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Analysis of EXAFS Data from Mixed-Shell Systems 
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A new method for analysis of EXAFS data from coordination shells containing two types of 
atoms distributed at two well defined distances is proposed. The method, which in effect isolates 
the individual contributions of the two subshells, can be viewed as a refinement of conventional 
techniques such as beat analysis and multi-shell least-squares fitting. No external information on 
the structure of any of the contributing subshells is required beyond the usual assumption of small 
or 'Gaussian' disorder. As much as fivefold reduction in the confidence limits of the coordination 
numbers in comparison with unrestricted multi-shell fits is demonstrated. The range of applicability 
and limitations of the method are discussed in detail. 
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1. Introduction 

Many systems of practical interest in EXAFS spectroscopy 
have mixed coordination shells, i.e. shells containing one 
or more types of atoms distributed at two or more unique 
distances differing by ca 0.5/~, or less. Such subshells are 
not resolved in the Fourier transform of the spectrum and 
cannot be analyzed by Fourier filtering. Methods that have 
been used on these systems to date include beat analysis 
(Martens, Rabe, Schwertner & Werner, 1977), simultaneous 
non-linear least-squares fitting of the subshells of interest 
(Sayers & Bunker, 1988) and 'difference' methods (Cramer, 
Eccles, Kutzler, Hodgson & Mortenson, 1976; Teo, Eisen- 
berger, Reed, Barton & Lippard, 1978). 

A typical problem with unrestricted multi-shell fits is 
that accurate results can usually be obtained for the bond 
lengths (to within 0.02 ]k), but the calculated coordination 
numbers (CN) and their ratios are inaccurate. The relative 
uncertainties in the CN often exceed 100%, especially when 
atoms of similar scattering power and phase shifts are 
involved. These effects can be traced back to the strong 
correlation between the CN and the EXAFS Debye-Waller 
factors a 2 in the standard EXAFS equation (Sayers, Stern 
& Lytle, 1971), as well as to A R - a  2 correlation in systems 
with small bond-length differential AR. Inter-shell param- 
eter correlation, e.g. N i - N j  and A R - t r  2 correlation, is 
particularly detrimental to achieving tight confidence limits 
for the adjustable parameters. An often-used approach to 
reduce these correlations and extract structural information 
from the data is to fix or restrict the variation of some of 
the parameters, e.g. CN ratios, Debye-Waller factors and/or 
edge energy. However, this requires a priori knowledge 
(usually obtained by other methods) that is not readily 
available in some cases. 

Data with clearly manifested beats can also be analyzed 
by beat analysis, which gives reliable results for the bond 
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lengths but does not lead to any improvements in the CN 
estimates. 'Difference' techniques are applicable directly 
only in the presence of a dominant subshell. Detailed 
knowledge of the structure of at least one of the contributing 
subshells is required otherwise (Teo, 1986). 

In this paper we will describe some results from a new 
method for EXAFS data analysis applicable to systems 
with subshells of atoms distributed at two well defined 
distances from the central absorber (Boyanov, 1995). In 
principle, the method may also be used to filter multiple- 
scattering contributions that 'contaminate' single-scattering 
data. The contribution of each subshell to the EXAFS spec- 
trum is isolated through mathematical manipulations and 
is subsequently analyzed individually, which reduces (and 
in some cases eliminates) the above-mentioned parameter 
correlation and hence the uncertainties in the results. As 
usual, external information for the phase shifts of the central 
and backscattering atoms is required, but no assumptions 
are made about the structure of the subshells beyond 
the usual 'small' or 'Gaussian' disorder approximation, 
i.e. neglect of cumulants (Bunker, 1983) of order n > 2. 
This is not a serious limitation as the phase shifts can 
be obtained experimentally from standard compounds or 
calculated reliably by ab initio methods (Rehr, Zabinsky & 
Albers, 1992; Rehr, Mustre de Leon, Zabinsky & Albers, 
1991). 

The method has so far been tested with experimental Fe 
(b.c.c.), CuO (monoclinic), Fe2Zr (cubic) and Fe304 (cubic) 
EXAFS data, where it has been shown to lead to improve- 
ments in CN estimates and reductions in CN confidence 
limits by as much as a factor of five in comparison with 
unrestricted multi-sheU fits. 

2. Theory 

The total amplitude A and phase ~ for a combination of 
two subshells of amplitudes and phases A1, qOl, A2, qo2, 
is given by A exp(iqo) = Alexp(iqol) + A2exp(i~p2), or 
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taking real and imaginary parts 

A cos ~ = A1 cos ~1 + A2 cos ~2, ( la)  

A s i n ~  = A1 s i n a i  + A2 sin~92. ( lb) 

This can be trivially rewritten as A = Alexp[ i (~ l  - ~p)] + 
A2exp[i(qa2 - qa)], or taking real and imaginary parts 
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simultaneously until the nodes of the functions sin bqol, 
sin 6~2 and sin(6~2 - &Pl) are aligned, as illustrated in 
Fig. 1. The amplitudes A1 and A2 may then be calculated 
from (3), and single-shell X data may be obtained: 

Xl(k)  = A l ( k ) s i n ~ l ( k ) ,  

xz(k) = A2(k)sin' ,p2(k).  

(4a) 

(4b) 

A = A1 c o s  6 ~ 1  + A2 cos 6q02, 

0 = A1 sin 6~pl + A2 sin 6g92, 

(2a) 

(2b) 

where 6~i - (~i - ~). If A~ are non-zero, (2b) implies that 
the nodes of sin 6~1 and sin 6~2 occur at the same values 
of k, i.e. at the nodes 6qOl and 6~2 differ by an integer 
multiple of 7r. 

In general ~ l (k )  and ~2(k) have contributions from the 
central atom and backscatterer phase shifts ~i(k)  (which 
are presumed known), as well as structural contributions. If 
both subshells have sufficiently small disorder that they can 
be treated as Gaussian [i.e. the cumulants (Bunker, 1983) of 
order n > 2 are negligible], then the only relevant structural 
terms are 2kRi ,  where Ri (i = 1, 2) are unknown and can 
be regarded as parameters. 

In this problem, A and ~ are known quantities that 
are determined experimentally. The scattering phase shifts 
~bi(k) are presumed known, so if Ri were known the phases 
qoi(k) = 2kRi  + ~/Ji(k) would be determined, and we can 
solve (2) for A1 and A2: 

A1 = A sin &P2/sin(&p2 - 5qOl),  (3a) 

A2 = A sin 6~1/sin(Sg)l  - @92). (3b) 

The Ri values are not known precisely, but often rea- 
sonable initial guesses can be obtained (e.g. with multi- 
shell least-squares fitting or beat analysis). The values 
of Ri and the edge energy E0 may then be adjusted 
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Figure 1 
Node-alignment procedure for metallic Fe. Solid line: sinr~t; 
dashed line: sinr~2; dotted line: sin(b,;2 - 6 ¢ t ) .  The near- 
neighbor distances R~ and R2 and edge energy Eo are optimized 
simultaneously until the nodes in the phase differentials occur at 
the same k values. 

When suitable standards are not available for the scattering 
phase shifts, it will not be possible to align the nodes with 
the necessary precision (typically 0.002/~-x),  and sharp 
'glitches' will be present in the single-shell data calculated 
from (3) and (4). As long as the width of these glitches is 
considerably less than 7r/(2AR), where A R  = R2 - / 2 1 ,  
they can be safely removed without any adverse effects on 
the quality of the results that can be obtained from the data. 

As will be shown in §4, this procedure can be 
implemented successfully in cases of practical interest. The 
single-shell spectra may be subsequently fitted individually, 
which will be shown to result in confidence intervals 
for the fitting parameters that are several times smaller 
than those obtained with unrestricted multi-shell fits. As 
discussed in §l, the tightening of the confidence limits 
results exclusively from the elimination of the strong inter- 
shell parameter correlation in multi-shell fits, which is the 
main source of uncertainty in the fitting procedure. 

3. Experimental methods and data processing 

Four materials will be considered here: copper oxide (CuO), 
metallic iron (Fe), iron-zirconium intermetallic compound 
(Fe2Zr) and iron oxide (Fe304). 

The experimental data for CuO, Fe and Fe2Zr were 
collected in fluorescence mode at beamline X l l - A  at 
NSLS, with an electron-beam energy of 2.528GeV and 
stored currents between 110 and 240mA. The primary 
X-ray beam was monochromatized with a non-dispersive 
variable-exit S i ( l l l )  monochromator. Energy resolution 
was estimated to be at least 3 eV from the copper 3d 
near-edge feature. Harmonics were suppressed by detuning 
15% from the maximum intensity. Copper-edge data were 
collected at room temperature with an Ni filter, and iron- 
edge data were collected at liquid-nitrogen temperature 
with an Mn filter. All filters were approximately three 
absorption lengths thick. In both cases the Io and I f  
detectors were continuously flushed with 60cm 3 min -1 
nitrogen and 60 cm 3 min -1 argon, respectively. The CuO 
sample (99.99%+, Aldrich) was in the form of a 2 mm-thick 
self-supporting 13 mm pellet. The Fe sample was a thin 
film (ca 3000/~) sputtered on a 1 mil (25.4 gm) Kapton 
substrate. The Fe2Zr sample was a 10 mm-thick button. 

Iron oxide (Fe304) data were collected at room temper- 
ature in transmission mode on beamline 7-3 at SSRL in 
dedicated mode. The sample preparation and measurement 
conditions have been described previously (Bunker, 1984). 
The beam current and energy were 2.95 GeV and 80 mA, re- 
spectively. The primary X-ray beam was monochromatized 
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with a non-dispersive Si(220) monochromator. Harmonics 
were monitored with an NaI scintillator PMT and re- 
jected through detuning of the monochromator crystals. 
The I0 and I ion chambers were continuously flushed 
with nitrogen. Energy calibration was set to 8980 eV at the 
Cu 3d edge feature and maintained with a COSO4.7H20 
standard positioned in series with the sample. The sample 
and standard were brushed on Scotch Magic transparent 
tape, and six layers of tape were used to achieve a step size 
Amx ~ 0.3. Particle size was estimated to be less than 
1 ~m (sedimentation). 

McMaster corrections (McMaster, Kerr, Del Grande, 
Mallett & Hubbell, 1968) were calculated for all experi- 
mental X data. In addition, fill-gas (Bunker, 1988) and 'self- 
absorption' (Tan, Budnick & Heald, 1989) corrections were 
applied to the fluorescence data. Background subtraction 
and Fourier filtering were performed with the Macintosh 
version of the University of Washington/Naval Research 
Laboratory package ( M a c X A F S ,  Version 3.1) (Bouldin, 
Elam & Furenlid, 1995) in the ranges indicated in Table 1 
and Fig. 2. Structural parameters were determined with non- 
linear least-squares fitting to the standard EXAFS equation 
(Sayers et  al., 1971) with a program written in-house. The 
scattering phase shifts Zhi(k) and backscattering amplitudes 
F i ( k )  used in the fits were calculated with F E F F 6 . 0 1 a  

(Rehr et  al., 1991, 1992) from the known crystal structures 
of CuO, Fe, Fe2Zr and Fe304 (Wyckoff, 1963). All crystal 
structures used by F E F F  were generated by A T O M S 2 . 4 1  

(Ravel, undated). Multiple-scattering effects were found 
to be negligible in the analyzed data ranges. Single-shell 
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Table 1 
Fourier transform and fitting ranges. 

FTR = tbrward transform and IFTR = inverse transform. A 0.5 A Hanning 
window was used in the forward transform and was divided out from the 
filtered data. 

Sample FFR (,&- 1 ) IFI'R (A) Fit (.&- 1 ) 

Fe 2.75-14. I 0 1.50-2.85 3.85-13.50 
Fe2Zr 3.45-14.20 1.57-3.20 4.1 0-13.80 
CuO 2.90-13.80 2.27-3.38 3.50-13.50 
Fe304 2.60-12.00 0.74--2.00 4.15-11.15 

data for the atomic pairs of interest were generated from 
the FEFFnnnn .da t  files and were Fourier filtered over 
ranges identical to those given in Table 1 before being 
used in the fits. The amplitudes of the theoretical data were 
additionally adjusted by constant factors determined from 
fits to experimental data from standard compounds (Fe and 
Cu foil). 

Unless explicitly stated otherwise, the edge energy 
E0, coordination numbers Ni, bond distances Ri, and 
Debye-Waller factors o/2 were used as adjustable pa- 
rameters. The optimization procedure was a modification 
of the Levenberg-Marquardt algorithm as implemented 
in M I N P A C K - 1  (More, Gabrow & Hilstrom, 1980). The 
program minimized the quantity 
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Inverse Fourier transform ranges: (a) k2-weighted pure iron; (b) k-weighted iron-zirconium intermetallic compound (Fe2Zr); (c) 
k3-weighted copper oxide (CuO); (d) k3-weighted Fe304. 
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Table 2 
Structural parameters for metallic Fe. 

XRD values are from Wyckoff (1963). All EXAFS coordination numbers are corrected for self absorption. 
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XRD Two-shell  tit b,,: method 
Subsheli  N R (]k) N R (,~) cre x 104 (~2 )  N R (A) cre × 10-I (,~2) 

Fe -Fe l  8.0 2.49 8.1 -4- 2.8 2.47 -4- 0.02 22 -t- 21 8.5 -4- 1.9 2.48 4- 0.01 21 -t- 15 
Fe-Fe2  6.0 2.87 9.1 4- 7.6 2.84 + 0.04 69 4- 66 5.2 ± 1.7 2.85 ± 0.01 50 + 24 

where w will be referred to as the weight of the fit, and N - pts 

is the number of data points in the fitting range. Confidence 
limits for the fitting parameters were determined from the 
square roots of the diagonal elements of the covariance 
matrix of the fit, multiplied by the value of ~ 2  at the 
minimum. This is equivalent to assigning an error bar to 
every data point equal to the r.m.s, difference between the 
experimental data and the best fit, and setting the minimum 
value of (Ax)2 to 1.0 (Press, Flannery, Teukolsky & 
Vetterling, 1989). The confidence limits determined in this 
way give the deviations of each fitting parameter from 
the 'optimal' values that double (Ax)2 when all other 
parameters are simultaneously relaxed. It should be noted 
that with the above definition the quoted confidence limits 
do not represent independent estimates of the uncertainties 
in the adjustable parameters, but are simply a measure of 
the sensitivity of the function (Ax)2 to small variations 
in these parameters, subject to the chosen normalization 
[equation (5)] and/or restrictions imposed on the fit. 

4. Examples and discussion 

This section illustrates the derivations in ~2 with several 
practical examples. The data analysis proceeds as follows: 

(i) Fourier filter the data corresponding to the two 
subshells of interest. 

(ii) Extract structural parameters from the filtered data 
with an unrestricted least-squares fit of the two subshells. 

(iii) Isolate the contribution of each subshell according 
to the procedure described in §2 (hereafter referred to as 
the b~ method). 

(iv) Fit each subshell individually while holding the bond 
distances and edge shifts fixed to the values derived from 
the 6~ method, and compare the results with those obtained 
witla the two-shell fit. It should be noted that the elimination 
of the bond lengths Ri and edge shift E0 from the fitting 
procedure is done solely for the sake of consistency. No 
degradation in the quality of the results occurs if these 
parameters are allowed to vary. 

In all cases it was found that the 6~ method gives results 
that are in better agreement with the known structural 
parameters than the unrestricted two-shell fits. 

4.1. Metallic iron 

Metallic iron (Fe) has a b.c.c, structure with the first 
shell consisting of eight near neighbors at 2.486/~, and six 
near neighbors at 2.870A (Wyckoff, 1963). Experimental 
EXAFS data were Fourier transformed in the range 2.75- 

14.10 ]k -1 and filtered in R space in the range 1.50-2.85 
(Fig. 2). The results of a k 2 unrestricted two-shell fit to the 
filtered data are shown in Table 2 and Fig. 3. The filtered 
data were also processed with the 6~ method. An edge shift 
E0 = 2.0eV and near-neighbor distances R1,2 = 2.459, 
2.865 A were required to align the nodes of the phase- 
difference functions at k = 4.034, 8.293 and 12.452 A -1, as 
shown in Fig. 1. Almost perfect alignment of the nodes of 
the sine functions was possible in this case, and no visible 
discontinuities were present in the single-shell data. Results 
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Figure 3 
Iron (b.c.c.): experimental (solid line) and fitted (dashed line) data. 
(a) Two-shell fit; (b) Fe-Fe~ subshell; (c) Fe-Fee subshell. 
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Table 3 
Structural parameters for Fe2Zr. 

XRD values are from Wyckoff (1963). All EXAFS coordination numbers are corrected for self absorption. 

XRD Two-shell fit 6~ method 
Subshell N R (~,) N R (A) 0 .2 X 10 4 (,~2) N R (/k) 0.2 x 10 4 (,~2) 

Fe-Fe 6.0 2.49 5.7 4- 1.2 2.49 -f- 0.01 10 4- 12 6.0 4- 1.2 2.49 4- 0.01 11 4- 12 
Fe-Zr 6.0 2.92 4.2 -F 2.0 2.92 4- 0.01 4 4- 21 6.0 4- 1.7 2.92 4- 0.01 17 4- 14 

from single-shell fits to the 6~-filtered data are given in 
Table 2 and Fig. 3. 

The bond distances obtained from the unrestricted two- 
shell fit are in agreement in the X-ray diffraction (XRD) 
values, but the discrepancy in the CN ratio is at least 35%, 
and the relative confidence limit for the Fe-Fe2 subshell 
CN is 83%. As mentioned earlier, this is not unusual for 
unrestricted fits of subshells containing atoms of similar 
scattering power and phase shift. However, the coordination 
numbers and their ratio obtained with the 6~ method 
are in agreement with the known values. In addition, the 
confidence interval for the Fe-Fe2 subshell is reduced by 
a factor of five. 

4.2. Iron-zirconium intermetallic compound 

The structure of the iron-zirconium intermetallic com- 
pound (Fe2Zr) is cubic (space group Fd-3m) with six Fe 
atoms at 2.493/~, and six Zr atoms at 2.923 A around each 
Fe atom (Wyckoff, 1963). Results from the unrestricted 
two-shell fit and the fits of the individual subshells (isolated 
by the 6~ method) are shown in Table 3 and Fig. 4. The 
improvements in the 6~-method results are not as dramatic 
as in the previous example, but are nevertheless significant. 

4.3. Copper oxide 

Copper oxide (CuO) has a monoclinic structure [space 
group C2/c (Wyckoff, 1963)], and was used 15 years ago 
to develop the beat-analysis method (Martens et al., 1977). 
The first shell around each Cu atom consists of an irregular 
square of four O atoms at ca 1.95 A, from the central Cu 
atom. The second shell is dominated by two Cu subshells 
consisting of four atoms each at 2.88 and 3.07 A., but also 
has contributions from two O atoms at 2.77 A and two Cu 
atoms at 3.16 A,. Thus, CuO does not fall into the domain 
of the 6q¢ method, but since the signal is dominated by the 
2.88 and 3.07 A Cu subshells, it may be used to test the 
robustness of the method. The results from an unrestricted 
two-shell fit are shown in Table 4 and Fig. 5. The fit quality 
is excellent and the bond distances are in agreement with 
the XRD values, but the ratio of the coordination numbers 
is 510% in error. The fitting results for the individual 
subshells (isolated by the 6qo method) are shown in Table 4 
and Fig. 5. The CN ratio is still more than 50% in error, 
and there is a clearly visible mismatch in the amplitudes 
of the Cu--Cu2 subshell fit, which is probably due to the 
ignored contributions of the two Cu atoms at 3.16/~. It is 
interesting to note that the results for the Cu-CUl shell are 
in agreement with the XRD values. 

4.4. Iron oxide 

Iron oxide (Fe304) has a cubic structure [space group 
Fd3m (Wyckoff, 1963)]. Two kinds of Fe sites are present in 
this compound, one with four O atoms at 1.876/~ from the 
central Fe atom (33.3% of the sites), and a second one with 
six O atoms at 2.066/~ from the central atom (66.6% of 
the sites). This compound is interesting for several reasons. 
First, the bond-length differential between the subshells 
is only 0.19/~, so this compound is at the lower limit 
of applicability of the ~ method (see §4.5). The bond 
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Figure 4 
Fe2Zr: experimental (solid line) and fitted (dashed line) data. (a) 
Two-shell fit; (b) Fe-Fe subshell; (c) Fe-Zr subshell. 
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Table 4 
Structural parameters for CuO. 

XRD values are from Martens et al. (1977). All EXAFS coordination numbers are corrected for self absorption. 
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XRD Two-shell fit ~'V method 
Subshell N R (A,) N R ( A )  0 .`2 x 10 4 (,&2) N R (,&) 0.2 X 10 4 ( ~ 2 )  

Cu-Cu~ 4.0 2.88 10.2 + 3.3 2.93 + 0.01 50 4- 45 3.7 4- 1.7 2.90 + 0.00 51 4- 27 
Cu-Cu2 4.0 3.07 2.0 4- 1.3 3.14 4- 0.01 8 4- 26 2.4 4- 1.5 3.10 + 0.01 24 ± 31 

Table 5 
Structural parameters for Fe304. 

XRD values are from Wyckoff (1963). Two-shell results are obtained from 'restricted' fits with a~.. 2 held fixed at 0.0010 and 0.0020 ,A,2, respectively. 

XRD Two-shell fit h,# method 
Subshell N R (/k) N R (,~) 0.2 x 104 (,~2) N R (,~,) a 2 x 104 (,~2) 

Fet-O 1.3 1.88 2.6 4- 1,0 1.88 4- 0.06 -- 1.3 4- 0.5 1.89 4- 0.02 10 4- 15 
Fe2-O 4.0 2.07 3.8 4- 1.3 2.02 4- 0.06 -- 2.9 4- i.0 2.03 dz 0.02 20 4- 20 
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Figure 5 
Copper oxide (CuO) fitting results: experimental  (solid line) and 
fitted (dashed line) data. (a) Two-shell fit; (b) Cu-Cul  subshell; 
(c) Cu-Cu2 subshell. 

-3 

2 

o r-,i 

-2 

- 2  

I 

3 

0 

I 

1 I I 

(a) 

I I t 
(b) 

I I I I 
(c) _ 

I 

I I I I 

5 7 9 11 

k(/~ -~ ) 

Figure 6 
Iron oxide (Fe304) fitting results: experimental  (solid line) and 
fitted (dashed line) data. (a) Two-shell  fit; (b) F e j - O  subshell; (c) 
Fe2-O subshell. 
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distances in the first shell are also substantially shorter 
than in the other model compounds used in this study, and 
thus the effects of the background on the results potentially 
can be evaluated. Unrestricted two-shell fits of the filtered 
data were completely unreliable due to the additional strong 
correlations between the distance differential AR and the 
Debye-Waller factors of the subshells. In order to restrict 
this correlation and obtain some structural information 
from the two-shell fits, the Debye-Waller factors were not 
allowed to vary during the optimization. The results of this 
restricted fit are shown in Table 5 and Fig. 6, and are 
in agreement with the known structural parameters. The 
fitting results for the individual subshells (isolated with the 
6qo method) are also given in Table 5 and Fig. 6. The 
bond distances are in agreement with the XRD values, 
even though no additional restrictions were imposed in 
the fits. The source of the observed discrepancies in the 
coordination numbers is discussed below. 

4.5. Range of applicability and limitations 

The spatial resolution of the b q¢ method is determined 
from the requirement that the sin(6q0i) functions have at 
least one node in the data range of interest, which may also 
be written as 

2k(R2 - R 1 ) +  [ ¢ 2 ( k ) -  ¢:(k)]  = mTr, (6) 

where m = 0, + 1, + 2  . . . . .  Here, ¢i(k)  (i = I, 2) are the 
scattering phase shifts for the two subshells. Equation (6) 
must be satisfied for at least one k in the range kmin, kmax, 

and may be compared with the equation for the positions 
of the beats in the amplitude of the two-shell data (Martens 
et al., 1977): 

2k(R2 - R 1 )  7 t- [ ¢ 2 ( k ) - / / ) l ( k ) ] -  (2/'t + 1)Tr, (7) 

where n = 0, -t-1, + 2, . . . .  It is clear that two nodes are 
present for every beat in the amplitude function. When 
the backscattering atoms are similar or identical [¢1(k) _~ 
¢2(k)], the firsI beat and the first node occur at the same 
k value (Tr/2AR), and the spatial resolutions of the beat 
analysis and tSqo methods are identical, ca 0.15 A. However, 
if the two backscatterers are different, (6) is dominated by 
the term 2kAR,  but the t e r m  ( 9 2 ( k )  - ~ l ( k )  may have a 
non-negligible magnitude and k dependence. In particular, 
the A~b(k) term will cause a node in the phase-difference 
function (6) at a lower k value than the first beat in the 
spectrum. If this node is in the usable part of the spectrum 
(i.e. above kmin), the 6~ method will have higher spatial 
resolution than beat analysis. Equation (6) may thus be used 
to determine the spatial resolution of the b~ method on a 
case-by-case basis, e.g. with tabulated or ab initio scattering 
phase shifts. 

Since all trigonometric functions have many zeroes, there 
is no reason to expect that the node-alignment procedure 
leads to a unique solution for Ri. On the contrary, it is 
quite possible that multiple solutions exist. If, for example, 
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the node-alignment criterion is satisfied at a node k0 for 
some particular Ri, it will also be satisfied at k0 for 
Ri + niTr/2ko (hi = 0, + 1, + 2 . . . )  [see (6)]. Fortunately, 
the term niTr/ko depends on the position of the node 
k0, so that if two or more nodes are present in the data 
range, multiple solutions will exist only if the ratio of any 
two node positions can be expressed as a fraction of the 
form m/n ,  with m and n small integers. This can be 
done with arbitrary accuracy for large values of m and 
n, but these will lead to large or negative Ri, which can 
easily be ruled out, e.g. on the basis of results obtained 
from a two-shell fit. However, when single-shell data are 
isolated through the alignment of a single node, there is no 
direct way of distinguishing the spurious solutions from 
the 'true' one, and external information must be used. 
For example, with metallic iron (see §4.1) it was possible 
to align the nodes at k = 4.034, 8.293 and 12.452/~-: 
with an edge shift of 2.0eV and R1,2 = 2.459, 2.865/~, 
and at k = 6.959 ,A,-1 with an edge shift of -7 .6  eV and 
R1,2 = 2.632, 2.882/~. The 6~ method therefore suffers 
from the same potential problem of multiple local minima 
as does ordinary non-linear least-squares fitting. It must 
be noted that since the edge energy E0 is also varied 
in the fit, the multiple solutions, whenever present, are 
not discrete. Single-node solutions can always be ignored 
in favor of multi-node solutions, but in the absence of 
additional information the only way to distinguish two 
single-node solutions with physically reasonable Ri may be 
the shape of the amplitude functions. In the case of metallic 
Fe, the single-node solution had a clearly visible beat in the 
vicinity of l0/~-1,  while the backscattering function of Fe 
is known to be decreasing monotonically in this k range. 

The accuracy of the results that can be obtained from 
the 6q¢ method may be limited by the presence of multiple 
local minima. Distance differentials at the low end of 
applicability of the method (e.g. 0.15-0.20.A, for similar 
scatterers) will result in only a single node within the 
fitting range which, as noted at the beginning of this 
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Figure 7 
Dependence of the first-shell iron oxide (Fe304) data on the node 
position: k0 = 10.236 A - l  (solid line); k0 = 10.013 A -1 (dashed 
line); k0 = 10.106 A, -1 (dotted line). 
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section, is undesirable. This appears to be the source of 
the discrepancy between the 6~ and XRD coordination 
numbers for Fe304 and the somewhat large error bars in 
the results. Since the distance differential for this material 
is 0.15-0.18/~, only a single node at approximately 10/~-1 
was present in the fitting range, and its position was found 
to vary by as much as 0.25/~-1 with the initial guesses 
used in the node-alignment procedure. The bond lengths 
appear to be independent (within the confidence limits) 
of such variations in the node position, but the CN and 
Debye-Waller factors are more sensitive, as shown in 
Fig. 7. Therefore, we expect that the practical lower limit 
on the resolvable distance differential for similar/identical 
scatterers is probably closer to 0.25-0.30/~, if accurate data 
for the coordination numbers are also required. 

The sensitivity of the amplitude functions of the filtered 
data to variations in the node positions raises the concern 
that results of the method may be dependent on the details 
of the background subtraction. We have conducted tests 
with the Fe, FezZr and CuO data and have found that 
the positions of the nodes depend only weakly on the 
details of the background subtraction. Typical changes in 
the node positions when the number of spline knots in 
the background was varied between one and four, and the 
k weight was varied between one and three, were of the 
order of 0.01/~-1. This includes even backgrounds which 
can readily be ruled out by visual inspection, e.g. because 
of a strong low-r peak in the Fourier transforms. It must 
be noted that the bond distances of all these materials are 
relatively large (2.5 A or more), and the analyzed peak 
in all Fourier transforms was practically independent of 
the choice of background-subtraction parameters. This will 
probably not be the case for compounds with shorter bond 
distances, e.g. transition-metal oxides, and the method could 
exhibit stronger sensitivity to the details of the background 
subtraction. The Fe304 data were not included in these tests 
because, as noted above, variations in the position of the 
nodes cannot be attributed to variations in the background 

only. 
The success of the node-alignment procedure was found 

to be strongly dependent on the initial guesses for Ri, 
although sufficiently accurate initial guesses can usually 
be obtained, as shown below. In some of the test cases 
described here, it was not possible to align the nodes with a 
non-linear method (Levenberg-Marquardt) when the initial 
guesses were off from the 'true' values by as little as 0.05 ,~. 
The reason for this is not yet clear but appears to be related 
to the extreme sensitivity of the position and number of the 
nodes in the fitting range on the edge shift V0 and l~i. The 
nodes k,~,~ are solutions of the equation 

2k,~,iRi + ¢i(k,~,i) - ~(k,~,i) = niTr. (8) 

Therefore 

Okn,i 
OR.~ 

2k,~,i 
# I 2R~ + ¢~(k,~,i) - ~ (kn,.i) 

(9a) 
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Ok,,.i a 2Ri  - ~' ( k,,,i ) 

OVo 2k,,,i 2Ri  + "(/i(k,,i) - ~'(k,,.i) ' 
(9b) 

where a = 2 m / h  2 and the prime denotes a derivative with 
respect to k. The Jacobian of the mapping Vo, l?.i ~ kni is 
discontinuous whenever 2Ri  + ~/J~( k,~,i ) - ~' ( k , , i  ) = 0 [i.e. 
~(k) and ~ i ( k )  have the same slope at k = k,~.i], in which 
case small changes in V0 and Ri will cause large shifts in 
the positions of the nodes. This appears to happen most 
of the time, thus causing the extreme dependence of the 
solution on the initial guesses, and the high sensitivity of 
the node-alignment procedure itself. Optimization methods 
that do not use derivatives explicitly, e.g. downhill simplex 
(Press et al., 1989), failed to converge to within the required 
accuracy (0.002 ,~-1 or less mismatch in the nodes) after 
more than 500 iterations. However, initial simplex mini- 
mization followed by a Levenberg-Marquardt refinement 
produced accurate results when the initial guesses for Ri 
were as much as 0.15 A off from the 'true' values in two 
out of the three cases discussed here. The results from 
unrestricted two-shell fits (both for the edge shifts and 
the bond distances) provided adequate initial guesses in 
all cases. 

At the present time there is no obvious way of extend- 
ing these results to more complicated (e.g. three-subshell) 
systems, as this would require additional equations for 
A3, A4 . . . .  As expected, and as the CuO example clearly 
demonstrated, when more than two subshells are present 
in the EXAFS spectrum the b~y method does not give 
reliable results. However, with a suitable model for the 
phase corrections it should be possible to apply the method 
to disordered binary systems. In principle, it should also 
be possible to use the method to filter multiple-scattering 
contributions that 'contaminate' single-shell data, subject 
to the 'small disorder' requirement and other restrictions 
outlined above. 

5. Conclusions 

The examples described above show the potential of the 
6~ method for an important class of systems: those with 
two subshells of atoms with small or 'Gaussian' dis- 
order distributed at two unique distances from the central 
absorber. The advantages over beat analysis, unrestricted 
least-squares fitting and 'difference' techniques include 
(i) improvements in the coordination-number estimates, 
which can be traced back to the elimination of the strong 
parameter correlations present in unrestricted multi-shell 
fits, especially fits involving shells of similar scattering 
power and phase shifts; (ii) potential for improved spatial 
resolution with subshells of unlike atoms; and (iii) no 
external information on the structure of the contributing 
subshells is required beyond the assumption of small or 

'Gaussian' disorder. 
Further work is needed to understand the sensitive 

dependence of the outcome of the node-alignment 
procedure on the initial guesses for the edge shifts and 
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the bond distances. At the present time it appears that the 
results from a simultaneous fit of the subshells of  interest 
can provide adequate initial guesses for the edge shifts and 
bond distances, at least in cases with small disorder. 

We would like to thank D. R. Fazzini (IIT) for providing 
some of the iron-edge EXAFS data used in this paper. 
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