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Fitting an entire X-ray spectrum rather than its components, EXAFS and XANES, has been an aim 
of the practitioners of these techniques. Recent developments have made the calculations of both 
the scattering and atomic components practicable. We present the analysis of four representative 
model compounds using the EXCURVE package, which was modified to undertake this. The details 
of these modifications are also given. A comparison of matrix-inversion and finite-path-sum methods 
is made which shows that the latter method is more promising for fitting the edge region. A number 
of enhancements are required before this approach can be used for accurate structure determination. 
These include improvement in atomic contribution, better potentials/phase shifts, and the ability to 
calculate and refine multiple-scattering terms to at least fifth order. 
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1. Introduction 

X-ray absorption spectroscopy is concerned with structure 
above an absorption edge, where the excitation of an inner- 
shell electron results in an abrupt increase in absorption. 
Analysis of the spectrum can reveal information on both 
the electronic structure of the absorbing atom and structural 
information concerning its neighbours. Traditionally anal- 
ysis has treated two regions in isolation. The near-edge or 
XANES region (from below to 30 eV above an edge), which 
is rather sensitive to electronic structure, is usually treated 
semi-quantitatively. The higher-energy EXAFS region (30 
to over 1000 eV above an edge), which is largely dependent 
on interatomic distances and neighbouring atom types, has 
been fitted by more rigorous numerical analysis, after sub- 
tracting an approximation to the atomic background to leave 
the contribution due to scattering from the surrounding 
cluster. Fitting an entire X-ray spectrum rather than its 
component parts has long been an aim of users of the 
technique. This is especially so for systems where only 
a limited k range can be obtained - as with enzymes, 
surface spectra and real-time (QUEXAFS) measurements 
of dynamic systems, where the best data are often be- 
low about 200eV. The lower-energy part of this region 
cannot be adequately background-subtracted, while for the 
higher-energy part, convergence of the matrix-inversion 
method, the method most widely applied to K edges in 
the hard X-ray region, is impracticable. Most modern 
XAFS codes based on spherical-wave multiple-scattering 
theory [e.g EXCURVE (Binsted, Gurman, Campbell & 
Stephenson, 1982), FEFF (Mustre de Leon, Yacoby, Stern, 
Rehr & Dell'ariccia, 1989) and GNXAS (Filipponi, Di 
Cicco, Tyson & Natoli, 1991)] now offer the possibility 
of fitting the entire spectrum, as described by Filipponi 
(1995), Rehr, Zabinsky, Ankudinov & Albers (1995) and 
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Di Cicco (1995). This can be performed using either a 
path summation, as with EXCURVE and FEFF, following 
Lee & Pendry (1975), or the continued-fraction method, as 
with GNXAS. These codes can cope with a wide energy 
range and can calculate both the atomic and scattering 
components of the spectrum. Matrix-inversion methods 
developed by Durham, Pendry & Hodges (1981, 1982) 
also calculate the total cross section, but are limited in 
energy range, as are a number of more precise methods 
based on scattered-wave molecular-orbital calculations or 
band-structure calculations. The convergence of the path 
summations to give the same result as the matrix-inversion 
method has been demonstrated (Mustre de Leon, Yacoby, 
Stern & Rehr, 1990), with terms higher than about fifth 
order only being required near a strong low-energy reso- 
nance (Binsted, Cook, Evans, Greaves & Price, 1987; Rehr, 
Albers & Zabinsky, 1992). 

The difficulties of extending an analysis of the EXAFS 
region to the edge region and of calculating the total 
cross section are well known - the major problems being 
the inadequacy of the spherically symmetric muffin-tin 
approximation to the potentials (Foulis, Pettifer, Natoli 
& Benfatto, 1990; Foulis, Pettifer & Sherwood, 1995), 
the need to include two-electron excitations (Filipponi, 
1995; Rehr et al., 1995; Di Cicco, 1995; Zhang, Stern 
& Rehr, 1984; Takahashi et al., 1995) and the need for 
bound-state calculations below the ionization threshold 
in non-metals. Bound-state calculations may require an 
accurate description of multiplet structure, hybridization 
and the effects of the transient core-hole (Van der Laan 
& Kirkman, 1992; Kotani, 1993). Most of these problems 
have, in principle, been solved, but are not yet incorporated 
in widely available codes. Where EXAFS codes have been 
shown to be inadequate, it has generally been for soft X-ray 
edges, using more or less ab initio methods. For comparison 
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we have performed calculations for the K edges of heavier 
elements, allowing additional refinable variables if required 
rather than attempting a strictly ab initio approach. We 
present here the results of a whole-spectrum analysis of 
four representative model compounds using the EXCURVE 
package, in order to show what can currently be achieved 
and to highlight the need for improvements. We show that 
the method is not yet sufficiently good to be of general 
use, but merits further development. We also show that the 
finite-path-sum method is more promising than the matrix- 
inversion method as a means of fitting the edge region of 
most solids. 

2. Theory and method 

Analysis of XAFS spectra is greatly simplified by the fact 
that in a single-particle approximation, provided coupling 
between final states is ignored, the atomic and scattering 
contribution may be separated. 

(1) #(E) = ~ , . # l T ( E ) [ 1  + XI'"(E)] 

where the sum is over all allowed final states Im and the 
atomic contribution to the cross section, itli"(E), is given in 
the dipole approximation by the Golden rule expression 

(2) #o(E) = (1/h)(l~/,fle.rl~/,'l)2O(E). 

Here e is the electric vector of the photon, r the position 
with respect to the atomic nucleus and D(E) the energy 
density of final states. D(E) depends on the way the 
wavefunctions are normalized and is usually 1 for Rydberg 
states below the ionization threshhold and proportional to 
k, the magnitude of the photoelectron wavevector for a free 
electron. Unless otherwise stated, we use Hartree atomic 
units (h = e = m = 1) to avoid unnecessary constants, hence 
the unit of it is here the square of the Bohr radius. 

Many-body effects may be included approximately 
within this basic formalism, for example by including 
additional terms for two-electron transitions, and by using 
effective one-electron potentials calculated for an embedded 
atom with a complex energy to account for inelastic losses 
to represent the true many-body potential. 

2.1. Calculation of the potential 

At present our program is restricted to the use of spher- 
ically symmetric muffin-tin potentials. These are calcu- 
lated by the Mattheis (1964) method (see also Loucks, 
1967) from relativistic Hartree-Fock atomic wavefunctions. 
Previously, however, we have shown that for MoS2, a 
significant improvement in the XANES region was obtained 
using self-consistent potentials derived from LMTO band- 
structure calculations, which were then spherically averaged 
(Binsted & Temmermann, 1989). We hope to pursue this 
approach in conjunction with non-muffin-tin potentials in 
future. 

Although it is now agreed (Vaarkamp, Dring, Oldman, 
Stern & Koningsberger, 1994) that a Hedin-Lundqvist 
formulation is required for the self-energy, giving an energy 
dependence to both the real and imaginary parts, details of 
the phase-shift calculations vary between programs and we 
outline the method we used and some of the alternatives 
which were considered. Our conclusions are based on 
the model compound data presented here and elsewhere 
(Binsted, Weller & Evans, 1995; Binsted, Pack, Weller & 
Evans, 1996), as well as unpublished results. 

All EXAFS spectra require potentials for more than 
one atom type (excited atoms are treated separately from 
scattering atoms). It is not possible in the majority of cases 
to use actual crystal structures as a basis for calculating the 
potential - this is especially true of n-bonded organometal- 
lic compounds such as carbonyls. All our attempts to use 
real crystal structures for anything more complex than 
binary metal oxides failed. This is not really surprising 
as the Mattheis method assumes a close-packed solid. 
Even where a many-atom close-packed structure can be 
generated, calculation of a common interstitial potential 
often results in very large steps at the muffin-tin radii. 
This results in a marked effect on the phase shifts as 
scattering from a potential step is very significant. We 
therefore use binary cubic structures as the basis for our 
calculations. Where the radius ratios permit, close-packed 
(12-fold-coordinated) structures are used, otherwise ap- 
propriate lower-coordination structures are employed. In 
practice, the contribution beyond the first coordination 
sphere is not large; however, it is noticeable and thus six 
shells are included in this work. A separate potential is 
calculated for each atom, using a local interstitial potential. 
This minimizes steps in the potential but introduces another 
problem - that the origin of the wavevector required to 
calculate the EXAFS contribution for each shell is different, 
and the various shells are out of phase. One solution we 
have introduced is to specify a common Vo (e.g. an average 
of the initial calculation) and refine the muffin-tin radii 
until the specified value of V0 is achieved. The results are 
usually quite good, and in the case of a metal yield almost 
exactly the same results as using the Norman radius (Mustre 
de Leon, Rehr, Zabinsky & Albers, 1991) for the atom. 
For many ionic compounds, however, the effect of charge 
transfer means that if the atomic charge densities used as 
the basis of the calculation are those of neutral atoms, the 
effective origin required to fit the spectrum will differ for 
each type of atom. It is therefore useful to be able to vary 
the origin. This can be performed by treating one or more 
of the muffin-tin radii as variables, a procedure we have 
found to be generally successful, although the introduction 
of additional variables should be avoided if possible. 

2.2. Calculation of the atomic contribution 

The atomic contribution in the dipole approximation is 
given explicitly in terms of the radial wavefunction Rf as 
(Durham et al., 1981, 1982): 
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I,I'~"(E) = 2k f RtYl,,,(~)~'~.,,~Ae.r) dr (3) 

where (e.r) is the photon-electron interaction as in (2). 
Y/,,, is a spherical harmonic, and k the magnitude of the 
photoelectron wavevector. The total contribution for a 
particular edge is a sum over all allowed final states Im. In 
each case the wavefunction is a solution for the embedded 
atom. The normalization of the final state is to a spherical 
Bessel function of the same energy at the muffin-tin radius. 
We have no satisfactory procedure for introducing final- 
state lifetimes into these calculations, but when the energy 
density of empty states below the edge is introduced as a 
temperature-dependent Fermi function, we can artificially 
increase the temperature to reduce the resolution. A no- 
ticeable feature of the atomic spectrum is a long-range 
oscillatory contribution which, when Fourier transformed, 
gives a sharp spike at the muffin-tin radius. This spike 
can be largely removed by artificially removing both the 
small step in the potential [V(r)] and the discontinuity in 
dV/dr at the muffin-tin radius by editing the potential. This 
oscillatory structure is in effect an artifact of the muffin-tin 
model, and can be explained by the oscillatory nature of 
the final-state normalization owing to matching the solution 
to a spherical Bessel function in the interstitial region 
(Holland. Pendry, Pettifer & Bordas, 1978). Although some 
structure resulting from the embedded atom is indubitably 
present, we were unable to detect any difference in the 
atomic contribution between solid (Beattie et al., 1990) and 
gaseous (Mackle & Diakun, unpublished results) Kr and 
Ar, although a considerable embedded-atom contribution 
was apparent in the muffin-tin model. Indeed, much of the 
structure present beyond the edge region in a number of 
inert-gas spectra that we examined could be attributable to 
dipole-allowed two-electron transitions such as those of the 
type l s + 3p > two continuum p states. 

2.3. Ionic potentials 

For CaO we calculated spectra with both neutral-atom 
and ionic (Ca + O-) potentials. The final fits to the spectrum 
were almost identical throughout the EXAFS range, the 
main difference being a shift in the effective Fermi energy, 
Ev. A similar conclusion was reached for the XANES re- 
gion of the same spectrum (Wille, Durham & Sterne, 1986). 
We note, however, that energy shifts due to charge transfer 
may occur in many compounds, and as partial ionicity 
cannot be adequately treated, adjusting the muffin-tin radii 
provides a convenient method of treating such cases. When 
adjusting the muffin-tin radii results in charge transfer, then 
ideally we should treat the resulting electrostatic charge on 
the Wigner-Seitz sphere as we do ionic potentials of integer 
charge. That is, we first subtract the overall electrostatic 
term for the cluster, and then add on the full Madelung 
correction for the structure in question, as the clusters we 
use are much too small to allow convergence of the series 
in 1/r. We have not yet applied this correction however, 
except for the case of integer charge. 
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2.4. Ground-state exchange and correlation potential 
Using both the compounds reported here and a number 

of others, we evaluated the use of both the X-alpha and 
the yon Barth & Hedin ground-state terms. These are both 
functions of the local electron density p(r). The X-alpha 
formula, in Rydberg atomic units is (Clarke, 1984): 

6(3/87r)(tpl/3 (4) 

where ~ normally takes a value of 2/3 and with ~ = 1 is 
equivalent to the Slater free-electron formula. 

The yon Barth & Hedin (1972) formula is: 

1.22177(1131/2)p 1/3 + O.05041n[(30131/2)pl/3]. (5) 

The appropriate term was used both in the Hartree-Fock 
calculations used to derive the atomic charge densities 
and in the photoelectron exchange and correlation energy. 
Initially, we did not insist on the crystallographic values 
for distances, but included a scaling factor for all the 
distances. The results showed no consistent preference for 
either of the two approaches, either in terms of quality of 
fit or agreement with crystallographic results. In the case 
of K3Fe(CN)6, the X-alpha case was very much better if 
default values of the muffin-tin radii were used, but the 
procedure of refining a common Vo to which muffin-tin 
radii were adjusted provided an acceptable fit with the yon 
Barth & Hedin term. For Cu (at 90K), the von Barth 
& Hedin term was preferred, but in a fit to Cu at room 
temperature (Binsted et al., 1996) a much better fit was 
obtained using an X-alpha ground state. Where a significant 
difference occurs, it is usually due to a small energy shift in 
a resonance where one of the phase shifts goes through ~-/2. 
In applying the Mattheis method to compounds other than 
the metals or van der Waals solids for which it was designed 
it might be expected that some variable parameters need to 
be introduced to ensure alignment of these features. 

2.5. Calculation of the scattering contribution 

The scattering contribution may be calculated as a matrix 
inversion (Durham et al., 1981, 1982) 

x (E)  = ~ ylm.l,,(E) - itl (6) 
sin2b/ 

where the bt are the /-wave phase shifts for the central 
atom and with 

--iT"lm.i m = (t71 - R°I)  -I (7) 

t /= exp(2 ib l ) -  1. (8) 

R °1 is given, for example in the case of a single shell of 

atoms indexed i, j, by: 

R o l  A)i q TL t tU t t  L.L ZL,,, , ' , i j  (9) 



188 State-of-the-art analysis of whole X-ray absorption spectra 

where the g are free-particle propagators which depend on 
the energy and interatomic vectors (0 is the central atom 
index, L implies lm), and T is defined by 

TL,,  = ( lO) 

= - g L L " "  (11) 

A binomial expansion of the above gives an alternative 
formulation in terms of a path sum (Lee & Pendry, 1975): 

2 ~[Zexp(2i6t)] (12) x ( E ) -  21 + 1 

where Z can be expressed (Lee & Pendry, 1975) as a sum 
over all paths, of all orders of scattering: 

Z = Z Cl) + Z (21 + Z (3~ . . .  Z ~n~ (13) 

Z (n) = ~-~abcd..k Ho,, T~ H,,~ Tb . . .  H~.  (14) 

The sum is over all dissimilar neighbouring atoms. The 
scattering matrices T (here diagonal) have elements t/ as 
above. The elements of matrices H include a propagator 
times a Clebsch-Gordan coefficient. Details of the calcu- 
lation are described elsewhere (Gurman, Binsted & Ross, 
1984, 1986). 

The programs used for calculations were the Daresbury 
Laboratory EXAFS analysis program EXCURVE (Binsted 
et al., 1982), and the XANES code DLXANES (Durham 
et al., 1981, 1982). The version of DLXANES we used 
differs from the published version (i) in reading complex 
rather than real phase shifts, (ii) in including polarization 
dependence and (iii) in including additional symmetrization 
for centrosymmetric structures. Changes made to both 
codes during the course of this study are described below. 
Recent changes in the treatment of disorder in EXCURVE 
have been described elsewhere (Binsted et al., 1996) - in 
summary we use a numerical integral over a pair distri- 
bution function g(r) for single scattering and an improved 
analytic expression for the Debye-Waller term for multiple 
scattering, g(r) is defined in terms of the first four cumulants 
of the distribution, but for the examples considered here 
we restrict ourselves to second-order terms - i.e. the usual 
Gaussian approximation. Correction for three-dimensional 
motion is also included in most cases. We note, however, 
that none of the improvements in treatment of disorder have 
yet been applied to paths with orders of scattering higher 
than three or more than two scattering atoms. 

2.6. Approximations in the multiple-scattering analysis 
Typical multiple-scattering paths are shown in Fig. 1. 

An example of a second-order path is Cu (the central 
atom)-N1-C4-Cu. This is characterized by a path length 
Rx + d(l:4) + R4, and a maximum bond angle fl0-14. 
The scattering angle at N1 is the complement of this 
angle. In the tables we refer to this path as 0-1-4-0.  The 
numbers label shells of atoms. Atoms replicated by the 
point symmetry of the central atom are labelled la, Ib etc. 

In some cases, at least in the EXAFS region, the large 
finite-path sum may be adequately approximated by a small 
and easily calculated set, as has been performed previously 
for Cu and Ti (Rehr, 1993) and for various transition-metal 
sulfides (Binsted & Norman, 1994), to give two of many 
examples. The latter reference contains some general rules 
to determine important multiple-scattering paths, which will 
not be repeated here. We can apply a priori filters (in terms 
of maximum path length, minimum value of the largest 
bond angle, maximum order, maximum shell number, etc.) 
and a posteriori criteria which involve an amplitude cut-off 
after paths have been calculated once. In all the final results 
presented here we use only the path length, maximum 
order, and maximum number of scattering atoms to limit 
the number of paths. During the refinement process, further 
restrictions on the number of paths were usually applied, 
especially during early stages. 

3. Comparison of the matrix-inversion and 
finite-path-sum methods 

For metallic Cu we performed a comparison of the two 
methods for different cluster sizes and different numbers 
of scattering terms. We were particularly interested in 
convergence of the two methods. In the case of the ma- 
trix inversion, convergence with respect to the number of 
terms in the single-centre expansion (Durham et al., 1981, 
1982) is of interest. The single-centre angular-momentum 
expansion is required to describe the scattered wave in 
the coordinate system of the central atom. The maximum 
angular momentum value required (LOUT) is typically 
much higher than the maximum value LMAX required to 
describe scattering from an individual atom. For the finite- 
path sum the convergence with respect to the number of 
scattering paths is of interest. The number of scattering 
paths is primarily determined by the maximum allowed path 
length, the number of different scattering atoms in the path 
and the order of scattering. EXCURVE is currently limited 
in the following way - no paths higher than fifth order, no 

4 

30-1-4 

Figure 1 
An illustration of the terminology for scattering paths, using an 
imidazole ring as an example. Orders of scattering are given by 
numbers in parentheses. R~ and R~ are distances, and .~o-~-~ is the 
bond angle. See §2.6 for discussion. 
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Table 1 
Convergence of the matrix-inversion method for four shells of Cu. 

R values are compared to LOUT = 28 (see §3) 

LOUT /m,~, = 1 /max = 2 /max = 3 /max = 4 

26 0.148 1.628 3.721 18.639 
24 0.561 5.582 11.620 33.034 
22 0.543 5.004 10.177 31.764 
20 0.545 2.165 8.965 26.902 
18 1.366 2.582 7.553 29.062 
16 2.485 3.348 8.379 28.946 
14 3.228 6.146 10.891 31.515 

paths involving more than four different scattering atoms, 
and no scattering to higher than fourth order for paths 
involving four different scatterers. Previously, we suspected 
that the maximum number of LOUT (around 16) available 
was insufficient, and that the matrix-inversion method was 
not particularly accurate. For the purpose of this study we 
therefore increased the precision of the code and allowed 
a maximum LOUT of 28. 

For the purpose of comparison we performed calcula- 
tions based on one shell (13 atoms including the central 
atom) and four shells (55 atoms) of Cu. Phase shifts were 
calculated using Hedin-Lundqvist potentials with a slightly 
greater ground-state imaginary contribution than given by 
the core-hole lifetime so as to include experimental reso- 
lution. An energy range from -1 to 120 eV with respect to 
the ionization potential was used. E X C U R V E  Debye-Waller 
factors were set to zero to facilitate comparisons. 

The number of scattering phase shifts used was from two 
(LMAX = 1) to seven (LMAX = 6). We note that about 
eight are actually needed at 120 eV as the l = 7 scattering 
phase shift is non-zero at this energy, but this would further 
increase the required matrix size. 

Comparisons between two spectra a and b here and 
elsewhere are described by an agreement factor R~/, given 

by: 

R .h = w,  l x 7  - X I× 1 0 0 %  (15) 
Zjwjlxjl 

where the point weighting is here 1 but in general k". 
This is a general case of the usual EXAFS R factor 

(Binsted, Strange & Hasnain, 1992). Fourier transforms, 
used to reveal discrepancies in terms of path length, employ 
a small arbitrary offset to produce usable values of k. 

For a single shell, agreement between the two methods 
was found to be in accordance with expected numerical 
errors for all values of LMAX up to 6, indicating conver- 
gence with respect to LOUT and the number of paths. The 
actual value of R~,.b was 1.664%, with errors mainly at the 
lowest and highest energies. The path-length cut-off was 
18/~, but it was apparent from Fourier transforms that the 
errors were related to shorter paths. 

For the four-shell cluster, however, good agreement was 
obtained only for LMAX = 1. For higher values agreement 
was progressively poorer. We assume that convergence was 

not achieved. Actual values for the convergence parameter 
Res.,,, where n is the LOUT value to be compared to the 
LOUT = 28 spectrum, are shown in Table 1. As an example 
the LMAX = 2 set of curves are shown in Fig. 2. 

A comparison of the four-shell fit using the matrix- 
inversion and path-sum methods is given in Fig. 3, also for 
LMAX = 2. We attribute most of the discrepancy (R,.b is 
5.366%) to the lack of convergence in the matrix-inversion 
method. The discrepancy in r space is mainly in the 2-6 
region for which all multiple-scattering paths are calculated. 
The lack of convergence has been demonstrated above. 
Numerical errors may also arise when, as here in the very 
low energy region, one of the phase shifts is near zero 
(giving some very large terms in the reflection matrices). 

It is apparent that even for clusters of only moderate 
complexity, and very near the edge, the matrix-inversion 
method does not yield accurate results. In practice, at least 
13 shells and an LMAX of 8 are required to fit the spectrum 
to 120 eV, and even at 60 eV an LMAX of 6 is required. It 
is also apparent that there is virtually no contribution from 
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Figure 2 
Convergence of the matrix-inversion method for four shells of Cu 
metal, using a maximum scattering angular momentum (LMAX) 
of 2. The normalized absorbance (above) and corresponding FT 
(below) using maximum angular momentum values for the single- 
centre expansion (LOUT) of 14-26. 
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orders of scattering higher than five. This is despite the 
neglect of thermal disorder, which will have a large effect 
even at low k given that nth-order scattering involves the 
product of n Debye-Waller factors exp(2cr2k 2) - resulting 
in substantial amplitude reduction for higher paths even 
at k = 2 or 3. Indeed, the inability of the matrix-inversion 
method to treat thermal disorder is another major weakness. 
We conclude that the method is only useful for clusters of 
atoms much smaller than the 55-atom cluster we used for 
Cu. It would be appropriate for most gases and molecular 
liquids, but few solids, unless atoms surrounding the cluster 
of interest have little effect. The latter situation might occur 
with some metal centres in enzymes. Such a situation may 
arise because strong multiple-scattering paths tend to follow 
short interatomic bonds, and because the overall effect of 
multiple scattering is reduced with low-symmetry clusters. 
The method should be used only at very low energies in 
situations where a finite-path sum demonstrably fails to 
converge with increasing order. Such systems would be 
expected to include diatomic molecules for which very high 
order multiple scattering has been shown to be significant 
near resonances (Rehr et al., 1992). 

4. Whole-spectrum analysis 

If useful structural information is to be obtained by fitting 
the whole spectrum, the fit to the atomic spectrum must 
be far better than that usually obtained for the oscillatory 
part alone. For example, if an R factor of 20% is obtained 

for the oscillatory part, and the EXAFS is on average 
5% of the total spectrum, then an overall R factor of 
I% would be required to maintain the same structural 
sensitivity. At high k, the EXAFS is certainly less than 
5% for almost all compounds. This level of precision is 
clearly impossible using an ab initio calculation, especially 
as absolute measurements of X-ray cross sections are rarely 
performed, and procedures such as pre-edge background 
removal will add to errors. It will therefore be necessary to 
include a number of adjustable parameters to provide a fit. 
After trying a number of schemes the following set of terms 
appear to be the most useful. A polynomial function of up to 
order 8 in ( E -  Eorigin ) that multiplies the theoretical cross 
section, a pre-edge background correction term (second- 
order polynomial) and an effective temperature that allows 
for edge resolution via a Fermi function. Our experience 
suggests that not all these terms should be used on the 
same spectrum, with the decisions about which to use 
made by examining statistical errors aLd correlations. The 
order of polynomial used for the results presented here 
was in each case less than eight to avoid reducing the 
apparent amplitude of the scattering contribution. Once 
we have obtained a fit we can isolate the atomic and 
scattering components of the experiments - in effect we 
are just performing a background subtraction using P#0 
(the calculated atomic contribution times the polynomial 
function) as the background. We can thus compare the 
Fourier transforms of the two oscillatory components. It 
also allows a comparison of the 'experimental' and purely 
theoretical atomic components. 

u0 
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Figure 3 
Comparison of the matrix-inversion (solid) and finite-path-sum 
(dotted) methods for four shells of Cu, using an LMAX of 2. 

5. Results 

Here we report only the results of fitting K-edge spectra, 
which avoids the problems associated with multiple final 
states. We include representatives of three major classes 
of solid studied by EXAFS - metals, ionic oxides and 
covalent organometallic compounds. An example where 
strong high-order multiple scattering might be expected is 
also included - K3Fe(CN)6. In all the examples below, fit- 
ting assumes crystallographic distances, including thermal 
expansion corrections where known. 

5.1. Gu 

For Cu (K-edge absorption spectrum measured at 90 K) 
an initial fit to the background subtracted spectrum (from 
3 eV above the Fermi level) was used to obtain approximate 
Debye-Waller terms and phase-shift parameters. Crystal- 
lographic distances, adjusted for thermal expansion, were 
used. Multiple scattering to fifth order with paths to 18 
was included. The fit was not particularly good - giving 
an R factor of around 29%, which is higher than for 
room-temperature data we have analyzed recently by the 
same method (Binsted et al., 1996). This indicates we 
still have some problems with phase shifts. Subsequent 
whole-spectrum analysis required rather different phase 
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shifts to fit the atomic structure near the edge, with some 
consequent worsening of the fit to the oscillatory part. 
The best result obtained, giving an unweighted R factor of 
0.8%, is shown in Fig. 4. This result was obtained with 
Hedin-Lundqvist potentials using a v o n  Barth & Hedin 
ground-state term. An X-alpha ground state, both with 
constant o~ = 2/3 and a refined o~, failed to reproduce the 
small maximum just above the Fermi energy. We note that 
in a similar calculation of the atomic contribution to Cu, 
Rehr, Booth, Bridges & Zabinsky (1994) preferred not to 
use the Hedin-Lunqvist theory. 

The gradient of the atomic contribution, without the 
multiplying polynomial function, was only about half that 
of the experiment. As the discrepancy was far greater 
than could be accounted for by factors such as the pre- 
edge background subtraction we checked the result against 
other codes. The gradient well above the edge was in 
almost perfect agreement with the absorption cross-section 
program CROSSEC (Cromer & Lieberman, 1970), and both 
the gradient and near-edge structure were in agreement with 
a program by Gurman (1983). We also calculated the mag- 
netic quadrupole and electric octopole contributions and 
showed them to have a relatively insignificant contribution 
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Figure 4 
Fit to/,(k) (above) and FT k 3 \(k) (below) for the K edge of Cu 
metal at 90 K. Experimental spectrum solid, theory dotted lines. 
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Table 2 
12 most significant paths for \(k) of Cu at 90 K. 

Path 0-1-3-0 (for example) is the second-order (double-scattering) path 
where the photoelectron is scattered by atoms in shells 1 and 3. The 

magnitude is the maximum value of ~(k). 

Number of 
equivalent Path Maximum 
paths Path length (A) angle (o) Magnitude 

12 0-1-1c-0 10.172 180 0.0694 
48 0-1- I d-0 7.629 60 0.1864 
96 0-1-3-0 9.491 120 0.2637 
48 0-1-3-1-0 10.172 120 0.0587 
96 0-1-1f-3-0 13.895 150 0.0561 
96 0-1a-3-0 13.676 150 0.1179 
24 0-1--4--0 10.172 180 0.1290 
12 0-1-4-1-0 10.172 180 0.0617 
48 0-1-5-0 1 i.826 135 0.0505 
48 0-2-5-0 I 1.826 135 0.0589 
96 0-1-7-0 13.676 150 0.1119 
96 0-3-7-0 13.676 150 0.0971 

even at several keV above the edge. Although we have 
neglected the important two-electron channels, these will in 
fact incrcase and not decrease the discrepancy. We therefore 
have to conclude that the experimental normalization was 
in error. The fit to the overall spectrum is shown in Fig. 4, 
along with the Fourier transform obtained as described in §3 
above. This fit is not particularly promising, and probably 
would not allow structural parameters to be refined in an 
unknown. The fit is particularly poor in the region around 
4 A-I (corresponding to about 80 eV above the edge). Near 
this are two small features which never appear in the theory 
and which we tentatively attribute to the dipole-allowed ls 
+ 3p ~/2 and ls + 3p 3/2 to continuum two-electron transitions. 
The onset of the two-electron channels above these features 
may be perturbing the fit in this region. If a lower-order 
polynomial correction factor is used, the lack of fit is indeed 
just above these features. Clearly, the ability to include two- 
electron effects, at least in order to assess their importance, 
is an important future requirement. The importance of 
these features is controversial, as they depend critically 
on the rate of transition from the 'adiabatic' to 'sudden' 
approximations to the passive electron wavefunctions as 
the photoelectron energy increases. 

Although the total number of paths used in Fig. 4 is 
very large (53 738), only a small subset were needed to 
reproduce most of the features in the spectrum. Those 
which fall below a certain cut-off in magnitude can be 
excluded with no significant effect on the quality of fit. 
This list, and the cut-off value, will vary depending on the 
weighting of the spectrum. Table 2 shows a list for a cut- 
off of 0.05 in x(k). These mostly include paths with at 
least one large bond angle (all but one include an angle of 
120 ° or more), they are all of third order or less, and only 
one includes more than two different scattering atoms. 720 
paths are represented which can be calculated using only 
12 terms because of the high symmetry of the lattice. This 
list reproduces most of the structure in the EXAFS region. 
Very near the edge, a rather larger set is required, and some 
fifth-order terms are quite significant. 
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5.2. CaO 

CaO is a cubic solid with the NaCl structure, each atom 
having six nearest neighbours. Multiple scattering is very 
important, particularly for paths involving the fourth shell, 
which is shadowed by the first, and the seventh shell, which 
is shadowed by the second. 

CaO has always been difficult to fit using exactly the 
crystallographic parameters (Binsted, Greaves & Hender- 
son, 1984; Harries, Hukins & Hasnain, 1986), and with 
this constraint the best fit to the oscillatory structure above 
the edge gave an R factor of 36% signifying a poor 
fit. Unusually for cubic solids scattering paths involving 
three different scatterers are important throughout the spec- 
trum, and, as our code does not handle these efficiently, 
refinement is very time-consuming. For this spectrum, 
the phase-shift parameters were actually refined using a 
weighting of k I. 

Although the overall fit in Fig. 5 is very poor (R = 3%), 
we regard the fit to the edge region as acceptable. This used 
only those multiple-scattering paths with a path length of 
less than 10 ,~ (Table 3), as is clcar from the lack of fit 
in the Fourier transform beyond 5 A. This can be rectified 
by extending the maximum multiple-scattering path length 

1.6 

0.4 

1.2 

0.8 

i 

2.5 

2.0 

--. 1.5 

% 
1.0 

0.5 

2.0 

t t 

i t 

I i I I 

4 6 8 10 

~ (A-I)- 

i 

t t I 

0 6 9 12 

Path length (,~) 

Figure 5 
Fit to p(k) (above) and FT k 3 \ ( k )  (below) for CaO at 90K. 
Experimental spectrum solid, theory dotted lines. 

State-of-the-art analysis of whole X-ray absorption spectra 

Table 3 
Multiple-scattering paths below 10 ~ for k\(k) of CaO at 90 K. 

Notation a~, for Table 2 except thal the magnitude is the maximum in 

L\tL}. Shclb, 1 and 3 a,'e oxygen.  Shells 2 and 4 arc calcium. 

X t l l l l h ~ . ' l  t ' ) f  

equixalent Path Maximum 
paths Path length (,a,) angle (o) Magnitude 

6 0 -  1 -0 -  1-0 9.608 0 0.0102 
6 (/- 1 - I a--0 9.608 180 0.0679 

"* ' 3  ' 3  24 (1-- l -- I 1~--0 8.201 90 0. I .~ - -  
48 0--2-- 1--0 8.201 90 0.562 I 
24 0-- 1 --2-- 1 --(1 9.608 90 0.2208 
48 (}--2-- I d - 0  9.959 90 0.1590 
48 0 - 3 -  I -(1 9.959 90 0.1797 
48 0 - 3 - 2 - 0  9.959 90 0.2436 
12 0 - 4 - 1 - 0  9.608 180 0.3478 
6 0 - 1 - - 4 - 1 - 0  9.608 180 0.2057 

to 18 A. This also results in an improvement to the fit 
in k space between 3 and 6 A-l where multiple-scattering 
contributions are particularly strong. Unlike the case of Cu, 
however, a large proportion of the many tens of thousands 
of multiple-scattering paths are significant. These include 
paths with more than two different scatterers and more 
than three orders of scattering. In the edge region, although 
these longer paths increase the sharpness of the first two 
peaks, the overall fit is very poor. As most of the features 
in the edge region are already reproduced, we would have 
anticipated that given a sufficiently accurate calculation 
the additional paths would more-or-less cancel out. We 
are not sure why this could not be achieved. Possible 
reasons are: (i) the sensitivity of the calculation to phase- 
shift parameters is very high; (it) we are unable to include 
some of the paths; (iii) the treatment of lifetimes may be 
ineffective, with the decay in amplitude of longer path 
contributions being underestimated. This compound reveals 
some points that we have previously noted with transition- 
metal sulfides (Binsted & Norman, 1994). These are that the 
edge region can often be adequately fitted using only a small 
number of multiple-scattering paths, and it is the region 
between about k = 3 and 6/~-t that is most sensitive to 
multiple scattering and hence to three-dimensional aspects 
of the structure. This conclusion is not really surprising, as 
both occupied and virtual orbitals are often adequately de- 
scribed by quantum-chemical molecular-orbital calculations 
involving only a small number of bonding atoms. We would 
expect multiple-scattering paths using the same groups to 
be dominant near an absorption edge. 

We use this compound to illustrate ways in which the 
finite-path-sum approach can be used to analyze data. Anal- 
ysis can be performed in terms of (i) order of scattering, 
(it) atom-type and (iii) angular momentum contributions. 
The application of each of these methods is shown in Figs. 
6(a), 6(b) and 6(c), respectively. 

5.3. K3Fe(CN)6 
K3Fe(CN)6 is an ionic solid in which the approximately 

octahedral [Fe(CN)6] 3- ions are coordinated at 4-5 A by 
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eight K + ions in a monoclinic structure (Morioka, Toriumi, 
Ito, Saito & Nakagawa, 1985). In the room-temperature 
structure, the anion is bipyramidal, with Fe - -C  distances 
of 4 × 1.93 and 2 × 1.99 A. Here the Fe occupies a centre 
of symmetry in the space group P2~/c. At 90 K, however, 
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Figure 6 
Theoretical calculations for CaO at 90 K showing (a) multiple 
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the space group is P21/n, the Fe site has no symmetry, 
and the six F e - - C  distances are all close to 1.94 A. For 
these results we idealized the low-temperature structure to 
give a centre of symmetry at Fe, using the average of two 
distances for each shell. We included all distances to 5 A, 
plus the Fe shell beyond this (41 atoms in total). Most of 
the scattering was attributable to the CN ligands. Although 
both the spectrum and its Fourier transform appear very 
simple, a large number of paths are required. The fourth- 
and fifth-order terms with two scattering atoms (that is 
paths F e - C - N - C - N - C - F e  etc.) were significant, as were 
third-order paths with three scattering atoms, and even the 
fourth-order paths with four scattering atoms. We would 
expect some of the terms we are unable to calculate to 
improve the fit (Fig. 7). In particular, as the fifth-order terms 
within the CN ligands are large, we would expect signif- 
icant sixth- and seventh-order terms. The calculation was 
performed using Hedin-Lundqvist phase shifts and a von 
Barth & Hedin ground-state exchange term. The muffin-tin 
radii were refined, to achieve the best fit near the edge. 
The core-hole lifetime was that defined by the published 
experimental values of Keski-Rahkonen & Krause (1974) 
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the symmetrized Ci structure based on Morioka et al. (1985). 
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with no additional factor for experimental resolution. A 
small (up to 2.5 eV) atom-dependent correction to the self 
energy was used in this case, which slightly improved the 
near-edge region. Much of the lack of fit in this spectrum 
is below the Fermi energy. Indeed, equating the highest 
occupied state to the Fermi energy in metals, and applying 
a temperature-broadened edge function at this point is not 
really an appropriate procedure in conductors. As we would 
not expect the theory we use to be appropriate below this 
energy, however, we have not attempted any improvement. 

5.4. Cu(imidazolo)4.(NO3)a 

The preparation and structure of Cull(imidazole)4(NO3)_~ 
has been described by McFadden, McPhail, Gross, Garner 
& Mabbs (1976). We have previously published fits to 
the EXAFS region (Binsted et al., 1992) and XANES 
calculations have also been published (Strange, Alagna, 
Durham & Hasnain, 1990). For this study a new sample was 
prepared and the K-edge absorption spectrum was measured 
at 90 K. 

The structure consists of four almost equivalent imida- 
zole rings arranged alternately parallel to and perpendicular 
to the molecular plane. The nitrate groups occupy near- 
axial positions. Calculations were performed on both the 
crystallographic structure and a symmetrized (C4h) struc- 
ture, as before (Binsted et al., 1992). We have no data 
on thermal expansion or other structural change so we 
assumed the room-temperature structure, except that in the 
symmetrized molecule the Cu--(NO3) distance was refined 
to a slightly shorter value - this being the most likely effect 
of cooling. Although we have previously modelled the low- 
and high-energy regions of this spectrum satisfactorily, 
fitting the entire spectrum was far from straightforward. 
Obtaining the correct phase over a wide energy range 
was particularly difficult. Unlike the other cases, we could 
not get a good fit using Hedin-Lundqvist phase shifts 
and resorted to an X-alpha treatment of exchange and a 
constant imaginary potential. The exchange term (t was set 
to around 0.45 rather than its usual value of 2/3. Adjustment 
of the muffin-tin radii was also necessary. Using these 
potentials we obtained an adequate fit in the EXAFS 
region using only second- and third-order paths with two 
different scatterers (as in Binsted et al., 1992). The near- 
edge region was very poor in this case. An improvement 
was obtained by adding the additional third- and fourth- 
order terms for path lengths to 12 A (Fig. 8), but the result 
was not as good as for the calculation using D L X A N E S  

of Strange et al. (1990). Clearly, higher-order terms are 
important and we would certainly expect the sixth-order 
term Cu0-N 1-C3-C7-N6-C4-N 1-Cu0 to be strong. As we 
cannot include either all the fifth-order terms or any of the 
sixth-order terms which have similar path length we could 
not extend the calculation. It is important to note cases 
where paths are similar in length but differ in number of 
scatterers - they often result in partial cancelation due to 
the phase difference. Using this scheme (with paths to 12 A) 
the results of the symmetrized and crystallographic models 

was similar. At higher maximum path length, however, 
differences occurred. In both cases the near-edge region 
became dominated by spurious inter-ligand terms. In the 
symmetrized cluster these were much larger, however, due 
to the short distances between the distal atoms of the 
artificially coplanar ligands. We were not able to obtain 
satisfactory results for either case. Such effects were not as 
large with D L X A N E S  - presumably because the number of 
terms in the single-centre expansion restricted the resolution 
of these longer paths. A difference between the two config- 
urations was, however, noticeable. We thus performed the 
final calculation, using path lengths to 12 A. The quality 
of fit is not particularly good. We attribute this partly to 
the lack of higher terms, but also to the unsuitability of 
muffin-tin potentials. We accept the conclusions of Foulis 
et al. (1995) that more accurate potentials are required for 
multiple-scattering calculations near the edge, and a proper 
treatment of disorder at higher energies. We note, however, 
that a reasonable fit can be obtained with the correct 
distances for all but the lowest energies, that the major near- 
edge features that are highly characteristic of imidazole 
complexes can be approximately reproduced, and that the 
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method can distinguish the erroneous C4h configuration 
from the correct one, even with the limitations resulting 
from the approximate methods available. We suspect that 
the major problem in fitting this spectrum is that either 
the scattering strength or the photoelectron lifetimes are 
reduced in directions normal to rather than parallel to the 
chemical bonds. In this case phase-shift calculations based 
on the model of a chain of atoms might offer a simple 
solution. 

6. Discussion and conclusions 

The above results show that whole-spectrum analysis 
should not yet be the preferred method of data analysis, 
where other methods exist. Away from the edge, the atomic 
contribution cannot be calculated as accurately as can 
a splined background even with a polynomial correction 
factor. This can be seen from the strong low-r contributions 
in the Fourier transforms above. There may be instances, 
however, when only a short data range is available, and 
background subtractions are difficult. In this situation the 
method may be appropriate. Steps that could be taken to 
improve the atomic contribution are many. If a correction 
factor is used, as here, restraints should be included so 
as to (a) minimize the low-frequency contribution in the 
oscillatory part remaining and (b) to minimize the high- 
frequency contribution in the atomic spectrum, so that the 
correction factor cannot remove scattering contribution. 
Such restraints are widely used in background programs, 
but have not yet been incorporated here. More fundamental 
improvements in the atomic contribution would be (a) to 
include two-electron transitions, (b) to include the effect 
of the Quinn (1962) contribution in the real as well as the 
imaginary part of the excited-state exchange contribution 
(the two should be Hilbert transforms of each other), thus 
reducing the kink due to the plasmon threshold, and (c) 
removing the muffin-tin approximation, which tends to 
exagerate the structure due to internal scattering within the 
central atom. 

The scattering contribution in the EXAFS region is 
still far from perfect. As a corollary if distances were 
refined, the best fit would differ from known r.m.s, atomic 
separations by more than the statistical error. The lack of fit 
is more pronounced in Cu and CaO, for which the muffin- 
tin model is appropriate, than in the other two compounds. 
The problem in this energy region is not therefore directly 
attributable to the muffin-tin approximation. We still believe 
that the phase shifts are the major problem, however, 
although inadequacies in the treatment of disorder probably 
still play some part. The restriction of multiple scattering 
to third order is probably acceptable in this region even in 
the case of CaO, although in this compound very long path 
lengths are required in order to fit the 3-6 ~-i  region. 

In the near-edge region, other problems clearly arise. For 
Cu(imidazole)4.(NO3)2, and possibly K3Fe(CN)6, we are 
not able to calculate all the scattering paths required, which 
would probably include all paths to seventh order. For 

all compounds other than Cu, long-path-length multiple- 
scattering terms appear to make too great a contribution 
in this region. In the case of CaO this prevents us calcu- 
lating all the terms required for the EXAFS region. For 
Cu(imidazole)4.(NO3)2 and K.~Fe(CN)~, this problem can 
be attributed to the muffin-tin model, but the problem with 
CaO is undetermined. In all cases, the necessity of refining 
phase-shift parameters, often worsening the quality of fit in 
the EXAFS region, is undesirable. An improved ab initio 
phase-shift calculation is therefore required. This will pre- 
sumably require non-muffin-tin self-consistent potentials. 
Structure below the half-height of the edge is prominent 
in K3Fe(CN)6. This will require bound-state calculations, 
which should be available in EXAFS program packages. 
For L edges, this becomes both more important and much 
more difficult to implement. 

Among the practical problems in implementing a full- 
spectrum approach to analysis, is the time taken by high- 
order calculations. The final results took from a few minutes 
to nearly an hour to calculate on a modern UNIX worksta- 
tion. As we have discussed, the calculations employed un- 
desirable restrictions on the number of multiple-scattering 
paths in some cases. Refinement usually employed less 
accurate calculations in terms of both number of paths and 
number of angular momentum terms. This still resulted in 
many hours or days for refinements. Computing time is 
thus something of a handicap in the implementation of the 
method. It will become a serious limitation if non-muffin 
tin theory is used. These restrictions could be lessened by 
extending the scope of our fast multiple-scattering method, 
or by using the faster but not quite so accurate method of 
Rehr & Albers (1990). 

In spite of the many problems which need to be ad- 
dressed we hope that development of this approach to 
analysis will be of benefit in the many EXAFS applications 
which yield a limited range of data, as a result of the exper- 
imental difficulties presented by very low concentrations or 
the need to perform rapid measurements. 

We would like to thank J. Rehr for providing code from 
FEFF to calculate excited-state potentials, R. Strange and 
J. Harries for obtaining experimental data, P. Mackle and 
G. Diakun for allowing access to their experimental results, 
and P. Durham and S. Gurman for helpful discussions. 
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