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Characterization of Static Disorder by Cumulant Analysis of 
EXAFS: an Investigation on a Two-Gaussian Distribution 
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The EXAFS of a two-Gaussian distribution is simulated. It is shown that the cumulant analysis 
of an EXAFS signal in the case of static disorder allows the reconstruction of the corresponding 
asymmetric interatomic distance distribution by the splice method. In addition, the relationships 
between the parameters of two Gaussians and the leading cumulants of their superposition are 
derived. The possibility of determining the parameters of the two Gaussians by analytical means is 
investigated. 
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1. Introduction 

In the single-scattering approximation the EXAFS x(k) 
of a given coordination shell is related to the distribution 
p(r) of the absorber-backscatterer interatomic distances 
through the Fourier transform (characteristic function) of 
the effective distribution P(r ,  A) = p(r) exp(-2r/A)/r2: 

kx(k) = Sg N If(k, Tr)l Im exp(2iqo) 

/0 ] x P(r,A)exp(2ikr)dr (1) 

where k is the photoelectron wavevector, N the coordi- 
nation number, f(k, rr) the backscattering amplitude, qo the 
total phase shift experienced by the photoelectron, and A the 
photoelectron mean free path. S~) is an amplitude reduction 
due to the relaxation of the wavefunctions of the 'passive' 
electrons in the excited atom (Crozier, Rehr & Ingalls, 
1988). 

The shape of p(r) and P(r, A) depends on the degree of 
thermal and static disorder. For systems with a low degree 
of disorder, p(r) is a narrow Gaussian, P(r, A) can also 
be assumed to be Gaussian and the standard analysis of 
EXAFS (Lee, Citrin, Eisenberger & Kincaid, 1981) can 
be applied. However, it has long been recognized that 
non-Gaussian asymmetric distributions must be taken into 
account for a correct determination of bond lengths and 
coordination numbers in systems with moderate to large 
disorder (Eisenberger & Brown, 1979). In fact, EXAFS is 
naturally very sensitive to the details of the distribution due 
to the high values of momentum transfer, q - 2k, twice that 
of a conventional diffraction experiment. 

In principle, an accurate reconstruction of P(r, A) [hence 
p(r)] should be obtained from (1) by taking the inverse 
Fourier transform of kx(k). However, this is not straight- 
forward in the analysis of an experimental EXAFS, since 
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the single-scattering approximation limits the application 
of (1) to values of k _> 2-3 ,~- 1 (q >_ 4-6 .~- 1). Contrary 
to the low q values achievable in a diffraction experiment, 
this means loss of information on the broad features of the 
distribution and on the intermediate range correlations. Typ- 
ically, as in powder diffraction experiments on disordered 
systems or in structural characterization of metal-binding 
sites in protein crystallography, diffraction experiments 
give a description of the global structure whereas X-ray 
absorption spectroscopy is used to probe the details of 
the radial distribution function around the selected atomic 
species. 

The limited k range, especially in the low-k region, 
has led to model-dependent analyses of EXAFS when the 
effects of disorder must be taken into account in the asym- 
metry of P(r .  A)" either monotonic exponentially decaying 
distributions (De Crescenzi et al., 1981) or two-Gaussian 
subshell models (Sadoc, Raoux, Lagarde & Fontaine, 1982) 
have been utilized. 

When only one atomic species is present in the coor- 
dination shell, the cumulant analysis of EXAFS allows a 
model-independent reconstruction of P('r. A) and p('r) by 
recovering the low-k missing part of the EXAFS signal. The 
method relates to the expansion in a series of cumulants C,, 
around /v -- 0 of the effective distribution (Bunker, 1983; 
Dalba, Fornasini & Rocca, 1993): 

j[o °° ~ (2ik)'~C,,. (2) In P(r,A)exp(2ikr)dr = Co + ~ n---7 
n = l  

The zero-order cumulant, Co, depends on the normaliza- 
tion of P(r ,  A). The first cumulant, C1, is the mean value 
and the second cumulant, C2, is the variance (mean-square 
relative displacement, MSRD) of t'(r, A). The cumulants 
of order higher than two measure the deviation from a 
Gaussian shape: they are zero for Gaussian distributions 
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of P(r,A). 
Even and odd cumulants contribute separately to the 

amplitude and phase of the EXAFS signal, respectively. 
In fact, the EXAFS function of one coordination shell 
[equation (1)] can be written as 

kx(k)  = A(k) sin (I)(k) (3) 

where, from (2), the phase dp(k) and the amplitude A(k) 
are given by: 

8 C k 5  O(k) = 2kC~ - C3k 3 + --~ 5 + . . .  + ~(k) (4a) 

2 
A(k) = S~ N If(k, Tr)lexp(Co - 2C2k 2 + -~C4k 4 + . . . ) .  

(4b) 

In principle, the cumulants Cn of the effective distribu- 
tion of an unknown sample can be estimated by comparison 
with a reference compound from a best fit to the phase 
difference and the logarithm of amplitude ratio (the so- 
called 'ratio method') through the following expressions 
(Bunker, 1983; Crozier, Rehr & Ingalls, 1988; Dalba, 
Fornasini & Rocca 1993): 

• ~(k) - ¢~(k) = 2kACx - k3ACa + k AC5 + . . .  

(5a) 

InA (k) (k) = l n ~ , . + A C o - 2 k 2 A C g + ~ k 4 A C 4 + . . .  

(5b) 
where ACn = C~ - C,~ and s and r label the sample 
and the reference compound, respectively. In (5b), AC0 is 
often negligible. 

Since the cumulant expansion (2) is a series expansion 
around k -- 0, it will diverge at high k depending on the 
degree of disorder, i.e. on the shape of p(r) and P(r, A). 
Actually, the phase and amplitude analysis of an experimen- 
tal EXAFS signal yields a limited number of polynomial 
coefficients (typically two from the phases and two from 
the amplitudes), which will correspond to the cumulants 
Cn only if the cumulant series is rapidly convergent. In the 
case of thermal disorder, the convergence of the cumulant 
series can be evaluated from the temperature dependence 
of the cumulants (Dalba, Fornasini & Rocca, 1993; Dalba, 
Fornasini, Gotter & Rocca, 1995). 

For systems with low to moderate disorder, the fitted 
C,~ can be directly used to reconstruct P(r, A) by inverting 
(1). The real distribution, p(r), can then be recovered if the 
photoelectron mean free path, A, is given (Dalba, Fornasini 
& Rocca, 1993; Stern, Ma, Hanske-Petitpierre & Bouldin, 
1992). 

In systems with large disorder, the cumulant series 
converges only at low k values and cannot be simply 
inverted to give P(r, A). For such cases the 'splice' method 
has been proposed (Crozier, Rehr & Ingalls, 1988; Dalba, 

Fornasini, Grazioli, Gotter & Rocca, 1995; Stern, Ma, 
Hanske-Petitpierre & Bouldin, 1992): the cumulant expan- 
sion is used to extrapolate kx (k  ) to k = 0 while the actual 
filtered experimental EXAFS is used in the high-k region. 

The aim of this work is to give an insight into the poten- 
tialities of the cumulant analysis of EXAFS in the presence 
of static disorder. The simplest and physically interesting 
cases are two close-lying shells that cannot be resolved 
by Fourier transform techniques. In fact, two Gaussian 
subshells are often utilized to model asymmetric distri- 
butions of absorber-backscatterer distances as in distorted 
octahedral sites [e.g. NiO6 octahedra in LiNiO2 (Rougier, 
Chadwick & Delmas, 1994)] and metal-metal or metal- 
metalloid distances in metallic glasses [e.g. CuxZrl_x 
(Sadoc & Lasjaunias, 1985); FezZrl_x (Sadoc & Chouteau, 
1988); CoP (Lagarde, Rivory & Vlaic, 1983)]. In this 
respect, it has also been pointed out (Lagarde, Rivory 
& Vlaic, 1983) that although the overall distribution is 
the really important factor to be determined, whenever 
the existence of two different bonds around the absorbing 
species can be reasonably assumed, a detailed characteriza- 
tion of the two underlying subshells seems more appealing 
from the point of view of the structural interpretation. 

Therefore, we will simulate the EXAFS signal of a 
reasonable two-Gaussian distribution and verify whether 
the cumulant analysis and the splice method can yield an 
adequate model-independent reconstruction. Moreover, we 
will derive the relationships between the parameters of two 
Gaussians and the leading cumulants of their superposition 
and investigate the possibility of developing reliable models 
of static disorder by analytical means. 

2. Study of a two-Gaussian distribution 
2.1. EXAFS analysis and reconstruction of the interatomic 
distance distribution 

To work on a realistic two-Gaussian sample distribution, 
we chose the model Ni pair distribution function around Ni 
atoms (two Ni atoms at 2.40/~ with a = 0.08/~, and four 
Ni atoms at 2.55/~,, with a - 0.12/~), reported by Sadoc, 
Raoux, Lagarde & Fontaine (1982) as the best fit to the 
EXAFS of the Ni2Y glassy alloy at the Ni K edge (Fig. la). 
The first five cumulants of both the real and the effective 
distribution, with A = 7/~, have been calculated (Table 1). 
The EXAFS has been simulated in the range k = 2-15/~-1.  
The application of the ratio method requires that the EXAFS 
of a harmonic reference compound which satisfies phase 
and amplitude transferability is also measured. Therefore, 
in order to simulate the analysis of an experimental EX- 
AFS, a reference x(k)  has been created from a physically 
reasonable narrow Gaussian centred at R = 2.5/~ with 
o- - 0.05/~, and normalized to N = 6. Both the sample 
and the reference kx(k)  were Fourier-transformed using 
a Gaussian window. The respective main peaks in the r 
space were isolated and backtransformed in the momentum 
space. The phase difference and the logarithm of amplitude 
ratio are plotted in Fig. 2 versus k and k 2, respectively (full 
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Figure 1 
(a) The two-Gaussian distribution reported by Sadoc, Raoux, 
Lagarde & Fontaine (1982): two atoms at 2.40]k with cr = 
0.08/~ and four atoms at 2.55/~ with a = 0.12A. (b) The 
distribution as reconstructed from the first five 'experimental' 
cumulants without splicing to the filtered simulated k\  (k) (dashed 
line). The original two-Gaussian distribution is also reported 
for comparison (full line). (c) The distribution as reconstructed 
from the first four 'experimental' cumulants by splicing to the 
filtered simulated k \ (k)  (dashed line). The original two-Gaussian 
distribution is also reported for comparison (full line). 
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Figure 2 
(a) Sample ( ~ )  and reference (,b,.) phase difference as a function 
of k (full line). The dashed line is the fitting curve in the range 
k = 2-6/~-l .  (b) Logarithm of the sample (A~) and reference 
(A,.) amplitude ratio as a function of/,.2 (full line). The dashed 
line is the fitting curve in the range k = 2-7/~- 
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Table 1 
The first five cumulants of both the real and the effective distri- 
bution and the 'experimental' cumulants. 

A: Cumulants of the real two-Gaussian model distribution: B: cumulants 

of the effective two-Gaussian model distribution: C: 'experimental' cu- 
mulants as determined from the polynomial fit to the phase difference 

(without C5) and the logarithm of amplitude ratio: D: odd ~experimental" 
cumulants as determined from the polynomial fit to the phase difference 
with C-,. 

Cumulant A B C D 

Cl (,~) 2.50 2.48 2.48 2.48 
C~ (]k s) 1.67x 10 -2  1.62x 10 -.2 1 . rx  10 -~  
C:~ (~3) 5 . 5 x l 0 - i  6 .2x10-  i 8 x 1 0 _ i  5 x 1 0 _ 1  
C.t (+4) - 7 . 5 × 1 0  -5 -5 .1  x i0 ' 5  - 8 × 1 0  -~' 
6'-, ( A ' )  - -2 .13x i0  -~' - 2 . 3 4 x  I 0 - ;  - 2 x  I 0 - - '  

lines). The beating expected at (Tr/2)(AR) - ]  = 10.5 A -1, 
where A R  is the difference between the mean values of the 
two Gaussians underlying the sample model distribution, is 
clearly visible. Conversely, a rough estimate of the inter- 
shell separation, AR,  can be obtained from the position of 
the minimum in the amplitude ratio and that of the inflection 
point in the phase difference (Bunker, 1983), but this is 
not so relevant as soon as we are interested in a detailed 
reconstruct'ion of the overall radial distribution p(r) .  

The phase and amplitude analysis was made through 
equations (5a) and (5b) truncated at the third-order and 
fourth-order term, respectively. A reasonable fit to the phase 
difference and logarithm of amplitude ratio curves can be 

made in a range k,nin -- kmax, with kmin = 2/~-1 and 
kmax well below the beating (Fig. 2, dashed lines), and 
allows ACx, AC2, AC3 and A(/~ of the two-Gaussian 
effective distribution to be estimated relative to the narrow- 
Gaussian effective distribution. In particular, good fits were 
obtained by keeping km~x <_ 7 ]~-1 in the amplitude fitting 
and km~x _< 6 A  -1 in the phase fitting. Actually, in this 
simulation, a reasonable phase fit could also be obtained 
by extending the range to km,x = 9/~-1 and increasing the 
number of the fitting parameters up to the fifth cumulant. 
In this way, the two-Gaussian distribution C5 could also be 
estimated and a lower value of C3 was obtained (Table 1). 

The absolute values of the cumulants C ,  of the sample 
effective distribution were determined by following, for 
the reference distribution, the common assumption that the 
differences between the cumulants of order higher than one 
of the real and of the effective distribution are negligible. 
Hence, C1 has been evaluated by adding AC1 to the 
mean value of the effective reference distribution, while 
C2 has been evaluated by adding AC2 to the variance 
of the real reference distribution. As regards C3 and Ca, 
since the cumulants of order higher than two of the ref- 
erence Gaussian distribution are zero, (;3 = AC3 and 
C4 = AC4. It must be noted that in this simulation the 
variance of the reference distribution is known, while in the 
experimental cases it has to be evaluated from temperature- 
dependent measurements and fit to vibrational dynamics 
models (Dalba, Fornasini & Rocca, 1993). The absolute val- 
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ues of the cumulants obtained from the simulated analysis 
('experimental' cumulants) are reported in Table 1 together 
with those calculated from the original distribution: they are 
a good estimate of the order of magnitude of the correct 
cumulants. 

Nonetheless, a bad reconstruction of p(r) (Fig. lb) is 
obtained from the Fourier transform of the characteris- 
tic function of P(r ,  A) as determined directly from the 
cumulant expansion (2), using either the 'experimental' 
cumulants (Fig. 3, full line) or the original ones, with or 
without C5. This means that the cumulant expansion is 
correct only for k values well below the beating and cannot 
interpret the high-k part of the EXAFS signal, as expected. 

The 'splice' method overcomes this problem by using 
the cumulant expansion in the low-k missing part of the 
experimental signal while the actual filtered experimental 
EXAFS is retained in the high-k part. To this aim, a suitable 
kx(k) (for 2 < k < 15 ~ - 1  in the present simulation) 
has to be recovered (Fig. 3, dashed line) from the Fourier 
filtered signal and after extraction of the reference EXAFS 
phase shift [qo(k)] and amplitude [S0 2 If(k, rr)l]" this also 
ensures that windowing effects are compensated for, pro- 
vided that the sample and the reference are analyzed in the 
same way. Then, an adequate splice interval kmin -- kmax 

has to be chosen within the experimental k range. The final 
kx(k) is obtained by taking the cumulant expansion for 
0 < k < kmi, and the filtered experimental kx(k) for 
k > kmax, while a weighted linear combination of them 
is used in the intermediate range kmin < k < kmax tO join 
the low& and the high-k part. 

In our case, as a first step, only the first four cumulants 
have been considered. As regards the optimization of the 
splice range kmin- kmax, an accurate reconstruction of p(r), 
with a small residual difference with respect to the original 
distribution, has been obtained by taking kmin = 2.5 ~-1  
and km~.,, -- 6.5/~-1, that is near the corresponding lower 
and upper limits of the phase and amplitude fitting intervals 
(Fig. lc). The same p(r) is obtained if the cumulants of the 
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effective original sample distribution are used instead of 
the 'experimental' ones. This means that the small residual 
difference between the reconstructed p(r) and the original 
is not due so much to a poor determination of the cumulants 
Ca and C4 as to an unavoidable inaccuracy in the recovered 
kx(k). Moreover, the same p(r) is also found if the fifth 
cumulant C5 is added in the low& cumulant expansion. 

The above discussion shows that in the case of static 
disorder the cumulant analysis can yield an adequate model- 
independent determination of the interatomic distance dis- 
tribution, provided that the low-k cumulant expansion is 
'spliced' to the high& part of the experimental EXAFS. 

2.2. Analytical determination of the parameters of two 
Gaussians from the leading cumulants of their superposition 

The next step is to investigate whether the param- 
eters of the two underlying Gaussians may be analytically 
determined from the knowledge of the leading cumulants 
of the distribution. 

First of all, the relations between mean values (R1 and 
R2), variances (Vl = ~2 and v2 = ~2) and normalization 
constants (N1 and N2) of two Gaussians and the first five 
cumulants C1, C2, Ca, 6'4 and C,~ of their superposition 
will be derived. In fact, since the total coordination number 
(N = N1 + N2) is known from the amplitude analysis, five 
equations are needed for five unknowns (e.g. N1, R1, R2, 
v] and v2). 

If p(r), pl(r) and p2(r) are three distributions normal- 
ized to unity, such that p(r) is a linear combination of 
pl(r) and p2(r), 

p(r) = (N1/N)pl(r) + (N2/N)p2(r), (6) 

from the series expansion of their characteristic functions, 
it follows that the same relation as (6) holds for the 
corresponding ith-order moments, mi, ml 1) and ,,q--(2)'. 

mi = (N1/N)ml 1) + (N2/N)ml 2) (7) 
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Figure 3 
The characteristic function of P(r. A) obtained from the cumulant 
expansion using the first four 'experimental' cumulants as deter- 
mined from the phase and amplitude analysis (full line) and k X (k), 
simulated from the two-Gaussian model distribution after the 
Fourier filtering procedure and the phase and amplitude extraction 
(dashed line). 

where r~'ti = ( r i  ) . 

Now, under the hypothesis that pl(r) and p2(r) are 
Gaussians, by expressing the moments of the two Gaussians 
as functions of their mean values and variances and utilizing 
the relationships between the cumulants and the moments 
of a distribution (Guedenko, 1976; Cramer, 1966), the 
following equations can be derived: 

N1 R1 N2 
C1 = - f f  + -~-R2 (8a) 

N1 N2 N15[2 (R1 c2 = ~ - v l  + -~-v2 + ~ ,  - R2) 2 (8b) 

N1N2 
C3 - 3 - -~T-(R1 - /{2)(Vl  -- V2) 

N1N2 ( ~  N1)(RI _ R2) 3 
+ ~  N 

(8c) 



Francesca Monti 133 

N1N2, 
Ca = 3 ~ t v l  - v2) 2 

NIN2(N2 N 1 )  
+ 6-"N -V- N N (R1 - R2)2(v1 - v2) 

N1N2 ( N1 N2 "~ + 1 (8d) 

NIN2(N2 N 1 )  (Vl _ v2)2(R1 _ i~2 ) 
C5 = 1 5 - - ~ -  N N 

...NzN2( N1 ~_2) (Vl _ y2)(R1 _ R2)3 + a u ~  I - 6 - ~ - - -  

N1N2 ( N2 N1) ( 2 N1 w 2 '  
+ - - N s -  N N 1 - 1 - 

(8e) 

As a matter of fact, the same expressions for C2 and C~ 
are obtained directly from a Taylor-series expansion around 
k = 0 of the natural logarithm of the amplitude modulus 
of the Fourier transform of the sum of two Gaussians in 
r space, as suggested by Crozier, Rehr & Ingalls (1988). 
It can be noted that C3, C4 and C5 depend only on the 
differences (R1 - R2) and (Vl - v2), while the absolute 
mean values and variances enter the equations for C1 and 
C2, respectively. 

From a mathematical point of view, if the first five 
cumulants C,, of a distribution p(r) are known, (8) can 
be utilized to determine two Gaussians whose superposition 
has the same C,, as leading cumulants. By deriving (2q-v2)  
from (8c) and substituting it into (8d) and (8e), a system 
of two non-linear equations, depending only on C3, C4 and 
C5 and not on C1 and C2, is found, with two unknowns, 
N1/N and (R1 - R2): 

_ 2 ( N I N 2 ' ~  2 N1N2 
~ j  ( 1 -  N------7--)(R1-R2)ti 

. N1N2 ( ~ N 1 )  
+ 4 ~  - -  N C 3 ( R t -  R2) 3 

N1 N2 C - 3---~y- 4(R1 -/-~2) 2 -4- (C3)  2 = 0, (9a) 

N 2 N N - 6- - - fT-  ) (R1 - R2 ) 

20 (1  - - NIN2 _ )2 -- - 3 ~ )  C3(R1 R2 

( ~ 2  N 1 ) ( R 1 -  R 2 ) -  3C5 = 0 .  + 15C4 - -  N (9b) 

From symmetry considerations, the solutions of (9) that 
we are interested in are those with 0 < N1/N <_ 0.5. For 
each real solution of the system (9), i.e. for each pair of 
values of N1/N and (R1-R2), the difference (v]-v2) can 
be determined from (8c). Then, Vl and v2 can be separately 

obtained from (8b). The obvious requirement that Yl  > 0 
and v2 > 0 in (8b) implies that only the solutions which 
satisfy the following relations can be retained: 

N1 N1 N2 
N (Vl - "u2) -Jr- - - - - ~ ( / ~ 1  - /~2) 2 < C2 (lOa) 

N1 N2 N2 ('v2 - -  2;1)  -'[- (R1 -- I~2) 2 < C2. 
x 

(~0b) 

Finally, R1 and R2 can be determined from (8a). 
In principle, we may find one or more sets of values (N1, 

/~1, or1; N2, /~2, a2), or none. No solution means that no 
pair of Gaussians exists whose superposition has the same 
first five cumulants as p(','). It would then be concluded that 
p(r) cannot be considered as the sum of two Gaussians. 

On the other hand, finding one or more pairs of Gaus- 
sians that give the same five leading cumulants as p(r)  
would not necessarily imply that it or each one really 
reproduces p(r):  this should be verified by comparing the 
distributions• 

Let us apply the above discussion to the original 
cumulants of the sample model distribution. Finding out the 

, 

parameters of the two exact original underlying Gaussians 
requires, first of all, an accurate determination of N1/N 
and (R1 - R2) from (9), and (Vl - v2) from (8c), which, 
in turn, depends on the accuracy of C3, C4 and C5. If only 
one significant figure is retained in C3, Ca and C5, the 
corresponding pair of Gaussians (N1 -- 2.6, Rx= 2.41 A, 

I ' I 

' , :  (c) 

2.4 2.8 

R (,~,) 
Figure 4 
(a) Superposition of the two Gaussians as determined from the 
first five cumulants of the original distribution when only one 
significant figure is retained in C:~, C, and Cr, (dashed line). 
The original distribution is also shown for comparison. (b) The 
two different pairs of Gaussians as determined from the first five 
exact cumulants when two non-zero digits are retained in C:~ and 
(-'4 and three in C5: the fully reproduced original (full line) and 
the other (dashed line). (c) Superposition of the two Gaussians 
obtained from the first five cumulants directly calculated from the 
distribution as reconstructed by .the splice method (dashed line). 
The original distribution is also shown for comparison (full line). 
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o"1 = 0.08 A, and N2 = 3.4, R 2  --- 2.57 A, o'2 --- 0.11/~) 
is not the original one, nor is the model distribution exactly 
reproduced (Fig. 4a). Indeed, the correct parameters are 
found if at least one more significant digit is retained in C3 
and C4 and two more in C5. Moreover, in this case, (8) and 
(9) also give another solution: a different pair of Gaussians 
(N1 = 1.5, R1 = 2.39/~,, crl -- 0.071/~, and N2 = 4.5, 
R2 -- 2.536 A, ~r2 = 0.124 A) whose superposition has the 
same first five cumulants but is slightly different from the 
original one (Fig. 4b). 

3. Application to the cumulant analysis of 
experimental EXAFS 

The aim of the analysis of an experimental EXAFS is 
to gain information about the local structure around the 
selected atomic species. In systems affected by static dis- 
order, the shape of the absorber-backscatterer interatomic 
distance distribution, p(r), cannot be a priori assumed 
to be Gaussian. In these cases, the cumulant analysis 
should allow, in principle, not only a reliable evaluation 
of the absorber-backscatterer interatomic mean distance 
and coordination number, but also a model-independent 
reconstruction of p(r). 

The present simulation has shown that, even in the 
case of static disorder, the phase difference and logarithm 
of amplitude ratio analysis can yield a good estimate 
of the first four, even five, cumulants of the original 
distribution, and that the original distribution itself can be 
adequately reconstructed. This is a non-trivial result: the 
radial distribution function obtained can be directly com- 
pared with theoretical models, such as molecular dynamics 
calculations, or inserted as input in reverse Monte Carlo 
calculations. 

In some cases, when the existence of two different 
bonds around the absorbing species can be reasonably 
assumed, it would also be interesting to obtain an indication 
of their relative weights, bond lengths and MSRD. In 
this respect, the present simulation has shown that (8) 
and (9) allow the analytical determination of the exact 
two Gaussians underlying p(r) provided that the first five 
cumulants of the real distribution are known with high 
accuracy. Otherwise stated, while the reconstructed p(r) 
seems not to be very sensitive to the uncertainties in the 
cumulants from which the low-k missing part of the kx(k) 
is recovered, the analytical determination of the parameters 
of the two Gaussians underlying p(r) strongly depends on 
the accuracy in the values of the cumulants used to solve 
(8) and (9). 

This result suggests that, when one is faced with the 
analysis of an experimental EXAFS, the best choice would 
be to solve (8) and (9) using the cumulants directly cal- 
culated from the reconstructed p(r). In this case, problems 
may arise from the unavoidable side ripples which appear 
in the reconstruction and prevent an accurate determination 
of the cumulants. As an example, in the present simulation 

the cumulants of the reconstructed p(r) were calculated 
by truncating p(r) (Fig. lc) at R = 2.11 and 2.87A,. The 
pair of Gaussians found (N1 - 4, R1 = 2.44/~, 0-1 = 
0.093 ~,  and N2 = 2, R2 -- 2.62/~, 0-2 = 0.086 ~), 
which is not the correct one, does not reproduce even the 
reconstructed p(r) (Fig. 4c). 

However, one could try to obtain some reliable indication 
about the characteristics of the two underlying bonds from 
the cumulants of the effective distribution directly obtained 
from the phase and amplitude analysis. Indeed, when the 
'experimental' cumulants reported in Table 1 are utilized in 
equations (8) and (9), a pair of Gaussians is found whose 
superposition is very similar to the original, and whose 
parameters ( N 1  = 2.3, R1 = 2.40/~, o1 = 0.08 ,A,, and 
N2 = 3.7, R2 = 2.56/~, or2 = 0.11/~) are well inside the 
error bars (AN = 0.5, A R  = 0.02 A,) determined by Sadoc, 
Raoux, Lagarde & Fontaine (1982) from their best-fiUing 
analysis on the Ni2Y glassy alloy. 

It must be noted, however, that in the present simulation 
the 'experimental' cumulants differ from the original cumu- 
lants of the model distribution at most only within ± 10%, 
while in the analysis of an experimental EXAFS lower 
accuracies have to be expected. As an example, if we use a 
reasonably different value of C3, C3 = 0.0004,/k 3 instead 
of C3 = 0.0005 A, 3, the corresponding pair of Gaussians 
(N1 -- 3.6, / ~ 1  - -  2.43/~, O" 1 - - -  0.092/~, and N2 -- 2.4, 
R2 = 2.6/~, 0-2 = 0.099/~) is no more near to the correct 
one. 

These results indicate that, as regards the analysis of an 
experimental EXAFS, when there are reasons for assuming 
the existence of two different bonds around the absorbing 
species, a reliable analytical determination of the param- 
eters of the two corresponding Gaussians will not be 
possible, even though the cumulant analysis can yield a 
good reconstruction of the overall distribution. 

4. Conclusions 

The potentialities of the cumulant analysis of EXAFS in the 
case of static disorder have been investigated by simulating 
the EXAFS of a two-Gaussia'n distribution, p(r). 

It has been shown that the 'ratio method' allows the 
first four, even five, leading cumulants of the effective 
distribution, P(r, A), to be estimated by fitting the phase 
difference and the logarithm of amplitude ratio in the low- 
k region. Using these values, the low-k missing part of 
the experimental EXAFS signal can be recovered and by 
'splicing' to the high-k part, a reliable model-independent 
reconstruction of p(r) can be obtained once the mean free 
path, A, of the photoelectron is given. 

Moreover, the relationships between the parameters of 
two Gaussians and the first five cumulants of their super- 
position have been derived. In principle, the knowledge of 
the leading first five cumulants of the distribution would 
allow the two underlying Gaussians to be determined 
through (8) and (9). However, this analytical determination 
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strongly depends on the accuracy of the values of the 
cumulants used to solve (8) and (9). As regards the analysis 
of an experimental EXAFS, the present simulation has 
shown that an accurate determination of the leading first five 
cumulants of the reconstructed distribution is prevented due 
to unavoidable side lobes; on the other hand, the cumulants 
estimated from the phase and amplitude analysis cannot be 
confidently utilized due to uncertainties of the data-analysis 
procedure. 

It can then be concluded that a careful analysis of an 
experimental EXAFS in case of static disorder can yield a 
reliable model-independent reconstruction of the absorber- 
backscatterer interatomic distance distribution, together 
with a good estimate of the leading cumulants of the 
distribution. However, when the existence of two different 
bonds around the absorbing species may be reasonably 
assumed, it does not seem possible to obtain a reliable 
indication about the parameters of the two corresponding 
underlying Gaussians by analytical means. 

The EXAFS analysis presented in this work was per- 
formed utilizing the software package EXTRA developed at 
the Department of Physics of Trento University, Italy. The 
author is greatly indebted to Paolo Fornasini and Francesco 
Rocca for fruitful discussions and suggestions. This work 
has been partially supported by Istituto Trentino di Cultura, 
Project No. 503-1995. 
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