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It  is shown that in principle the magnitudes and signs of certain structure factors can be calculated 
from a sufficient range of X-ray intensities. The range provided by experiment will seldom be 
enough to make the results of practical value. 

Introduct ion 

A routine procedure which does not require previous 
knowledge of any signs has been developed by Haupt- 
man & Karle (1953) for determining the signs of the 
structure factors for space group P1. Their claim 
that  the procedure is valid for crystals of any com- 
plexity, given only a knowledge of a sufficient number 
of X-ray intensities, is, however, incorrect, as has been 
pointed out by Vand & Pepinsky (1953, 1954) and by 
Cochran & Woolfson (1954). In the following sections 
a method is described by which both the magnitudes 
and the signs of certain structure factors (one-eighth 
of the total for space group P1) can in principle be 
calculated from a sufficient range of intensities. The 
results hold for centrosymmetric crystals and for some 
non-centrosymmetric crystals, but unfortunately the 
auxiliary conditions are so restrictive as to make the 
results of no value for the practical determination of 
any but the simplest crystal structures. 

Derivat ion  for space ~,roup P1 

The physical basis of the result is roughly as follows. 
Suppose that  N equal atoms per unit cell have coor- 
dinates ±ri ,  i = 1, 2, . . . ,  ½N. The corresponding Pat- 
terson function has N peaks of weight 1 at points 
±2r i  and -~(N2-2N) peaks of weight 2 at ±(ri±rj) ,  
i ~= j. In the squared Patterson function the weights 
of peaks belonging to these two classes are therefore 
1 and 4 respectively. By multiplying the Patterson 
function by 2, and subtracting from it a modification 
of the squared Patterson function, all peaks except 
those at ±2ri  can be cancelled out, and the positions 
of these remaining peaks bear an obvious relation to 

the atomic positions. These functions and operations 
have each a counterpart in reciprocal space, and when 
expressed in terms of structure factors the result is a 
relation between those structure factors whose indices 
are all even, and the intensities. 

To simplify the derivation, we take the atoms to 
have scattering factors f = 1 for all values of s = 
2 sin 0/k, that  is, they are point atoms. The peaks of 
the Patterson function then have scattering factors 
(more correctly, Fourier t r a n s f o r m s ) f 2 =  1, from 
which it follows that  the density distribution in an 
atomic peak and in a Patterson peak is the same. We 
now define 

½~ 
F(h) = 2 ~v cos 2~h.  r i ,  (1) 

j = l  

Q(r) = ~v h F(h) cos 2~h .  r ,  (2) 
8 < 8o 

P(r)  = ~v u F2(h) cos 2~h .  r .  (3) 
8 ~  8 o 

From (1) it may be shown that  

m=+~(N2--2~ ") 
2'2(h) = N + F ( 2 h ) + 2  ~ cos 2~h .  rm, (4) 

m=--~ ( N2-- 22~ ~) 

where rm = r i - r j ,  i 4= j. 

The summation over h is over all reciprocal-lattice 
points which lie inside a sphere of radius s 0. (The 
value of s o will be considered later.) 

We now define 

~2(r) -- ~ h  G(h) cos 2reh. r .  (5) 
8 ~ 2~0 

I t  then follows (Sayre, 1952) that  
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G(h) = ~v h, F ( h ' ) F ( h + h ' ) ,  (6) 
and that  

G(h) = g(h)F(h) , (7) 

where g(h) is the Fourier transform of a peak in the 
function ~9(r). In this case it is also the transform 
(scattering factor) of a peak of unit weight in the func- 
tion p2(r). In  (6), the summation over h '  is over all 
reciprocal-lattice points which are common to two 
limiting spheres whose centres are on points 0 and 
h respectively, and which both have radius s 0. Sup- 
pose there are n(h) such points. 

From (6) and (7) 

g(h)F(h) = n ( h ) F ( h ' ) F ( h + h ' )  . (8) 

If we now introduce unitary structure factors U(h) = 
F(h)/N, and make use of the result 

U(h) = N U(h ' )U(h+h ' ) ,  

(Cochran, 1953; Hughes, 1953), then (8) reduces to 

g(h) -- n (h ) .  (9) 
Next we define 

P2(r) = ~la Q(h) cos 2~h .  r ,  (10) 
~< 2so 

so that  
Q(h) = ~'h'  F2(h')Fg(h+ h') 

= n ( h ) F 2 ( h ' ) F 2 ( h + h ' ) .  (11) 

But Q(h), being a Fourier coefficient of the squared 
Patterson function p2(r), can be written 

/ m=T~(/~-2N) ) 
Q(h) = g(h) ~N2+F(2h)+4 ~ cos 2~h .  rm , (12) 

m=-~(2vl-220 

since P~(r) has a peak of weight N 2 at r = 0, N peaks 
of weight" 1 at ~:2rj and ½(NZ-2N) peaks of weight 
4 at r~ = ri+rj.  Furthermore, it has already been 
pointed out that  each peak of unit weight in PZ(r) 
has a 'scattering factor' g(h). Combining (4), (9), (11) 
and (12), by elimination we obtain 

F(2h) = 2 ( F 2 ( h ) - N } - { F ~ ( h ' ) F 2 ( h + h ' ) - N 2 } .  (13a) 

This result relates a structure factor to the intensities. 
If  the F ' s  do not correspond to point atoms, (13a) 

should be written as 

U(2h) = 2(NU2(h) - 1}-_N{N2U2(h') U2(h + h ' ) -  1 }. 

(l b) 
If we now define E(h) = N½ U(h), and make use of 

the fact that  E2(h) = 1, (13a) may be written 

E(2h )--N½[2{E2(h)- 1 } -  N (E2(h ') - 1 }{E 2 (h + h ' ) -  1 }]. 

(13c) 
If only the sign of a structure factor is required, 

S(2h)=S[2{E2(h)  - 1}-N{E2(h ' ) -  1} {E2(h+h ' ) -  1}]. 
(14) 

~ 'e  may compare this with Hauptman & Karle's 
result, which, for the case we are considering where 
only intensities are available for sign determination, is 

S ( 2 h ) = S [ 2  ( E 2 ( h ) -  I } 

1 2 h ,  {E2(h,)_ 1} {E2(h+h,)_ 1}]" (15) +p  

The two results do not agree. This is to be expected, 
since (15) corresponds to equating ~(r), with linear 
dimensions increased twofold, to a weighted sum of 
P(r) and p2(r), as has already been pointed out 
elsewhere. 

Is (13b) likely to be of practical value? First, it 
applies only when the atoms are equal. Secondly, the 
average of U2(h ' )U2(h+h ') must be taken over a 
sufficiently great range of indices. The physical basis 
of (13b) shows that  by 'sufficiently great', we mean 
that  the radius of the limiting sphere s o must be such 
that  if a Patterson function were calculated with 
values of U2(h) as coefficients, it would be found to 
contain completely resolved spherically symmetric 
peaks. Equation (14) may be expected to hold even 
when this condition is relaxed, at least when [U(2h)] 
is comparatively large; but with the range of data 
provided by experiment, even (14) may be expected 
to break down frequently if N is greater than about 6. 

The result (14) may find some application to crystals 
which contain a considerable number of atoms per 
unit cell, of which some four or six are equal and of 
considerably greater atomic number than the re- 
mainder. When the structure contains only two heavy 
atoms per unit cell it is in principle correct to equate 
S(2h) to the sign of either term on the right-hand 
side of (15), but in this instance it would be more 
realistic to evaluate the Patterson function, and then 
calculate the signs of all the structure factors (and not 
merely those with all indices even) from the coordinates 
of the heavy atom. 

Derivation for other space groups 

Somewhat different relations can be found which apply 
to other centrosymmetric space groups. For example, 
for space group P2~/a there is a definite relation be- 
tween the section through the Patterson function at 
y = ½, and the projection of the electron density on a 
parallel plane. An analysis similar to that  given above 
shows that  it then follow~ that  

U(2h,O,21) =- N{( -1)h+kU2(hk l ) } ,  (16) 
so that  

S(2h,O,21) = S [ ( - 1 ) n + k { E 2 ( h k l ) - l } ] .  (17) 

The average is over a range of values of k. The con- 
ditions that  must be satisfied for (16) to hold rigorously 
are the same as were described in the previous section. 
The result (17) may be expected to hold even when 
they are relaxed, especially if [U(2h,O,21)l is fairly 
large. The result (17) is in this case identical with 
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that  obtained by the statistical method of Hauptman 
& Karle (1953, p. 50). The connection between (17) 
and a Patterson-Harker section has already been 
pointed out by Vand & Pepinsky (1953); it is men- 
tioned here for the sake of completeness. Once again, 
the result will be of practical value only for simple 
crystal structures, or when the asymmetric unit in- 
cludes some small number of approximately equal 
heavy atoms. 

Similar results can be found for space groups which 
do not have a centre of symmetry, provided that  they 
project to give a centrosymmetric plane group. For 
example, for space group P2 

U(2h,O,21) = {NU2(hk l ) - l } ,  (18) 

while for space group P21 

V(2h,O,21) = 1V{(-1)kU2(hkl)}. (19) 

The same remarks apply to these two results as have 
been made about earlier ones. 

I t  is interesting to note that  for space groups P6x, 
P6x2 and R3 the magnitudes and signs of all structure 
factors in one zone can in principle be calculated from 
the general intensities. This is an immediate deduction 
from the work of Buerger (1946). 
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A New Photographic Method for Studying the Texture of Large Single Crystals 
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The orientat ion,  in one plane, of macromosaic regions covering a crystal  face several centimetres 
long m a y  be determined from one photograph  of the reflection pa t t e rn  of characterist ic  radia t ion 
when  the f i lm-to-crystal  distance is made large compared wi th  t h a t  between crystal  and  X- ray  
source, and  a grid placed in front  of the film is ro ta ted  in synchronism wi th  the crystal  rotat ion.  
A line X- r ay  source parallel  wi th  the crystal  ro ta t ion  axis is used. The reflections are rap id ly  
in terpre ted  wi th  the aid of a mas ter  pa t t e rn  given by  a good crystal  which need not  be of same 
mater ia l  as the specimen. 

in troduct ion  

In  order to assist the selection of suitable crystal 
specimens for use as monochromators it is desirable to 
develop methods for the X-ray examination of the 
reflecting planes which will give as much information 
as possible about the variation, over the surface of the 
plane, of the reflecting power, sharpness of reflection, 
and any large-scale misorientations that  may be 
present. Good quality monochromators are required 
not only in diffraction work but also in the rapidly 
widening field of fluorescence analysis. Knowledge of 
the above properties also plays a part  in studies of 
crystal growth and deformation. 

A number of methods exist which will give some of 
the required data, though possibly only in qualitative 

* Now at Division of Applied Science, Harvard University, 
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form. The experimental arrangements of photographic 
methods using characteristic radiation differ with 
respect to the relative positions of X-ray source, 
crystal, and film, and their relative motions, if any. 
They may be roughly classified according to whether 
the distance from source to crystal, S, is equal to, 
much less than, or much greater than R, the distance 
from crystal to film. When S = R the Bragg focusing 
condition is obtained and the position at which the 
reflected ray strikes the film is, for moderate beam 
divergences, to a close approximation independent of 
the point on the crystal giving rise to the reflection; 
and though fluctuations in reflected intensity may be 
observed as the crystal is rotated through the beam, 
no information can be obtained about the distribution 
and orientation of the areas contributing reflections 
at any instant. When S does not equal R the position 
at which the reflected ray strikes the film is a function 


