random to this array will not 
destroy its random character, and if we consider all 
the positions which the extra ellipsoid can occupy we 
conclude tha t  these may include the whole space not 
already occupied by other ellipsoids. Consequently we 
may say tha t  the average field acting on an ellipsoid 
in a not too dense random array is the average field 
in the medium surrounding the ellipsoids. Denoting 
this by F, we have from (1) an expression for the 
average field, E~, within the ellipsoids. But  the applied 
field, E0, must be the same as the average field over the 
whole space inside and outside the ellipsoids; tha t  is 

E o = fE~+ ( 1 - f ) F .  

Hence we may  express Ei and F in terms of E 0, and 
thus calculate the mean polarisation and the mean 
dielectric constant" 

f(82 .--81) 
= ~1+ 1+ ( 1 - ~ f ) { ( ~ - s l ) / ~ l } L '  (3) 

This expression differs from (2) only by the factor 
( 1 - ] )  appearing in the denominator; thus (2) and (3) 
become identical as the concentration of ellipsoids is 
made small. 

Although (3) has been derived by consideration of 
a sparse distribution, it appears to be a good ap- 
proximation even for dense arrays. To take two special 
cases, for a dielectric sandwich, laminated in planes 
normal to E 0, L = 1, and (3) becomes 

- = -  1 - f  1 f + _ _ ,  
E E 2 E 1 
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which is correct for all f ;  while for an array of rods 
parallel to E0, L = 0 and 

= fe~ + (1 - f ) e l ,  

which again is correct for all f. Probably, indeed, (3) 
is a good approximation for all f if the ratio e2/el is not 
very great, and particularly good if the unit cell 
occupied by each ellipsoid has axial ratios comparable 
to those of the ellipsoid. Thus Rayleigh (1892) has 
shown that  the Lorentz correction (to which (3) re- 
duces when L = ½) applies extremely well in a cubic 
array of spheres, even when the packing is quite close. 

(d) Equation (3) may be applied immediately to 
derive an expression for the birefringence of an array 
of spheroids, such as a protein crystal. Since we are 
concerned here only with the component of bire- 
fringence due to the shape of the protein molecule we 
may take ~2 to be isotropic. Then from (3) it im- 
mediately follows that  

2 2 ( 1 1L~ ) 
n~-n~  = f (n~ -n~)  1 +kL~ 1 +k  ' (4) 

in which n~ and n~ are refractive indices, L~ and L~ 
depolarizing coefficients, for the electric field lying 
along the ~ and fl directions respectively, and k is 
written for ( 1 - f )  (n~/n~-1), a constant of the crystal. 
Now for many applications of (4) the molecule is 
nearly spherical, so that  L ,  and L~ are near ½. If L 
is written as (½+~,), each term in the second bracket 
of (4) may be expanded by the binomial theorem with 
sufficient accuracy for most purposes in the form 

1 
l + k L -  1 -  (l+½k), 

so that  
2 2 9k 

n-~-n~ - f (n~-n~)  ~-+--~ (L~-L~)  . (5) 

And if, in addition, f is around ½, (n~+n~) is very 
nearly the same as (n~+nl) so that  

9k 
n~-n~  - f ( n 2 - n i ) ~ - + - ~ ( L ~ - L ~ ) .  (6) 

I t  is this expression which is used above in discussing 
the form birefringence of crystalline haemoglobin. 

(e) :Finally we must consider how to take account 
of the fact that  a crystalline protein when immersed 
in a salt solution takes up salt in the interstitial water 
with the exception of a thin layer immediately sur- 
rounding each molecule. The system under considera- 
tion is thus a composite system, made up of ellipsoids 
of refractive index n2, each surrounded by a thin shell 
n3, and immersed in a medium n 1. A suitable procedure 

for allowing for this structure may be devised by 
considering the behaviour of a sphere rather than an 
ellipsoid, so as to make the electrostatic problem more 
tractable. Since in the range of values of n 1 covered 
in Perutz's measurements (n~-na) is considerably 
greater than (n 1-n3) , the major dielectric discontinuity 
occurs at the protein boundary rather than the water- 
salt solution boundary. I t  was therefore decided to 
treat the composite system as equivalent to a simple 
system, consisting of a protein molecule of the same 
size as the true molecule, but with a fictitious refrac- 

t I 

t i re index n2, in a medium n~; the value of n2 was 
determined by direct calculation so that  the simple 
system had the same dipole moment in a given external 
field as the composite system. I t  was found that  n~ 
decreases very nearly linearly with increase of n 1, the 
two becoming identical at that  value of n~ for which 
the composite ellipsoid should theoretically cause no 
nett deviation of the lines of force. If n2 is taken as 
1.60, n 3 as 1.33, and the bound water is taken to have 
a volume 36% of that  of the protein molecule, the 
following table of values of n~ is found: 

t n 1 no 

1"33 1"60 
1"38 1"58 
1"43 1-56 
1"48 1"54 
1"526 1"526 

These values of n~ have been used instead of n 2 in 
equation (6) in calculating the expected change of 
birefringence with nl, f being kept constant through- 
out. I t  is worth noting that  the value 1.526 at which 
n 1 = n~ is very close to ~, the average value of n in 
the hydrated protein molecule, 1.529, so that  the 
calculation of n~ may be reduced to a very simple rule: 

t - -  n~ - n÷ (n2-n)_ (n-n1) 
n - n  a 
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