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A novel approach to the detection and modelling of preferred orientation is presented, based on the 
interpretation of two-dimensional powder patterns. A simple graphical construction is introduced to 
aid interpretation, and the application of this construction" to some standard diffraction geometries is 
discussed. It is also shown in outline how a standard preferred-orientation model can be adapted to 
describe two-dimensional data. 
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1. Introduction 

Preferred orientation of sample crystallites has long been 
one of the most studied aspects of powder diffraction. 
In some fields, notably metallurgy (Barrett & Massalski, 
1992), the emphasis has been on studying samples of known 
structure and extensive techniques have been developed to 
determine the crystallite orientation distribution from the 
observed diffraction patterns, collected from many sample 
orientations (J~trvinen, Merisalo, Pesonen & Inkinen, 1970; 
Bunge, Dahms & Brokmeier, 1989; Dahms & Bunge, 
1989). In powder diffraction studies performed to determine 
crystal structures (normally from data obtained using one 
sample orientation), preferred orientation is often modelled 
during structure refinement by using a simple analytic 
function (Rietveld, 1969; Capkova & Valvoda, 1974; Dol- 
lase, 1986). However, such a method presupposes that an 
approximate trial structure is known and this is clearly 
not the case during structure solution. Strong preferred 
orientation can be a serious stumbling block in structure 
solution from powder diffraction data because of large 
differences between observed and true reflection intensities. 
Even if the general arrangement of the structure is known, 
structural variables can be strongly biased by correlations 
with a preferred-orientation model selected simply on the 
basis that it appears to improve the fit to the data. 

If the proportion of crystallites contributing to each 
reflection can be determined experimentally, however, then 
the reflection intensities can be corrected reliably and 
structure solution and refinement can proceed without 
uncertainties. Recent developments in texture analysis 
have highlighted the importance of this direct approach 
and outlined possible techniques using conventional one- 
dimensional data-collection methods (Jarvinen, 1993; 
Cerny, Valvoda & Chladek, 1995; Peschar & Schenk, 
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1995). Unfortunately, the collection of the large amount 
of data required in such an approach is difficult and time- 
consuming with a conventional scanning detector, and this 
is a significant impediment. However, the problem can 
be overcome with the large-area two-dimensional X-ray 
detectors, such as image plates, that have been developed 
over the past few years for high-pressure powder diffraction 
(see Nelmes & McMahon, 1994). By collecting a whole 
diffraction pattern of complete powder rings in parallel, 
a large amount of additional information is recorded 
in a remarkably short time. It so happens that high- 
pressure conditions often cause rather pronounced preferred 
orientation in samples, and it is this convergence of a well 
adapted detector with strong effects that has stimulated our 
texture studies (Wright, 1995). However, the results are in 
no way limited to high-pressure applications, and can be 
expected to be of wide use in all powder diffraction work. 

In this paper we illustrate the nature of two-dimensional 
data and introduce a simple graphical construction that 
gives a straightforward interpretation of the relationship 
between the data and the underlying preferred-orientation 
distribution. We show how a standard preferred-orientation 
model can be adapted to describe the two-dimensional data 
and we outline the application and possible benefits of this 
approach for some standard diffraction geometries. 

2. Preferred-orientation effects in two dimensions 

Fig. 1 shows two-dimensional diffraction patterns obtained 
from the same sample of precompressed HgS in two 
different orientations with respect to the incident X-ray 
beam. These patterns were collected on station 9.1 at SRS, 
Daresbury, using an image-plate detector and an X-ray 
wavelength of ,-~0.45 A. The diffraction pattern of Fig. 1 (a) 
was collected with the incident beam striking the sample 
along the axis of symmetry of the crystallite distribution, 
and the recorded intensities are uniform around the powder 
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rings. In this case, the effects of preferred orientation 
manifest themselves only in departures of the relative 
reflection intensities from the ideal values corresponding to 
the crystal structure of the sample. Fig. l(b) was collected 
with the distribution axis inclined at 50 ° to the incident 
beam, and clear variations in intensity can be seen around 
the powder rings. It is these intensity variations that contain 
the information required to define the preferred-orientation 
distribution in the sample without any knowledge of the 
crystal structure other than the unit cell. We will first show 
this qualitatively and then, in the next section, develop a 
quantitative model. 

For simplicity, the distribution of crystallite orientations 
can be taken to be uniaxial and axially symmetric. Indeed, 
many samples have such a distribution, as shown by the 
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axial symmetry of Fig. l(a). (More complex distributions 
can, in principle, be treated by extensions of the same 
procedures as apply to this simple case.) A symmetric 
uniaxial distribution can be represented by contours on a 
spherical surface, as drawn schematically in Fig. 2, where 
values of the contours are shown decreasing from 4 at the 
poles to 1 at the equator. In a sample that exhibits preferred 
orientation, a particular crystallographic direction in each 
crystallite (the preferred-orientation direction, POD) tends 
to align along the axis of the distribution (the preferred- 
orientation axis, POA). [For example, for a sample with 
hexagonal symmetry and the unique axis taken along c, 
pressed into a flat-plate container, the POD is likely to be 
[001] with the POA normal to the flat plate.] Consider a 
particular crystallite, typical of the sample, as shown in 

(a) 
8OO0 

~ 6o0o 

2OOO 

~ o 

• •4~  [ 

• • A •A • •  B ~ . , , . . . .  , C I 

360 270 180 90 0 

Y 
(b) 

Figure 1 
Two-dimensional diffraction patterns collected from the same HgS sample with (a) the axis of the crystallite distribution coincident with 
the incident X-ray beam, and (b) the axis of the crystallite distribution inclined at 50 ° to the incident beam. Note the intensity variations 
around the powder rings in (b). The ring of the (003) reflection is marked by an arrow in both patterns, and the plot of intensity versus 
"Y (o) shows the variation of intensity for this reflection in pattern (b). "7 is the angle around the powder ring (see Fig. 4). [The sense 
of the "7 axis has been chosen to remain consistent with Fig. 4 while keeping the larger maximum (at A) to the left of the smaller, as 
in pattern (b).] The letters A, B and C mark the same positions around 7 as illustrated in Fig. 3. 
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Fig. 2(a). Suppose that it is approximately shaped like a 
disc - viewed edge-on in the Figure - and that the POD is 
perpendicular to the plane of the disc. Such a crystallite in 
a general orientation has its POD at an angle c~ to the POA 
(see Fig. 2a), and the contours quantify how the relative 
probability of the POD being inclined at a given angle 
decreases as (~ increases. 

Consider an incident beam direction labelled IB in 
Fig. 2(a), and the diffracted beam direction, DB, for 
reflection hkl. Suppose that the crystallite shown in Fig. 2(a) 
contributes to DB. The scattering vector Khkl then bisects 
the angle between IB and DB, and Khkl is at an angle ~/~ to 
the POD, where '(; is determined by the lattice parameters 
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(b) 
Figure 2 
A uniaxial probability distribution function for crystallite orienta- 
tions (ODF) can be represented as a series of contours on a unit 
sphere; the numbers 1 to 4 represent the value of the contours. (a) 
The POD cones for two points, DB and DB', on the powder ring 
for reflection hkl when the incident beam (IB) strikes the crystallite 
distribution at an angle to the POA. A typical crystallite is shown, 
with its POD inclined at an angle (~ to the POA. (b) The POD 
cone for one point on a powder ring for a reflection, h'k'l', with 
a large t' angle. 
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of the sample. However, all crystallites with their scattering 
vectors along the Khk! direction will contribute to DB, and 
this family of crystallites is defined as all those with PODs 
lying on the cone shown in Fig. 2(a), with half-angle 

around the Khkl. Thus, the probability of crystallites 
being oriented such as to contribute to the hkl reflection in 
direction DB is obtained as an integration of the distribution 
function around the circle where the POD cone intersects 
the surface of the sphere. 

Consider now another point on the hkl powder ring, 
given by DB'. The particular crystallite drawn in Fig. 2(a) 
will not contribute to this diffracted beam; DW is made 
up from reflections from another family of crystallites with 
PODs lying on the POD cone shown around Kthkl . It is 
immediately evident that .the integrated probability is higher 
for this POD cone: more crystallites will contribute to DB' 
than to DB and so the intensity of DB' will be greater than 

that of DB. This difference is the source of the intensity 
variations around the powder rings in Fig. l(b). 

In the particular case drawn in Fig. 2(a), where ~ is 
small, the average of the integrated probability around 
the POD cone will be similar to the probability at the 
point where Khkl passes through the surface of the sphere. 
Then the variation of intensity around the powder ring 
approximately gives a direct measure of the variation in 
the orientation distribution function (ODF) around the locus 
explored by all the hkl scattering vectors from Khkt to 
K~,kt. However, it is important to note that the relationship 
between the ODF and the intensity variations is not so 
simple in general. Fig. 2(b) shows a POD cone for a 
different reflection, f fk ' l ' ,  with a large value of ~. It is 
clear that the average of the integrated probability will differ 
from that for the single direction Kh,k,t, by an amount that 
depends on the form of the ODF. 

The above discussion has illustrated some of the main 
two-dimensional effects of preferred orientation. In subse- 
quent sections, we wish to analyse the effects of preferred 
orientation in more detail for a general diffraction geometry 
and for particular geometries in common use. In order to 
represent adequately the two-dimensional effects involved, 
it is helpful to consider three points (at least) in the 
diffraction pattern. A convenient form of construction for 
general use is then as shown in Fig. 3: three POD cones, 
separated by 90 ° in -), (see Fig. 1 ), and with a small ~ angle. 

Fig. 3(a) shows a three-cone diagram for the setting in 
which the incident beam strikes the crystallite direction 
such that the POA coincides with the incident beam. The 
contours intersected by the POD cones can be seen to 
be identical in all three positions and consequently the 
intensity is the same at these three (and all other) points 
on the powder ring - i.e. the intensity around any powder 
ring is uniform - ignoring other possible effects such as 
polarization of the incident beam. This is the case illustrated 
by the two-dimensional image of Fig. l(a), in which the 
positions around ~, labelled A (270°), B (90 °) and C (0 °) 
correspond to the directions of DB(A), DB(B) and DB(C), 
respectively. 
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Fig. 3(b) is the diagram for a setting in which the incident 
beam strikes the sample at an angle fl to the POA. The 
contours intersected by the three POD cones can be seen 
to represent different probabilities, and it is this effect that 
creates the pattern of intensity variation seen in Fig. l(b). 
The angle fl in Fig. 3(b) is 50 °, as used in recording this 
image, and the arrowed powder ring in Fig. l(b) has a small 
POD cone angle, as here. The POD cones for points A and 
B intersect contours of higher value than those for point 
C which will thus be an intensity minimum, as seen in 
Fig. l(b). It is evident that the contours of the POD cone 
for point A are of higher value than those for point B, with 
the result that the maxima do not have the same intensity, 
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Figure 3 
POD cone diagrams for diffraction at the three marked positions 
in 7 (A, B and C) around the arrowed ring in (a) Fig. l(a), and (b) 
Fig. l(b). The angle between the POA and IB in (b) is labelled 
~. Khkl(C) and DB(C) are directed upwards out of the plane of 
the diagram. 
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which accounts for the variation seen in the plot of intensity 
versus  3" in Fig. l(b). This asymmetry arises because the 
POD cone axes (Khk/) are not perpendicular to the incident 
beam, but are rotated away from perpendicular through the 
diffraction angle, 0. Thus, the asymmetry between the t w o  

maxima will increase with diffraction angle for a given 
angle fl between the incident beam and the POA - until 
the cone axis of the larger maximum [Khkl(A) in this case} 
reaches the maximum of the ODF. 

It must be noted that another reflection, at similar 0 but 
with a much larger POD-cone angle (~/J), would have its 
maxima and minima at different 3' values from those of the 
particular reflection examined in Figs. 3(b) and l(b). For 
example, if the POD-cone angle were increased greatly in 
Fig. 3(b), it can be seen that the average contour levels 
explored around a scattering vector near Khu(A) would 
decrease, while those explored around a vector near Khu(C) 
would (on average) increase. The variation in the 3' angles 
at which different powder rings have their maxima and 
minima is evident in Fig. l(b). 

It is also important to stress that the foregoing analy- 
sis of intensity variations applies to single unoverlapped 
reflections - e.g. the (001) reflection of a tetragonal sample 
in which the c lattice parameter is sufficiently different from 
a (= b) to separate the (001) peak from the (100)/(010) 
peak. For a compound peak, like the latter one, the nature 
of the intensity variations will depend on the direction of 
the POD. If in this tetragonal example the POD is along 
[001], then Zh will be 90 ° for both (100) and (010) and 
so they will have identical variations as a function of 3". 
But, if the POD is along e.g. [100], then ~/~ will be 0 ° for 
(100) and 90 ° for (010), and their intensity variations will 
be 90 ° out of phase in 7; the maxima of the variations 
for (100) will coincide with the minima for (010), and so 
the observed variations around the (100)/(010) ring may 
be small even if the preferred-orientation effects are large. 
The intensity will not be uniform, however, and information 
about the ODF can still be extracted from such compound 
rings; but analysis of non-compound rings is considerably 
more straightforward. The overlap of symmetry-related 
reflections in preferred-orientation analysis has been dis- 
cussed recently by Capkova, Peschar & Schenk (1993). 
In practice, there will also be similar problems for non- 
symmetry-related reflections if they are close enough in d 
spacing to overlap in the observed powder pattern. The 
HgS ring selected for analysis in Figs. 1 and 3 is the 
(003) reflection from a sample with hexagonal symmetry, 
and is not overlapped by symmetry-related or any other 
reflections, other than trivially by (003). 

3.  P r e f e r r e d - o r i e n t a t i o n  m o d e l  

The qualitative discussion above provides a basis for 
understanding the effects of preferred orientation on a 
two-dimensional diffraction pattern. This section develops 
a mathematical model which can be used to extract the 
degree of sample texture quantitatively and thus correct the 
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reflection intensities for the effects of preferred orientation. 
Fig. 4(a) shows the orientation of the incident beam 
(IB), diffracted beam (DB) and scattering vector (Kh~t) 
for diffraction at a given point on a diffraction pattern 
collected in a general scattering geometry. The z axis is 
set along the incident beam, which is usually horizontal, 
with x and y then vertical and horizontal, respectively, in 
the experimental set-up. Let 8 be the scattering angle as 
defined by Bragg's Law, and '7 be the angle between the 
x axis and the projection of both DB and Khkt onto the xy 
plane [shown shaded in Fig. 4(a)]. If the two-dimensional 
detector is placed in the xy plane, 9, corresponds to the 
angle around the powder rings; when "7 = 0 °, the diffracted 
beam and the scattering vector are in the (vertical) xz plane. 
(Point C in Fig. 1 is at "7 -- 0°.) Fig. 4(b) shows the cone of 
POD vectors for all the crystallites in the sample that are 
contributing to the hkl reflection in the selected direction. 

The orientation of the POA with respect to the incident 
beam can be described in terms of the spherical polar 
coordinates, fl and ~, of Fig. 4(c) as 

expressed in terms of the (x, y, z) axes of Fig. 4 as 

POA = asin(fl)cos(~) + b sin(fl)sin(~)) + ccos(fl), (1) 

where (a, b, e) are unit vectors in the (x, y, z) directions. 
Expressing the POD vectors in terms of the coordinate 
axes of Fig. 4 is not trivial. However, by transforming to 
other coordinate axes, it can be shown (Wright, 1995) that 
the POD vector of a given diffracting crystallite can be 
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(a) The orientation of the incident beam (IB), diffracted beam 
(DB) and scattering vector (Khkt) with respect to the Cartesian 
axes. (b) The orientation of the PODs with respect to the POA. 
Angle c~ describes the orientation of the PODs relative to the POA 
and thus varies for different orientations of the POD on the POD 
cone around Khkt. ~/' is the half-angle of the POD cone, (c) The 
orientation of the POA with respect to the Cartesian axes. Other 
angles and symbols are defined in the text. 

POD = a[-s in(  "7 )sin( ~b )cos(/5) 

+ sin(0)cos ('7) sin(~)sin(/5) 

+ cos(0)cos('7)cos(¢)] 
+ b [cos ('7)sin (~b)cos(/5) 

+ sin(0)sin('7)sin(~b)sin(15) 

+ cos(8)sin('7)cos(~)] 

+ e[cos( 0 )sin( ~, )sin(/5 ) 

- sin(0)cos(~ )], (2) 

where/5 (defined in terms of the transformed axes) takes the 
values 0--27r to represent different orientations of the POD 
on the cone around Khkl. A simple vector (dot) product of 
(1) and (2) then gives 

cos (  a ) = s in( f l  ) cos (  ~ ) [ - s in ( '7 ) s in (~b)cos ( /5 )  

+ sin (0)cos ('7) sin(~,) sin(/5) 
+ cos(0)cos('7)cos(¢)] 
+ sin(/3) sin(~) [cos('7)sin(~b)cos(/5) 
+ sin(0)sin('7) sin(~b) sin(/5) 
+ cos(8)sin('7)cos (~)] 
+ cos(fl)[cos(0)sin(~b)sin(/5) 
- s i n ( 0 ) c o s ( ~ ) ] .  (3) 

The ODF is assumed to be a simple function of angle 
a [here designated P(a)], and thus the probability of 
a crystallite being correctly oriented for diffraction to a 
particular point on the hkl powder ring, (P(a))hkt, Can be 
calculated by numerically integrating P(a) over the range of 
a angles which describe crystallites on the relevant cone. 
If the ODF is assumed to have the March-Dollase form 
(March, 1932; Dollase, 1986) then the integral is 

fO 7r (P(a))hkt = (1/27r) [R-lsin2(a) 

+ R2cos 2 (a)] -3/2d/5, (4) 

Figure 5 
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The observed (points) and calculated intensity variation around 
the powder ring shown in Fig. 1 (b). The calculated line has been 
obtained by fitting the preferred-orientation model to the observed 
data. [The sense of the 7 axis is as in Fig. 1.] 
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where R is the refinable parameter of the March-Dollase 
function and describes the degree of sample texture. The 
calculated intensity, l,:,lc(hkl), predicted by the model for 
that point on the powder ring is then given by: 

Icalc(hkl) -- lideal(hkl) Z [(P(ct))hk//M(hkl)] (5) 
M(hkl) 

where lideal(hkl) is the intensity of the (hkl) powder ring 
from an ideal randomly oriented sample of the same vol- 
ume, M(hkl) is the multiplicity of the (hkl) reflection and 
(P(OO)hk I is the average value (integrated over the relevant 
POD cone) of the normalized distribution for that point 
on the powder ring [from (4)]. The parameters that (P(o0) 
depends on are 0 and ~, which are determined from the 
lattice parameters and unit-cell indexing; /3 and ~, the 
direction of the POA with respect to the incident beam; 
R, the parameter of the ODF; and 7, the angle around 
the powder rings. For a given reflection from a given 
sample in a given orientation, all of these parameters 
apart from "3, are fixed or known. Variation of 7 for a 
given reflection corresponds to the POD cone exploring 
the ODF, as shown for three different diffracted-beam 
directions in Fig. 3. [As previously discussed, the variation 
of intensity with "y is most straightforwardly observed 
and understood for a single reflection, not overlapped by 
either symmetry-related reflections or other reflections with 
almost the same d spacing. However, (5) is summed over 
all symmetry-related hkl reflections: when applied to the 
tetragonal sample considered in §2 above, for example, the 
calculated intensity for the (100) ring as a function of 7 will 
then be the sum of the (100) and (010) variations added 
together.] 

Fig. 5 shows the fit given by the model to the observed 
intensity around the powder ring of the (non-overlapped) 
HgS (003) reflection plotted in Fig. l(b). The agreement 
between the data and the calculated intensity predicted by 
the model is excellent and indicates that this approach 
can be used to understand the effects of very pronounced 
preferred orientation on the full two-dimensional diffraction 
pattern. 

4. Two-dimensional aspects of preferred 
orientation in some standard geometries 

This section discusses the implications of preferred orienta- 
tion for data collection in the principal standard diffraction 
geometries used in synchrotron studies. 

4.1. Transmission geometry 
In this case, the incident beam strikes the sample along 

the axis of the crystallite distribution (the POA) and thus 
transmission geometry is identical to the simple case con- 
sidered above in Fig. 3(a). This is the diffraction geometry 
commonly used in high-pressure X-ray studies - assuming 
the POA to be aligned with the pressure-cell axis as is 
often, although not always, true. The consequences of this 
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scattering geometry can be seen mathematically in the 
simplification of (3) when /;~ = 0°: 

cos(~e) = cos(0)sin('())sin(b) - sin(0)cos((;). (6) 

i.e. there is no dependence of the value of cos(tO [and hence 
(P(oz))hkl] o n  the angle around the powder ring, 3'. The 
effects of preferred orientation are seen only in changes to 
the relative intensities between reflections compared with 
those obtained from an ideal non-textured sample. The 
presence of preferred orientation is then not readily apparent 
and can be detected only if a structural model is available. 
However, this difficulty can be overcome by inclining the 
sample such that the X-ray beam strikes the sample at an 
angle [i.e. the general case of Fig. 3(b) considered above]. 
We have found this inclination technique to be of great 
value as it allows any preferred orientation to be explored 
prior to structural solution or refinement, and we now 
routinely apply it to most samples. 

4.2. Debye-Scherrer geometry 
In this geometry the incident beam enters the sample 

perpendicular to the sample capillary axis, with which the 
POA is assumed to be coincident (see Fig. 6). For a small ,(; 
angle (as drawn), the POD cones for points A and B in the 
diffraction pattern are at higher probability than the cone 
for point C.and so point C is a minimum. [As discussed in 
relation to Fig. 3(b), this would be reversed for a reflection 
with a sufficiently large ~h angle, and C would become a 
maximum.] As the contours on which the POD cones lie for 
points A and B are the same, the maxima at points A and B 
are of equal intensity. It is common during data collection 

POA 

Khkl( A ) . . . .~  :- 

' ~ _ ~  . . . . . . .  3 DB(A) 
. . . . . . . .  -~\\ 

\ ,  _ . . . . . .  

"~ ......... 3 /" I)B(B) 

Figure 6 
Debye-Scherrer geometry. The orientation of the POD cones for 
diffraction into three selected points on a powder ring for the inci- 
dent beam (IB) striking the cr~stallite distribution perpendicular to 
the sample capillary axis, which is assumed to be coincident with 
the POA. By comparing the values of the contours intersected 
by the POD cones at the three selected points, it can be seen 
that points A and B are equal relative maxima and point C is 
a minimum. Khkl(C) and DB(C) are directed upwards out of the 
plane of the diagram. 
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in this geometry to rotate the capillary about its own axis. 
This enforces the axial symmetry about the POA (which 
is otherwise only assumed). However, as can be seen from 
Fig. 6, the variation in intensity around the powder ring is 
unaffected by this rotation. 

This geometry is commonly used with a high-resolution 
scanning detector, which records a thin strip of the diffrac- 
tion pattern in the plane perpendicular to the POA. No 
information on intensity variation around the powder rings 
is recorded, and hence the presence of preferred orientation 
cannot be determined unless a structural model is available. 
However, the degree of preferred orientation could be read- 
ily assessed by placing an area detector, such as an image 
plate, perpendicular to the incident beam so as to record a 
substantial fraction of the powder rings. Simple averaging 
of the intensity around the powder rings would produce 
intensities closer to those expected from a ideal sample than 
those obtained by the one-dimensional detector, although 
for optimum accuracy the intensity variation around the 
powder rings should be modelled and the correct intensities 
obtained accordingly. 

It is possible that the true POA of the sample may not 
coincide with the capillary axis (as assumed above), or 
not with the axis around which the capillary is rotated. 
The rotation will then produce a more complex, albeit still 
symmetric, effective ODF. In such cases, the maxima at 
points A and B would remain equal for a rotating sample 
but would be found to differ in intensity with the sample 
stationary. 

POA 
t 

Khkl(A ) POD 
~ _ ._~_ _ / cone 

~ ~ - [ / '  . . . . . . . . . . . . .  ~ i  DB(A ) 

Figure 7 
Bragg-Brentano geometry. The orientation of the POD cones for 
diffraction into three selected points on a powder ring for the 
incident beam (IB) striking the crystallite distribution such that, for 
DB(A), the scattering vector Khkt is coincident with the fiat-plate 
normal (assumed to be coincident with the POA). By comparing 
the values of the contours intersected by the POD cones at the 
three selected points, it can be seen that points A and B are 
unequal relative maxima and point C is a minimum. At point A, 
the contours intersected by the POD cone are of constant value. 
Khkl(C) and DB(C) are directed upwards out of the plane of the 
diagram. 

Preferred orientation in two-dimensional powder patterns 

4.3. Bragg-Brentano geometry 
In this geometry, the orientation of the sample relative 

to the incident beam is adjusted for each reflection such 
that the scattering vectors for the crystallites contributing to 
the measured intensity coincide with the normal to the fiat- 
plate sample holder. One particular such setting is shown in 
Fig. 7, with the detector taken to be at point A on the powder 
ring and the POA assumed to coincide with the fiat-plate 
normal (around which the sample is usually rotated). Points 
A and B are maxima in the diffraction pattem and point C 
is a minimum for a reflection with a small POD-cone angle, 
~h, as previously discussed. And it can be seen that point 
A is at a stronger maximum than point B. This geometry 
is normally used with a small detector [at point A, i.e. set 
to collect DB(A)], and so the intensity variation around 
the powder rings is not observed. The Bragg-Brentano 
geometry represents a special case in which measurements 
are made with all positions on the POD cone lying on the 
same contour (a = ~,), and thus P(a) is the same for all 
contributing crystallites. 

As in the Debye-Scherrer case, the preferred orientation 
could be readily assessed by taking an exposure with the 
sample stationary and an image plate placed perpendicular 
to the incident beam - including, in a similar way, an 
assessment of the assumption that the POA coincides with 
the flat-plate normal. 

5. Conclusions 
We have shown how the detection and modelling of pre- 
ferred orientation can be greatly aided and simplified by 
the collection of full two-dimensional powder patterns on 
a suitable area detector, and have presented a straightfor- 
ward graphical interpretation of preferred-orientation ef- 
fects in two-dimensional patterns for a number of standard 
diffraction geometries. We have also outlined the essential 
elements of a general quantitative model. 

In closing, we remark that a simple qualitative 
assessment of the preferred orientation in a sample can 
be valuable, and is often sufficient for many purposes. 
For example, a two-dimensional pattern collected with 
the incident beam inclined to the expected preferred- 
orientation axis will reveal immediately whether the 
sample has any significant preferred orientation and, if 
so, approximately how strong the effects are. This is 
already useful information. Beyond that, a comparison 
of two-dimensional patterns collected at two different 
inclinations to the preferred-orientation axis will show 
directly which reflections are weakened and which are 
strengthened by preferred-orientation effects, and that 
is sufficient to place tight constraints on any preferred- 
orientation model included in structure refinement. With a 
little more effort, but still without quantitative modelling 
of the two-dimensional data, it is often even possible to 
identify the preferred-orientation direction using the simple 
graphical approach we have proposed. 

We suggest that many powder diffraction studies would 
benefit from the routine collection of two-dimensional 
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patterns to assess sample preferred orientation in these ways 
- and better still, model it. This is particularly true for work 
at synchrotron sources where area-detector systems are 
now becoming widely available and good two-dimensional 
patterns can be collected very quickly. 

This work is supported by the UK Engineering and 
Physical Sciences Research Council and by facilities made 
available by Daresbury Laboratory, UK. We are grateful 
for assistance with the experimental facilities from G. 
Bushnell-Wye and A. A. Neild. 

References  
Barrett, C. & Massalski, T. B. (1992). Structure of Metals, 

International Series on Materials Science and Technology, Vol. 
35. Oxford: Pergamon Press. 

Belmonte and M. I. McMahon 119 

Bunge, H. J., Dahms, M. & Brokmeier, H. G. (1989). Crystallogr. 
Rev. 2, 67-86. 

Capkova, P., Peschar, R. & Schenk, H. (1993). J. Appl. Co, st. 
26, 449--452. 

Capkova, P. & Valvoda, V. (1974). Czech. J. Phys. B24, 891-894. 
Cerny, R., Valvoda, V. & Chladek, M. (1995). J. Appl. Co'st. 28, 

247-253. 
Dahms, M. & Bunge, H. J. (1989). J. Appl. Co'st. 22, 439-447. 
Dollase, W. A. (1986). J. Appl. Cryst. 19, 267-272. 
J~irvinen, M. (1993). J. Appl. Cryst. 26, 525-531. 
J~vinen, M., Merisalo, M., Pesonen, A. & Inkinen, O. (1970). J. 

Appl. Cryst. 3, 313-318. 
March, A. (1932). Z. Kristallogr. 81, 285-288. 
Nelmes, R. J. & McMahon, M. I. (1994). J. Synchrotron Rad. 1, 

69-73. 
Peschar, R. & Schenk, H. (1995). J. Appl. Co'st. 28, 127-140. 
Rietveld, J. (1969). J. Appl. Cryst. 2, 1-8. 
Wright, N. G. (1995). PhD thesis, The University of Edinburgh, 

Scotland. 


