The objects of this journal are very similar to those of the Materials Research Bulletin described immediately above, and it is interesting that two journals concerned with the growth of crystals should have been initiated almost simultaneously. The Journal of Crystal Growth gives a much more attractive appearance, being printed in letter-press on smooth paper. This makes possible good reproduction of line drawings and photographs, of which the first issue contains a good many. In spite of the better method of production, the Journal of Crystal Growth is considerably cheaper. There are six papers and one letter to the Editor in the first issue, one paper being in German and the rest in English. Papers in French are also acceptable. The last four pages of the 58 comprising this issue are devoted to news items, including reports of three conferences.

The chief editor is M. Schieber, Department of Physics, Hebrew University, Jerusalem, Israel. He is assisted by two editors in the United States, eighteen associate editors in various parts of the world, and an editorial advisory board with sixteen members. One of these is also an editor-in-chief and another is an associate editor of the Materials Research Bulletin.


This volume contains the proceedings of the international conference organized by The Central Electricity Generating Board in collaboration with The Institute of Physics and The Physical Society at the Berkeley Nuclear Laboratories in September 1966. It is divided into seven 'chapters', each containing the texts (occasionally summaries only) of several papers. The first chapter consists of three invited papers on the role of radiation measurements in thermal reactors (G. H. Kinchin), in fast reactors (R. D. Smith) and in reactor-shield design (J. Butler). The remaining chapters consist of contributed papers and summaries of the discussion. The headings are Thermal neutron measurements (10 papers), Fast and epithermal neutron measurements (17 papers), Interpretation of indirect spectral measurements (four papers), Absolute methods and calibration (nine papers), Data and data handling (seven papers), and Measurement techniques (six papers).

Users of neutron-diffraction techniques will find several of the papers of interest, but otherwise there is little with crystallographic application.


This work offers an introduction to concatenation – a technique for constructing long codes that can be decoded without an excessive number of computations and yield performance like that contemplated by Shannon's coding theorem. A method of using likelihood information in algebraic decoding schemes is also introduced and evaluated.