
148 

Special Communication 

J. Synchrotron Rad. (1995). 2, 148 -154  

A Primer in Synchrotron Radiation: Everything You Wanted to 
Know about SEX (Synchrotron Emission of X-rays) but Were 
Afraid to Ask 

G. Margaritondo 

Institute de Physique Appliquee, Ecole Polytechnique Fedefale de Lausanne, CH-1015 
Lausanne, Switzerland, Sincrotrone Trieste, Italy, and Department of Physics and Astronomy, 
Vanderbilt University, Nashville, Tennessee, USA 

(Received 20 January 1995; accepted 3 February 1995) 

The basic properties of synchrotron radiation are derived with simple approaches, emphasizing 
phenomena rather than mathematical details. 

Keywords: synchrotron emission; X-rays; undulators; properties of synchrotron radiation. 

1. Introduction to SEX 

Synchrotron radiation is used by tens of thousands of 
scientists and technologists worldwide. Almost all of them 
are aware, at least qualitatively, of its basic properties: 
angular collimation, spectral characteristics, emitted power. 
Yet, I believe that many of them ignore, at least in part, 
the simple phenomena which are responsible for such 
properties. 

The complete treatment of synchrotron radiation can of 
course be found in the standard textbooks on electro- 
dynamics, such as the classics by Jackson (1962) or by 
Landau & Lifchitz (1966). I seriously doubt, however, that 
many of the practitioners of synchrotron radiation, non- 
physicists in particular, have had the time to study in depth 
such a treatment, so as to understand its basic properties. In 
some cases, this leads to misconceptions. 

For example, most people believe that the collimation of 
synchrotron radiation is, as many of its properties, a 
relativistic effect. Strictly speaking, however, this is not 
true: some degree of collimation is also present for very 
classic wave phenomena such as the emission of sound from 
a moving source. On the other hand, the collimation 
becomes extreme for synchrotron radiation because the 
speed of the source is close to c, and in this sense it is a 
relativistic phenomenon. 

Many texts of synchrotron radiation, including one of my 
own (Margaritondo, 1988), did not contribute sufficiently to 
a better understanding of synchrotron radiation properties, 
since they either presented complicated formalism or simply 
the end results, with little or no explanation of the 
underlying physics. 

I therefore believe that it might be interesting for users of 
synchrotron radiation and curious bystanders to have a 
simple description of the physical nature of the most 

© 1995 Intemational Union of Crystallography 
Printed in Great Britain - all fights reserved 

Table 1 
Symbols. 

In the source In the laboratory 
reference frame, reference frame, 

Fs EL 

Axis parallel to the velocity of the Xs xL 
electron 

Axis perpendicuiw to the Ys YL 
velocity of the electron 

Electron velocity v 
Electron energy E 
Electron rest mass mo m0 
Angular frequency and photon tOs OgL 

frequency 
Photon energy Es = htoS EL = ~lgt)L 
Photon momentum components Psx ; Psy PLx ; PLy 
Direction of light emission Os OL 
Magnetic field strength BL 
Bending radius RL 
Total emitted power P 
Undulator period '~'L 
Undulator K parameter K 
Undulator number of periods N~ N. 
Bending magnet pulse duration ~tL 
Critical frequency (bending magents) tOoL 
Critical photon energy (bending hO)cL 

magnets) 

important properties of synchrotron radiation.* My 
objective is to explain in simple terms the following 
properties: angular collimation, the spectrum of an un- 
dulator, the total power emitted by a bending magnet, the 
time duration of one of the pulses of the bending magnet, 
and the spectral distribution of such pulses. In order to 
simplify the understanding of the derivations, the symbols 
are summarized in Table 1 and the most important results in 
Table 2. 

* Readers interested in expanding their knowledge of synchrotron radiation 
can find a number of excellent texts, in particular Bachrach (1992) and 
Koch (1983), and for tmdulators, Elleaume (1992) and Brown (1992). 
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Table 2 
Main results. 

tan OL "" sin Os / y(cos Os + 1) (16) 

OL < "~ 1/y 

O~L = eBL/ymo (17) 

RL ~-- (moc/e)(y/aL) (18) 

R oc (E/BL) (19) 

P oc iy4/RL oc iE4/RL (20) 

K = eBLRL/2ZCcmo (24) 

P~or ~-- ( hgzccy2/2L)[1/(1 + I K2 + 0L2y2)] (25) 

A htOL/tO L = 1/Nu (26) 

80L ~-- (1 + K2/2)l/2/yN,,1/2 (27) 

tiO~cL ~-- 2 hcy3/RL (29) 

hwcL ~-- 2 hY2moeBL = ~_~..~)[ 2 he3 i (  \ E 2BL) (30) 

I must emphasize that no new physics will be derived, but 
only (hopefully) simpler, although approximate, versions of 
previous treatments. I must also emphasize that several of 
the derivations are not, or not entirely, new. For the sake of 
completeness and clarity, I decided nevertheless to include 
all of them. In most cases, acknowledging their origins is 
not easy, since the way of thinking has been in the 
background of synchrotron radiation for a long time but has 
seldom been formally published. 

2. The Doppler effect 

Since many properties of synchrotron radiation derive from 
the relativistic Doppler effect, we would like to remind the 
reader how the basic equations of this effect are derived. 

Consider a source of light which moves at speed v along 
the x direction. For simplicity, we will limit our analysis to a 
plane, defined by the x direction and by the y direction, as 
shown in Fig. 1 .  We will consider all phenomena in two 
different reference frames: Fs,  the frame moving with the 
source, and FL, the laboratory or observation frame. Seen 
from Fs,  the frame FL moves along the Xs axis with the 
velocity -v .  

We will hereafter label all quantities measured in 
reference frame Fs with the subscript S, and all those 
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measured in FL with the subscript L. The standard Lorentz 
transformations are, of course 

XL = y(Xs + vts ), (1) 

where 

YL = Ys, (2) 

tL --  (ts + VXs/C2), (3) 

}, = (1 -/32)-1/2, (4) 

/3=v/c. (5) 

Note that if the moving source is an electron in a storage 
ring, g is also proportional to the electron's (relativistic) 
energy, 

y = E / m o c  2, (6) 

where m0 is the rest mass. 
The simplest way to derive the Dopper effect laws is to 

consider the Lorentz transformations for momentum and 
energy, 

PLx = Y(PSx + v E s / c  2) (la) 

PLy = PSr (2a) 

EL = y(Es  + Vpsx). (3a) 

Consider now a photon emitted by the source along the x 
axis, for which Es = hcos, Psx = hcos/c, Psy = O, and 
EL = hcoL. Equation (3a) gives immediately hcoL = 

F(hcos + vhcos/c) = hcosF(1 +/3), and therefore 

COL = COS[(1 +/3)/(1 --/3)]1/2, (7) 

which is the best known form of the relativistic Doppler 
effect. Note that for relativistic speeds, v ~ c and therefore 
/3--~ 1 

(1 +/3"~ 1/2_ 1 +/3 = y(1 +/3) "" 2y, 
\l---~fl] - - (1 - - /32)  1/2 

and 

COL ~ 2ycoS. (8) 

Figure 1 
Coordinate systems: xs and Ys in the source reference frame Fs, 
and XL and YL in the laboratory reference frame FL. The source S is 
moving at the speed v along the x axis in the laboratory frame. 

Figure 2 
Geometry of the Doppler effect in the xy plane, with the detector at 
the angle OL with respect to the source. 
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We must now generalize our derivation assuming that the 
detector is notalong the x direction of the velocity of the 
source, but at an angle OL as shown in Fig. 2. Since we want 
to express the results in terms of OL, we will take the inverse 
transformation of (3a): 

Es = y(EL -- vp~), (3b) 

and, since Pt~ = (hcoL/C) cos OL, then ticos = y[hcoL 
--v(hcoL/C) COS OL] = hcoLy(1 -- ,6 COS OL), giving 

COL = COS[I/y(1 --/~COS 0L)], (9) 

which indeed reduces to (7) for OL = 0, and becomes 
COL = YCOS for OL = rr/2, the transverse relativistic Doppler 
effect. 

3. Angu la r  col l imation 

One phenomenon is common to all types of synchrotron 
radiation sources: angular collimation. This is also a 
common phenomenon to all wave sources in motion with 
respect to the detector. Consider, for example, a collimated 
sound wave emitted at an angle Os with respect to the 
motion of its source (see Fig. 3). We can write 

Os = tan-l(usy/Usx), (10) 

where Usy = us sin Os and Usx = Us COS Os are the 
components of the wave's velocity in the source frame Fs 
(and us is of course its magnitude). 

The angle OL of the wave's (detection) direction in the 
laboratory frame FL is given by 

OL = tan-l  (ULy/Ut~), (11) 

where ULy and ut~ are the components of the velocity of the 
sound wave in FL. These can be derived from the 
corresponding components Usy and usx. We will use in this 
case the non-relativistic Galilean transformation of veloc- 
ity, ULy = USy = US sin Os; Ul~ = Usx + v = Us cos Os + v, 
obtaining 

( ussin.0_s ) (. ,in__Os ) 
OL = tRn-I \usCOS0s + v = tan-a ~cos0s +~ss " 

(12) 

The angle OL is then smaller than Os, and the reduction is 
larger if the speed of the source is close to that of the wave. 
That is why, in the case of light waves like synchrotron 
radiation, the emission is collimated if the source, the 
electron, moves at relativistic speed. 

We now consider synchrotron radiation: an electron in 
non-relativistic motion with instantaneous centripetal 
acceleration emits waves with an intensity pattern 
_~ (1 - sin 2 0COS 2 ~) where 0 and ~0 are the angles defining 
the light's emission direction with respect to the velocity of 
the electrons and to the plane of their orbit, as shown in Fig. 
4. In the plane of the orbit (tp = 0), the pattern becomes 
~_ cos 20. This pattern corresponds to emission over a broad 
range of angles; for example, the intensity is decreased only 
by a factor of two on going from 0 = 0 to rr/4. 

In the relativistic case, the pattern _~ cos20s is the one 
seen in the frame Fs. Note that there is emission in Fs since 
the velocity of the electron is zero, but its (centripetal) 
acceleration is not. In fact, the inertial frame Fs is the one 
that instantaneously coincides with the position of the 
electron and has the same velocity, not the (non-inertial) 
frame that follows the electron. The pattern in FL is much 
more collimated: the emitted intensity is concentrated to a 
small angular range close to the tangential direction. This is 
the same type of phenomenon as for the non-relativistic 
case. However, the Lorentz transform properties enhance its 
importance. 

Suppose we have a light beam moving along the Os 
direction in Fs: what is its direction OL in FL? We can 
simply use the energy-momentum Lorentz transformations, 
equations (la)-(3a), remembering that Psx = (hcos/c) cos Os, 
PSy = (hcos /C) sin OS, p ~  = (IicoL/C) COS OL, PLy = (hcoL/C) 
X sin0L, therefore 

t a n O L = ( P L y ) = [  PSy_ I 
\pt~, l  Y(Psx + vEs/c2).] ' 

which, using (la) and (2a) becomes 

| (h°'s/c2rin_°_s } 
tan OL = i y[(liCOs / C) COS Os + vhcos / C 2] ' 

and therefore 

(13) 

(14) 

tan Oz = sin Os /y(cos  Os + ~). (15) 

Figure 3 
Collimation caused by the motion of the source for a classical 
wave: because of the Galilean transformation of the velocity, the 
direction of propagation of the sound changes from Os to OL. 

x 
Figure 4 
Definition of the polar coordinate system used to analyze the 
spatial distribution of the emitted radiation. 
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For relativistic electrons,/3 ~_ 1, and 

tan0L --~ sinOs/y(cosOs + 1). (16) 

This equation explains the extreme collimation of the 
emitted light in FL. For example, the half-intensity direction 
Os = r  r/4 in Fs corresponds in FL to an angle 
OL ~--tan-l[0.41(1/V)], which is extremely small for the 
relativistic case y >> 1. 

The value 1/y essentially determines the angular width of 
the beam: one can, in fact, demonstrate that the intensity's 
angular distribution pattern in FL is approximately propor- 
tional to the factor [1 -(yOL)2] 2, which becomes zero for 
OL = 1/y. 

4. Total emitted power from bending magnets 

We will now identify the factors that determine the total 
power emitted by a relativistic election in circular motion 
under the influence of a constant magnetic field of strength 
BL (in the laboratory frame, FL). The motion created by this 
field is indeed circular (if the vertical component of the 
velocity is zero) both in the classical case and in the 
relativistic case. 

In the classical case, the frequency of the cyclotron 
motion is given by WL = eBL/mo. In the relativistic case, we 
must replace mo with ymo, obtaining again a circular 
cyclotron motion of frequency 

WL = eBL/ymo (17) 

(seen from FL). Since WL is also given by v/RL ~--C/RL 
(RL = radius of curvature), we have 

RL "" (moc/e)(y/BL). (18) 

Using (6), this approximate result can also be written as 

Rcx (E/BL), (19) 

where E is the energy of the electron. 
In classical electrodynamics (Jackson, 1962; Landau & 

Lifchitz, 1966), an electrically charged particle circulating in 
a circular orbit with speed v would emit a total power P 
proportional to the square of the acceleration, Pcx a 2. On 
the other hand, the acceleration is proportional to VWL, 
therefore it is also proportional to vB and to pBL, where p is 
the particle's momentum magnitude. Therefore, the total 
radiated power is proportional to (pBL) 2. 

This is the important result, since it is also valid for a 
relativistic particle (Landau & Lifchitz, 1966). Only, for a 
relativistic case, the momentum magnitude is p -  ymov 
"" ymoc ~x y, thus the total radiated power is proportional to 
y2BL2. Using (16), this is also proportional to y4/RL2. 

This result is valid for each of the electrons circulating in 
a storage ring. The total power emitted by the ring is 
obtained by multiplication by the number of circulating 
electrons, N. On the other hand, the circulating current i is 
proportional to N/V:L, where rL ~--2~rRL/C is the rotation 
time of the electrons around the ring. Therefore, N is 
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proportional to geL ,  and the total emitted power 

P cx iy4/RL cx iE4/RL. (20) 

We have therefore found all of the relevant factors in P, 
and in particular the rather dramatic dependence on the 
fourth power of the electrons' energy. Note that this 
dependence derives from two relativistic effects: the energy 
dependence of the relativistic momentum, and the energy 
dependence of the relativistic cyclotron frequency. 

5. Emission spectrum: undulators 

The simplest case of spectral distribution of synchroton 
radiation is that of the linear undulator, i.e. a periodic series 
of magnets causing small undulations in the otherwise 
rectilinear trajectory of the electron beam, whose emissions 
combine together to give a narrow spectral line of extreme 
brightness (Margaritondo, 1988). This distribution is 
entirely determined by the Lorentz contraction and by the 
Doppler effect. " 

We will first simplify the analysis by neglecting the 
angular deviations caused by the magnetic field-induced 
undulation, and assume that the emitted light is detected 
along the axis of the undulator (Os = OL -- 0). An undulator 
of period 2L causes the emission of synchrotron radiation 
with the 'corresponding' wavelength. 'Corresponding' 
means that in the reference frame Fs the wavelength is 2L 
corrected for the Lorentz contraction, 2L/y, as schematically 
illustrated in Fig. 5. The photon energy corresponding to 
this wavelength is hws = h 2rrcy/2L. 

The photon energy seen from FL is, according to (8), 
Doppler-shifted by the (approximate) factor 2y, 

hWL = h4zrcy 2/2L. (21) 

Therefore, the undulator's (first harmonic) photon energy is 
simply the result of the Lorentz contraction and of the 
Doppler shift for collinear motion. 

We will now slightly complicate the analysis by assuming 
that the light is detected at an angle OL from the axis. The 

~ L  
I I 
I I 

I N N N  / / m m e 
mlslmmmmlv=c 

FL ---> Fs: ~LL --) T ~LL 
F L" O) s = 2x  c T / ~LL 
Doppler  shift: 
Fs: tOE = 4X C T 2/~L 

Figure 5 
A zero-order derivation of the fh'st-harmonic photon frequency OgL 
for a linear undulator. The frequency is determined by the period of 
the undulator 2L corrected for the Lorentz contraction and for the 
Doppler shift. 
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emission of the undulator is confined to angles smaller than 
--~ l / y ,  thus 0L must be very small. 

The Doppler shift factor is given by (9), and can be 
approximated as 

l, [1 0+3 ] 

On the other hand 

(1 - fl) (1 - -  fl)l/2 (1 - -  fl2)i/2 1 
y ( 1  - -  f l )  - -  (1  - -  ~ ) 1 / 2  - -  ( 1  + ~)1/2 - -  ( 1  + fl) - -  2 y  

thus the Doppler factor is 

~_2V l+2(-f l l - -?)  = 2 V  1 +  2-(-~2/32) j 

--~ 2y/(1 +0L2y 2) 

The emitted photon energy along 0L is, therefore, 

ho)L --~ ( h 4 ~ c ~ / 2 D  (1 + 0Lzy z) ' 

which correctly describes the angular dependence of the 
undulator radiation. 

Next, we must further refine the analysis by taking into 
account the undulations caused by the magnetic field. Once 
again, their effects can be understood in terms of Doppler 
shifting. We could describe them as corrections of the 0L 
angle. 

An alternative way is to consider that the undulations 
dynamically reduce the x component of the velocity of the 
electron with respect to its speed, v. Consider the emission 
at Or. = 0; the Doppler factor is _~ 2g = 2/(1 - ff)1/2; 
because of the undulations, however, ~ = v/c must be 
replaced by the ratio vii/c, where vii is the component of the 
electron's velocity along the undulator axis. In turn, 
vii = v(1 - cos 0 --~ v(1 - (2/2), where ~" is the (small) 
deviation angle with respect to the undulator axis. This 
angle changes with time, but we will consider an average 
value, ((). 

The angle ( is related to the rotation angle caused by the 
Lorentz force of the undulator's magnetic field. According 
to (17), the angular velocity in the relativistic case is 
eBjymo; we will then assume that the average (() is of the 

t t m a x i m u m  

2,./4 
Figure  6 
Rough estimate of the maximum value of the angle of detection ( 
for an undulator, which corresponds to the deflection caused by the 
Lorentz force during the motion along 2t./4. 
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order of magnitude of the rotation angle caused by this 
angular velocity during the time (2L/4v) '"  (2L/4c), the 
time necessary for the electron to travel a quarter period, 
2c/4, along the undulator (see Fig. 6). Therefore, 
(() o~ (eBL/ymo)(2L/4C), and on the average vii ~ v[1-  
(AeB2L/4cymo)2/2], where A is a constant. The Doppler 
factor then becomes: 

[l _ 

~2{1----/t2[1 - !(AeBL2L)2] 4cyr~ I, -1/2 

Calling K = (AeB2c/4cmo), this factor is approximately 

_~ 2/{1 - ¢~2[1 - (K/×)2 ]}  1/2 ~ 2~,/(1 + ~2KZ)~/z  

_~ 2×/(1 + ½K2), 

and we can write 

hwL "" (h47rcy2/2L)[1/(1 + ½K2)]. (23) 

This equation does contain all of the important fact6rs that 
determine the effects of the undulations. A less approximate 
derivation would specify the value of the constant A in the 
parameter K = (AeBL2j4cmo), giving 

K = eBL2L/27rcmo, (24) 

the K parameter of the undulator, which corresponds to the 
deviation angle with respect to the axis, measured in units of 
( l /y) .  

We can now combine the two corrections of (22) and 
(23), neglecting higher-order terms; the result is the well 
known first-harmonic undulator equation: 

hWL ~-- (h4:rrcyZ/2L)[1/(1 +½K 2 + 0LZy2)]. (25) 

It should be noted that the bandwidth of the emitted photon 
energy also depends on the number of periods, Nu. This is 
primarily the usual effect of coherent combination of waves 
that one finds, for example, in diffracton gratings or in the 
X-ray scattering of crystals. We can, therefore, use the 
general result 

AhWL/tOL = 1/Nu. (26) 

Note, however, that the bandwidth cannot be decreased by 
increasing the number of periods beyond certain limits, for 
example those caused by the energy spread of the electron 
beam. 

If we differentiate the logarithm of (25) with respect to 
the variable Or 2, we can easily obtain (for 0L--~ 0): 
80 L ~ ( l /y)(1 + K2/2)I/2(AhtOL/tOL)I/2; using (26), this 
expression becomes 

30L ~-- [(1 + KE/2)1/2/Nul/2](1/y), (27) 

which implies that the angular spread of the undulator's 
emission over its narrow bandwidth AhzoL is substantially 
smaller than the ( l / y )  value derived from (16). This 
extreme angular collimation and the corresponding very 
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high brightness is one of the most remarkable properties of 
undulators. 

An undulator emits not only the first harmonic whose 
properties are described by equations (25)-(27), but also 
higher order harmonics of photon energy nho)L, whose 
properties can be easily derived by modifying the same 
equations, for example, by replacing N. with nN. in (26) 
and (27). 

6. Time structure of the bending magnet emission 

The narrow angular width of the photon beam emitted by a 
bending magnet makes it similar to a very collimated 
searchlight. We will now find the duration of the pulse of 
light seen by a point detector. 

Assume, as shown in Fig. 7, that the detector is in the 
plane of the storage ring at a distance DL from the orbit of 
the electrons (DL is measured in the tangential direction). 
Assume that the emission of the detected pulse starts at time 
tL = 0 (in the frame FL); its emission will end at the time 
AL/V, where AL is the distance along which the electron 
travels between the beginning and the end of the emissions 
of the detected pulse. 

Consider now the detection times: the light emitted at 
tL = 0 is detected at the time tL = DL/C; the light emitted at 
tL = AL/V is detected at tL = AL/V + ( D L -  AL)/C. Not~ 
that the distance the light travels is no longer DL, but 
(DL -- AL). The difference between detection times is 

( ~ L  D L - - A L )  DL AL AL 
8 t L  = - -  - t -  - -  -- ; 

C C V C 

on the other hand, the change in the tangential direction 
angle, AL/RL, must of course equal the angular aperture 
1/y of the 'searchlight', thus AL ~_ RL/y, and 

1 

8tL "~" C/3 -- c/3(1 +/3) -- /3(1 +/3)" 

For/3_~ 1, 

6tL ~-- RL/2Cy 3, (28) 

an expression which contains the correct factors of the 

detect ion time = 0 
emission time = - DL/C 

Figure 7 

detect ion t ime = ~tL 

emission time = ~tL-(DL-AL)/C 

Estimate of the duration time of a pulse of synchrotron radiation, 
i.e. of the time distance 8tL between the detection of the leading 
edge of the angular distribution and the detection of the end edge. 
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pulse duration (Jackson, 1962; Landau & Lifchitz, 1966; 
Margaritondo, 1988). 

7. Spectral properties of the bending magnet 
emission 

The time structure of the emitted bending magnet radiation 
also influences its spectral distribution. The common way to 
explain this point is to say that a time pulse of width 
8tL ~-- (RL/2Cy 3) has Fourier components up to a frequency 
of the order of WcL ~-- 1/StL ~-- (2Cy3/RL). This would 
explain the order of magnitude of the 'critical photon 
energy' (Jackson, 1962; Landau & Lifchitz, 1966; 
Margaritondo, 1988) for bending magnet radiation, 

hO)¢L ~-- 2hcy3/RL, (29) 

which using (18) can also be written 

hWcL ~-- 2hy2eBL/mo = (2he/mo3 ca)(E2BL). (30) 

This explanation, however, misses in my opinion one 
important point. The critical photon energy is not, or not 
simply, as many people believe, the 'cut-off photon energy' 
for the spectral emission of the synchrotron. The critical 
photon energy marks the spectral point for which one half of 
the total power is irradiated at lower photon energies, and 
one half at higher (Margaritondo, 1988). In a sense, 
therefore, it should be thought of as the 'central' point of 
the distribution rather than as the 'cut-off', even if the 'cut- 
off' energy is still related to hWcL. The perception that hO)¢L 
is the 'cut-off' point is probably strengthened by the 
conventional way of plotting the spectral distribution, using 
a log-log scale, which emphasizes the low photon energy 
part of the distribution. 

The idea of a 'central' point in the distribution can be 
understood as follows. First of all, we must note again that, 
strictly speaking, the reference frame Fs is not the frame 
moving with the source, but the frame in linear motion 
whose velocity instantaneously coincides with the (tangen- 
tial) velocity of the source. Thus, the electron is accelerated 
in such a frame, and emits radiation. 

In the classical case, the cyclotron motion of (angular) 
frequency <OL = eBL/mo would cause the emission of 
photons whose spectrum is centered at the same frequency. 
In the relativistic case, the transverse Lorentz force of 
strength eVBL seen in Fs becomes an electrostatic force due 
to a transverse electric field of strength yVBL. This force 
must correspond to mo times the acceleration v2/RL, thus 
mov2/RL = yVeBL and  

V/RL = yeBL/mo. (31) 

This would give a radiation emission centered at the 
frequency (seen from Fs) of v/RL = yeBL/mo. 

After Doppler shifting, the frequency seen in FL is: 

O)cL ~-- (2y)(yeBL/mo) = constant x E2BL, (32) 

where E is the energy of the electrons and the constant 
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-- (2e/mo3c4). Equation (32) gives then a 'central' photon 
energy in the synchrotron radiation emission spectrum, 
htOcL, coincident with the 'critical' photon energy of (30). 

On the other hand, the short duration of the photon pulse 
affects the bandwidth of the distribution, due to the 
uncertainty principle (i.e. again, to the Fourier theorem). 
The total bandwidth is of the order of "~h(1/StL) 

(2hcy3/RL), i.e. of the same order as the magnitude of 
the 'central' photon energy. 

One can try to guess roughly the lineshape of the 
distribution by assuming that the broadening produces a 
Gaussian lineshape, of width (2hc~ /RL)=  (2he/mo3c 4) 
x(E2BL) and centred at htOcL "~" (2he/mo3ca)(E2BL). This 
lineshape is shown in Fig. 8, both as a linear-linear and as a 
log-log plot. One can see that it does roughly reproduce the 
well known characteristics of the bending magnet's spectral 
distribution, except for a displacement of the critical photon 

0.6 ~ / 

0.41 / 
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i 
, o - 6 i  . . . . . . .  , 

0.1 1 10 

(b) 
Figure 8 
Rough estimate of the spectral distribution of synchrotron radiation 
from bending magnets: (a) linear-linear plot of intensity versus 
photon energy normalized to the critical value; (b) log-log plot of 
the same function. 
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energy which is caused by the approximations used in its 
derivation. 

From such a derivation, we have learned that the spectral 
characteristics of the bending magnet radiation are the result 
of two factors: the Doppler shifting of the emission, and the 
broadening due to the short duration of the pulse. 

The connection between the 'searchlight' character of 
bending magnet radiation and its spectral broadening 
enables us to understand the difference between bending 
magnets and undulators. In the latter, the undulations are so 
small that the detector is continuously illuminated by the 
'searchlight'. The emission time structure no longer consists 
of the pulses defined by (28), but is the random super- 
position of wavetrains of N,, wavelengths each. The 
broadening due to the 'searchlight' effect does not take 
place and the radiation is concentrated in the narrow 
bandwidth defined by (26). 

The undulator condition of small angular undulations is 
satisfied if the value of K is sufficiently small, since Ky 
corresponds to the angular deviation of the undulator. For 

-~ large K's, one instead reaches the wiggler limit with large 
spectral bandwidth. 

8. C o n c l u s i o n s  

Synchrotron radiation is simple: enjoy it! 
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