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The compression behaviour of a foil of Cu3Au in a pressure medium of NaC1 has been studied 
by energy-dispersive X-ray diffraction in a diamond-anvil cell. Evidence from stress analysis and 
peak broadening of the foil (the most extreme example of a non-ideal powder) throws light on 
the compression of powders under non-hydrostatic conditions. A complete pressure cycle, including 
re-pressurization after pressure release, shows that significant plastic deformation takes place which 
results in large deviations from a (hydrostatic) equation of state. The origin of the deformations is 
traced to shear stresses transmitted to the sample through the pressure medium. 
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1. Introduction 

One of the fundamental problems in high-pressure research 
is how to ensure the hydrostatic environment necessary for 
the study of physical parameters. Pressure devices such 
as the diamond-anvil cell do not generate an isotropic 
macroscopic stress field and pressure-transmitting media 
may transmit significant shear stresses due to either an 
increase in viscosity (shear strength) or solidification under 
pressure. Elastically anisotropic polycrystalline samples set 
up localized (micro)stresses even in a hydrostatic envi- 
ronment due to grain boundaries between crystals with 
randomly oriented hard and soft directions. Among the 
evidence for non-hydrostatic conditions documented with 
X-ray scattering are deviations in the compression data V/V0 
v e r s u s  pressure from equations of state which are based, at 
the low pressures considered here, on the theory of finite 
strain for elastic bodies (Birch, 1938). A discontinuity in 
the compression curve of MgO embedded in NaC1 was 
identified by Sato, Yagi, Ida & Akimoto (1975) as the 
yield point of MgO. The yield point marks the transition 
from elastic to plastic behaviour and is observed as a 
deviation from a linear relation between stress and strain. 
No evidence was presented by the above authors for plastic 
deformation which should occur when stresses exceed the 
flow stress above the yield point. A saturation in strains and 
uniaxial stresses calculated from lattice spacings (Singh & 
Kennedy, 1976; Kinsland & Bassett, 1977) and Gaussian 
peak widths (Singh, Vijayan, Xia, Vohra & Ruoff, 1992; 
Vassiliou, Otto & Porter, 1994; Weidner, Wang, Meng 
& Vaughan, 1994a) was identified as the yield point of 
the sample. The reversibility with pressure of the strains 
was not investigated in previous X-ray studies and hence 
both the origin and the location of the yield point remain 
ambiguous. We have initiated a systematic study of the 
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effect of different pressure devices (MAX80, diamond- 
anvil cell), pressure-transmitting media (NaCI, paraffin oil 
and 4:1 methanol-ethanol) and sample strength on the 
compression behaviour of polycrystals. This work, which 
presents an analysis of compression data for a foil of Cu3Au 
embedded in NaC1 in a diamond-anvil cell, is presented as 
a first step in filling this gap. 

2. Methodology 
2.1. Choice of sample and pressure device 

The requirements on the sample are sensitivity to (shear) 
stresses and small crystallite size (of the order of 1 ~tm) for 
powder averaging in energy-dispersive diffraction with a 
diamond-anvil cell. The sensitivity to shear stresses (and 
hence ductility) is governed by the availability of five 
independent sets of slip planes (von Mises criterion). In the 
cubic L12 structure, these are the { 111 } planes, with slip on 
{001 } also being possible (Yamaguchi & Umakoshi, 1990). 
We chose to investigate disordered Cu3Au because (i) it 
remains ductile even at liquid-nitrogen temperatures and 
hence no brittle-to-ductile transition was expected under 
pressure, (ii) it has strong X-ray reflections, and (iii) it 
is possible to produce a microcrystalline foil by splat- 
quenching. A foil is expected to be particularly sensitive to 
stresses because grain boundaries can act as local sources 
of stress (due to pile-up of dislocations). It is the 'worst 
r~ossible case' of the compression of non-ideal powder. 

A diamond-anvil cell was chosen here as a pressure- 
generating device since it produces a uniaxial stress field 
(the stress along the compression axis, cr3, being greater 
than the radial stress, o-1 ) which should lead to shear stresses 
on the sample if (when) the pressure-transmitting medium 
becomes non-hydrostatic. A Holzapfel-type cell (Syassen & 
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Holzapfel, 1975) was used with a maximum opening angle 
of 20 = 11.4 °. The diffraction angle was 0 = 5.39 ° in this 
study. 

NaC1 was used as a pressure-transmitting medium. 
Evidence from line broadening of fluorescence spectra 
from ruby embedded in NaC1 suggests that NaCI transmits 
significant shear stresses at low pressures (around 5 GPa; 
Piermarini, Block & Barnett, 1973). NaCI also serves 
as a pressure calibrant in addition to ruby. Pressures 
were calculated from the volume data of NaC1 using the 
equation-of-state parameters B0 = 24.008 GPa and B0' = 
4.74 obtained from a fit to the data of Decker (1971), and 
from the line shift of the ruby fluorescence (Mao, Bell, 
Shaner & Steinberg, 1978). 

The samples were prepared as follows. NaC1 was ground 
and then dried and annealed at 383 K. Samples were placed 
inside the 150 ~tm hole in a 70-80 txm-thick spring steel 
gasket. Two flakes of Cu3Au were carefully removed from 
the 20-50 Bm-thick foil and sandwiched between two layers 
of NaC1. A single grain of ruby of size 5-101xm was 
embedded in the NaCI in the (horizontal) centre of the 
gasket hole. Care was taken to ensure that (i) the flakes 
were of much smaller diameter than the gasket hole so that 
no contact occurred with the gasket during the experiment; 
(ii) the flakes were lying flat in the cell to avoid bridging 
between the diamonds; (iii) no contact occurred between 
ruby and either foil or diamonds. During the course of 
the experiment, diffraction peaks from NaC1 were always 
observed demonstrating that the foil made no contact with 
the diamonds. This is confirmed by the observation of 
colour defects on both sides of the foil caused by the X-ray 
beam passing through NaC1. The gasket hole collapsed to a 
diameter of 80 ~tm by 2.9 GPa and expanded to its original 
diameter of 150 ~tm by 11.1 GPa starting at around 5.8 GPa. 

It is important to realize that, with the set-up employed, 
the pressure determined from ruby and from NaCl under 
hydrostatic conditions is the confining pressure on the 
sample. This may be different from the pressure the sample 
itself experiences (see below). The pressure determined 
from ruby is labelled as confining pressure on all graphs. 

Compression behaviour of elastically anisotropic polycrystals 

et°tal(hkl) = 0.pl3K + (1 - c0e v + ote~ 

= 0 . p / 3 K -  (1 - a)(t/3)(1 - 3 sinEO)/2#v 

- a(t/3)(1 - 3 sin20)(Sil - Si2 - 3SF), (2) 

where V denotes the Voigt state (strain continuity), R the 
Reuss state (stress continuity), o~ the fraction of the Reuss 
state actually present in the sample, K the bulk modulus,/z 
the shear modulus, and the geometrical factor F = (h2k 2 + 
k2l 2 + h212)/(h 2 + k 2 + /2)2. For a constant angle 0, as 

is used in energy-dispersive diffraction, the stress can be 
calculated from the slope of the measured strains versus 
/ '  if the elastic constants and the factor oL are known as 
a function of pressure. For isotropic solids the anisotropy 
factor S = 0 or 

2(Sll - S12)]S44 = 1 

and #v = #. Therefore, 

Using the relation 

- 

e p = 0.PI3K = PRI3K, 

valid for cubic solids, where ,oR denotes the hydrostatic 
pressure, and identifying 

pM = 3etotal(hkl)g ' 

where pM is the measured pressure, we can calculate, 
for isotropic solids, the real pressure from the measured 
pressure as 

pR = pM _ ( 0 .  3 _ 0.1)(K/2#)(1 - 3 sin20), (3) 

where # is the shear modulus 1/[2(Sll - S12)]. For 
anisotropic solids the second term in the above equation 
needs to be multiplied by the factor 

(1 - a ) # l # v  + a2#(Sll - S l 2  - 3SF) .  

For the { 100} family of lattice planes,/7 = 0 and this factor 
simplifies to 

2.2. Galculating s t r e s se s  from o b s e r v e d  strains 

Using anisotropic elasticity theory, Singh & Kennedy 
(1974) have shown that the total strain, e, in a diffraction 
experiment depends on the direction in the lattice in which 
it is being measured: 

et°tal(hkl) = eP + et(hkl) 

= [d(hkl) - do(hkl)]/do(hkl),  (1) 

where p denotes the component due to hydrostatic pressure, 
t the component due to uniaxial stress, and d(hkl)  is the 
measured lattice spacing. For a sample in an opposed-anvil 
device with the incident beam along the compression axis, 
Singh (1993) has shown that the measured strain is related 
to the uniaxial stress, t = 0.3 - -  0.1, and the elastic anisotropy 
factor S = Sll - Si2 - 0.5S44, as 

(1 - oO#l#v  + ~.  

In the calculations presented below, the elastic constants 
for NaCl were calculated from the values and their pressure 
derivatives determined up to 0.8 GPa by Spetzler, Sammis 
& O'Connel (1972). The elastic constants of disordered 
Cu3Au were determined at 1 atm by Siegel (1940). For 
the pressure derivatives the values of Cu and Au weighted 
by the appropriate stoichiometric ratio were used since the 
elastic constants calculated in this way at 1 atm do not differ 
much from those determined directly on Cu3Au. 

2.3. Experimental  se t -up 

For the powder-diffraction method, energy-dispersive 
diffraction at a synchrotron source was chosen. In the 
energy-dispersive method the diffraction angle 0 is kept 
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constant (reciprocal lattice vectors being selected by the 
different wavelengths in the white beam). A high bril- 
liance of the primary beam was necessary for the small 
samples; this was especially important in the present case 
since the deformation of the sample caused strong peak 
broadening and increased diffuse scattering, leading to very 
long counting times. A low-divergence source was required 
in order to have both the resolution and the peak profile 
to be determined only by the detector electronics. The 
experiments were carried out at beamline F3 at Hamburger 
Synchrotron Strahlungslabor at Deutsches Elektronen Syn- 
chrotron with the set-up described by Otto (1997a). Using 
a small primary beam (40 x 40 lam) and tight collimation 
of the diffracted beam in both the horizontal and vertical 
directions, the resolution function can be parametrized in 
the following way in the angular range used here: 

A E I E  = [(0.154)2/E 2 + (5.54~i x 0.10 x e)/E] 1/2, 

where the Fano factor F - 0.10 and the resolution of the 
amplifier is AEamp = 0.154 keV (Otto, 1997b). Keeping 
the deadtime of the detector below 5%, the peak shape 
for the NBS640B silicon standard was determined to be 
better than 95% Gaussian (Otto, 1997b). The peak profile 
of polycrystals under pressure has not been investigated 
before. 

3. Results 
3.1. Stress and strain from lattice spacings 

Uniaxial stresses should lead to deviations in (V/Vo)(hkl) 
calculated from the individual lattice spacings [see equation 
(2)]. This is illustrated in Fig. 1 for the Cu3Au foil with in- 
creasing confining pressure to 6 GPa. (VIVo)(hkl) calculated 
from the five different lattice planes observed (Table 1) 
is seen to diverge strongly immediately on compression. 
However, the compression behaviour for all lattice planes 
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Figure 1 
Plot of VIVo(hkl) versus pressure for the five different lattice planes 
of Cu3Au observed in this experiment. The solid line connects 
VIVo calculated from the (220) plane to illustrate the general trend 
also followed by VIVo calculated from the other lattice planes. The 
(200) plane is the one most sensitive to shear stresses. 
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follows the same trend. High initial compressibility to 
1 GPa is followed by hardening to 2GPa. (VIVo)(hkl) 
remains constant for confining pressures between 2 and 
4 GPa and decreases above 4 GPa at a rate of the same order 
of magnitude as the initial one. The values of (VIVo)(hkI) 
at any pressure calculated from the (111), (220) and (222) 
reflections are quite similar and show the highest compress- 
ibility, while those from (200) show the lowest compress- 
ibility, with the values for (311) lying in between or close 
to (200). This behaviour is expected from the anisotropy 
parameter S for the lattice planes under elastic compression, 
as pointed out by Meng, Weidner & Fei (1993) [see 
also equation (2)]. In order to represent the compression 
behaviour more clearly for the complete experiment and 
to facilitate comparison with experiments using different 
pressure media, the volume average (VIVo) is plotted for 
increasing pressure (open circles), pressure release (solid 
circles) and second pressurization (solid squares) in Fig. 2. 
The significant strains seen in Fig. 1 are represented here as 
error bars calculated for (VIVo)(200) - (VIVo) and (VIVo) - 
(VIVo)(111 + 220 + 222). The compression curve for the 
scaled average volume follows the trend of that calculated 
from the individual lattice planes. The release curve down 
to 2 GPa lies on or close to the curve for pressure increasing 
above 4GPa. At pressures below 2 GPa the hysteresis 
loop seems to close. Hence, there is a pressure region 
on both pressure increase and pressure release over which 
the volume does not change (this is not clearly seen on 
pressure release because of the experimental difficulty of 
controlling and measuring the pressure at such low loads). 
On increasing pressure for the second time on the same 
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Figure 2 
The average volume (V/Vo) calculated from the five observed 
lattice planes of C u 3 A u  v e r s u s  pressure. Open symbols are for 
increasing confining pressure, solid circles for pressure release and 
solid squares for second pressurization. The error bars represent 
(12/I/o)(200) - (VIVo) and (VIVo) - (VIVo)(111 + 220 + 222). 
The solid line is a fit to the increasing pressure values above 
4 GPa. Note that the release curve follows this trend down to 
about 2 GPa, where the volume hysteresis loop begins to close. 
The dashed curved is the first-order Birch-Murnaghan equation 
of state calculated from the elastic constants determined by Siegel 
(1940). 
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sample the compression curve follows the previous release 
curve and not the initial compression curve. 

For discussing the stresses calculated from the observed 
strains using equation (2), we assume the Reuss condition of 
stress continuity [the value of cr cannot be determined with 
the scattering geometry used; see Funamori, Yagi & Uchida 
(1994)]. The uniaxial stress (negative in compression) in 
Cu3Au increases immediately on compression (Fig. 3a), 
seems to pass through a maximum of 1 GPa near 4 GPa 
and to decrease above this pressure. It is not clear whether 
there is an actual decrease or whether the values saturate 
above 4 GPa. On pressure release (Fig. 3b) the stresses 
do not relax completely: the residual compressive stress 
is 0.3 GPa. On second pressurization the stresses at 1.3 and 
2.5 Pa lie close to the maximum value of the first pressure 
cycle (Fig. 3b). The stress curve for NaCI shows a saturation 
in the range 3-4 GPa (Fig. 4a). As expected, the maximum 
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Figure 3 
The product crt [fraction of Reuss state in the sample times 
the stress calculated according to equation (2)] for Cu3Au with 
increasing confining pressure (a) and pressure release (solid 
circles) and second pressurization (solid squares) (b). Note the 
residual stress of 0.3 GPa. The error bars are from the fit to de/dF 
[equation (2)]. 
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stress is much lower than for Cu3Au (~  0.4 GPa compared 
with 1 GPa). The stresses in NaCl relax completely with 
a slight hysteresis between 4 and 1 GPa (Fig. 4b). The 
pressures calculated from the lattice parameters of NaC1 
(without correction for the uniaxial stresses) and from the 
ruby fluorescence agree very well (Fig. 5), as expected 
from the rather small stresses calculated for NaC1. There 
appears to be a weak trend in the compression curve for 
NaC1 similar to that seen in Cu3Au. Higher resolution of 
both the X-ray method and the spectrometer for recording 
the ruby fluorescence would be required to reach a definite 
conclusion on this point. 

3.2. Peak profiles 

In the analysis of the diffraction spectra it was noted 
that the r values of Gaussian fits to the Bragg reflections 
of Cu3Au deteriorated with increasing pressure. The poor 
Gauss fit and the very much improved Voigt fit to the triplet 
of Cu3Au (111), NaC1 (220) and CuaAu (200) after the first 
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Figure 4 
(a), (b) Same as Fig. 3 for NaCI. Note the closed hysteresis loop 
(complete stress relaxation) which is in the sense opposite to the 
one expected. We do not have an explanation for the positive 
values of the stress seen at the lowest pressures during the first 
pressure cycle. The parameter S does not change sign to at least 
0.8 GPa (Spetzler, Sammis & O'Connel, 1972) 
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Table 1 
Lattice parameter, VIVo and d spacings as a function of pressure determined from NaCI and ruby. 
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Pressure Pressure Lattice 
(GPa) (GPa) parameter d spacings (,~) 
(NaCI) (ruby) (A) V/Vo 111 200 220 311 222 

0.0001 0.0001 3.759 1.000 2.170 
0.3 0.3 3.751 0.994 2. i 65 
! .0 0.9 3.747 0.990 2.162 
1.5 1.4 3.744 0.988 2.160 
1.9 1.9 3.743 0.987 2.159 
2.4 2.4 3.739 0.984 2.157 
2.9 3.0 3.741 0.986 2.157 
3.4 3.9 3.743 0.987 2.157 
4.0 4.3 3.740 0.985 2.156 
4.9 4.9 3.729 0.976 2. ! 5 I 
5.3 5.4 3.726 0.974 2.149 
5.8 5.7 3.724 0.972 2.148 
6.8 7.1 3.717 0.967 2.144 
9. i 8.9 3.702 0.955 2.136 
I1.1 11.2 3.689 0.945 2.128 
13.2 13.1 3.677 0.936 2.122 

7.5 7.6 3.712 0.963 2.141 
5.3 5.7 3.726 0.974 2.150 
4.2 4.4 3.734 0.980 2.155 
3.8 3.8 3.736 0.982 2.156 
3.4 3.3 3.740 0.985 2.158 
2.9 2.8 3.745 0.989 2.16 I 
2.4 2.4 3.748 0.991 2. ! 63 
1.9 2.0 3.749 0.992 2.1 64 
1.3 I. 1 3.752 0.994 2.167 
0.7 0.3 3.750 0.993 2.166 
0.0001 0.0 3.756 0.998 2.168 

1.3 1.3 3.755 0.997 2.166 
2.5 2.4 3.750 0.993 2.163 
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pressure cycle is illustrated in Fig. 6 [Voigt fit (top), resid- 
uals for Voigt fit (middle) and for Gauss fit (bottom)]. Note 
that the Voigt fit for NaCI (220) is no improvement over 
the Gauss fit. For the C u 3 A u  diffraction peaks the Gauss 
curve fails to fit the tails and the peak centre, resulting in a 
significant underestimation of integrated intensity. Voigt fits 
were employed for both Cu3Au and NaC1 in all spectra. The 
high background due to diffuse scattering, the peak broad- 
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Figure 5 
Pressure calculated from the observed lattice spacings o f  NaCI 
v e r s u s  confining pressure determined from the fluorescence of 
ruby embedded in NaCI. Note the excellent overall agreement. 

ening (see below) and peak overlap especially between 
NaC1 (220) and Cu3Au (200) under pressure resulted in 
strong scatter in the Lorentzian and Gaussian fractions and 
half-widths calculated from the Voigt fit parameters. Hence, 
no detailed analysis of the pressure dependence of these 
parameters was possible. [In the experiments with liquid 
transmission media, backgrounds were much lower, and 
such analysis will be presented elsewhere (Otto, Vassiliou & 
Frommeyer, 1997a).] However, peak locations and FWHM 
could be determined reliably and in general did not differ 
beyond experimental error from the values obtained with 
Gauss fits. 

The FWHM of all Bragg reflections observed showed a 
strong increase even at the lowest pressures (0.3 and 1 GPa) 
of the initial pressurization. Further trends with increasing 
and decreasing pressure differ somewhat depending on the 
reflection. Three representative examples are shown for 
Cu3Au (220) (Fig. 7a), NaC1 (220) (Fig. 7b) and NaC1 (222) 
(Fig. 7c). The FWHM of Cu3Au increases up to 1 GPa, 
decreases slightly to 4 GPa and then increases rapidly to 
saturate at about 7 GPa. On pressure release the FWHM 
does not decrease down to 2 GPa, and remains 30% broader 
than before the experiment at 1 atm. On second application 
of pressure the FWHM increases towards the value at which 
it saturated during the first pressure cycle. Apparently, there 
is no first plateau (or maximum) at low pressures as seen 
during the first pressure cycle. For NaCI a closed hysteresis 
loop of small width in pressure is observed (Figs. 7b 
and 7c). While the release trend is similar for the (220) 
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and (222) reflections, there are some differences on first 
pressurization. In both (220) and (222) there is a saturation 
in FWHM at 1 GPa. There is a rapid increase between 2 
and 4 GPa for (220), and between 2 and 8 GPa for (222), 
followed by saturation. As for Cu3Au (220), there does not 
seem to be a plateau in FWHM at low pressures on second 
pressurization. 

In general it can be expected that the initial compression 
of a polycrystalline material is elastic. The compression 
curve follows the equation of state when the pressure- 
transmitting medium is hydrostatic and the polycrystalline 
aggregate is free from (uniaxial) microstresses. Uniaxial 
stresses on the sample arise due to increasing shear strength 
of the pressure-transmitting medium and/or microstresses 

4. Discussion 

The presence of residual stress in C u 3 A u  foil (Fig. 3b) and 
the broadened peak profiles after pressure release (Fig. 7a) 
show that plastic deformation has taken place. The curves 
of volume compression, stress and FWHM versus pressure 
of Cu3Au thus reflect the behaviour due to both elastic and 
plastic compression and the task is to identify the pressure 
range over which plastic deformation takes place. 

The onset of plastic deformation, the yield point, is 
marked by plastic flow and a deviation from a linear relation 
between stress and strain. In the case of work hardening, the 
flow stress required to maintain plastic flow increases with 
increasing strain (up to the rupture strength of the material). 
Yielding (plastic deformation) and work hardening should 
cause a deviation in (VIVo) from the equation of state 
towards higher values of the scaled volume because of the 
introduction of, and mutual repulsion between, line defects. 
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Figure 6 
Voigt fit to the diffraction peaks Cu3Au (111) (left), NaCI (220) 
and Cu3Au (200) (right) (top figure), with residuals for the Voigt fit 
(middle) and a Gauss fit (bottom). Note that the missing intensity 
in the central and tail sections of  the Gauss fit to Cu3Au indicates 
a missing Lorentzian component.  Hence, the Voigt fit results in a 
substantially improved r value (r 2 = 0.99976 for the Voigt fit and 
r 2 = 0.99836 for the Gauss fit). The peak centres from the two 
fits coincide while there is some difference in the peak widths 
FWHM (l l l)  = 0.352 (0.362), (200) = 0.486 (0.504), (220) = 
0.324 eV (0.323) (the values in parentheses are for the Gauss fits). 
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Figure 7 
FWHM of Voigt fits to the (220) diffraction peak of  Cu3Au (a) 
and (220) and (222) peaks of  NaCI [(b) and (c), respectively] 
v e r s u s  confining pressure. Open circles are for increasing pressure, 
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in the polycrystals. This causes an additional (elastic) 
compression [equation (3)] resulting in a compressibility 
higher than would be expected under hydrostatic conditions 
(stage I). Stage I ends when the external stresses exceed 
the yield stress of the polycrystalline material. From the 
saturation of the stresses in the present experiments it can 
be concluded that the yield points must lie at confining 
pressures of below 2-4 GPa for Cu3Au and below 3 GPa 
for NaC1 (Figs. 3a, 4a). The yield points cannot be detected 
here because they lie at such low confining pressures that 
stage I cannot be clearly observed. Note that the shear 
moduli for NaC1 (26 GPa) and Cu3Au (45 GPa, calculated 
from the values for Cu and Au weighted by the appropriate 
stoichiometry) are quite similar, and that the pressure 
dependence of the shear modulus is higher for NaCI than for 
Cu3Au (2.1 v e r s u s  1.6) (Poirier, 1985). The shear moduli 
should thus become equal around 1.4 GPa. It is not clear 
whether the plateau in the FWHM of the NaC! (220) 
and (222) and Cu3Au (222) diffraction peaks at around 
I GPa (Figs. 7a-7c) is related to the yield point. In the 
initial stages of yielding (work hardening) the foil continues 
to be compressed elastically (in addition to the plastic 
deformation taking place). Plastic deformation causes line 
defects (such as stacking faults) which interact and harden 
the material (stage II). This region lies between 1 and 
2GPa for Cu3Au in the present case (Figs. 1 and 2). 
As the density of defects increases, the (elastic) repulsion 
between them increases to the extent that no further (elastic) 
compression can take place: the volume remains constant 
(at least within the accuracy of the present X-ray method). 
This stage (stage III) occurs between 2 and 4 GPa (Figs. 1 
and 2). Significant deformation takes place [this is clearly 
seen from the FWHM of the NaC1 (220) and (222) but 
not from the Cu3Au diffraction peaks (Figs. 7a-7c)]. When 
the external pressure overcomes the internal repulsion due 
to the defects, elastic compression (of a now plastically 
deformed material) again sets in (stage IV). This causes a 
discontinuity in the compression curve (Figs. 1 and 2). The 
FWHM of the diffraction peaks continues to increase above 
this pressure [Figs. 7a-7c; the data for NaCI (220) are not 
reliable above 5 GPa because of overlap with Cu3Au (200)]. 
At present it cannot be determined whether the broadening 
in Cu3Au is due to increasing strain or decreasing size 
of coherently diffracting domains or both (the size of the 
domains decreasing because of the increasing density of 
dislocations). Saturation in FWHM occurs around 6-8 GPa 
(Figs. 7a-7c); there is no anomaly in the compression or 
stress curves in this range. 

On decompression in Cu3Au the elastic volume strains 
due to interacting defects stored in the increasing pressure 
part of the pressure cycle at 1-4GPa are relaxed in the 
region 0.5-2 GPa. The plastic strains, however, are not 
released. Since the latter are much smaller than the elas- 
tic volume strains, the hysteresis loop of the volume is 
almost closed (within the accuracy of the present diffraction 
method). The width of the hysteresis loop is presum- 
ably determined by the shear strength of the pressure- 
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transmitting medium relative to that of the sample. The 
complete relaxation of volume strains and stresses in NaC1 
reflects the behaviour of a perfectly plastic solid. 

The pressurization of Cu3Au after the first pressure cycle 
must reflect the compression behaviour of a plastically 
deformed solid. Hence, stages I and II should be absent, 
and only the last part of stage III and stage IV should be 
observed. Although there are only two compression points 
for this cycle, the first one at around 1 GPa shows a volume 
essentially unchanged from that at ambient conditions (rep- 
resenting the later parts of stage III), while the second one 
lies on the decompression curve above the discontinuity 
(stage IV). 

It has been emphasized throughout this paper that the 
pressure recorded from ruby or NaCI represents a confining 
pressure. Since foils represent the limiting case of a non- 
ideal powder and are sometimes used as pressure markers, 
it is of interest to analyze what pressure would be recorded 
from such a foil. This question has been addressed by Meng, 
Weidner & Fei (1993) who used elasticity theory to show 
how the pressure calculated from a gold foil in neon can be 
corrected for uniaxial stresses. Since the equations derived 
by Singh (1993) are based on the theory of linear elasticity, 
their validity is strictly limited to elastic deformations. No 
attempt is made here to calculate a hydrostatic pressure 
from Cu3Au since plastic deformation starts at very low 
pressures. The measured strain (from which the stress is 
calculated) above the yield point includes both the elastic 
and plastic strains. As shown here, the equations of Singh 
(1993) give reasonable values for the stress also in the case 
of plastic deformation. The influence of stacking faults on 
line shifts is discussed by Otto, Vassiliou & Frommeyer 
(1997a,b). 

5. Conclusions 

The compression of a polycrystalline elastically anisotropic 
material in an opposed-anvil device consists of the follow- 
ing stages: 

Stage I: the sample is compressed elastically as long as 
the shear stresses transmitted by the pressure-transmitting 
medium are below the yield stress of the sample. For 
Cu3Au this is about I GPa confining pressure in NaC1. 
Preliminary results from compression of a Cu3Au foil in 
other pressure-transmitting media indicate that the yield 
point is reached at confining pressures of about 6 GPa in 
a 4:1 methanol-ethanol mixture and 3-4 GPa in paraffin 
oil [full details are to be given elsewhere (Otto, Vassil- 
iou & Frommeyer, 1997a,b)]. It coincides with the yield 
strength of NaCI and an increase in the viscosity of 4:1 
methanol-ethanol and of paraffin oil above some unknown 
value. 

Stage II: as plastic deformation sets in due to the shear 
stresses transmitted, volume compression also continues 
as long as it is not prevented by the repulsion between 
the defects introduced. The compressibility is less than in 
stage I. 
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Stage III: volume compression is stopped by repulsion 
between defects. External stresses continue to build up. The 
range of constant volume with increasing confining pressure 
is determined by the shear strength of the pressure medium 
relative to the sample. 

Stage IV: when the external pressure overcomes the 
repulsion between defects, volume compression continues: 
it is the elastic compression of a plastically deformed 
material. The transition from stage III to IV is marked 
by a discontinuity in the compression curve. It is caused, 
in the case of Cu3Au, by the final solidification of a 4:1 
methanol--ethanol mixture (at ,~12 GPa) and of paraffin oil 
(-~ 7 GPa) (Otto, Vassiliou & Frommeyer, 1997a,b). 

On pressure release the elastic volume strains are 
recoverable (Fig. 2) with a hysteresis which is determined, 
for the same sample material, by the stress relaxation in the 
pressure medium. Plastic volume strains are not recoverable 
but are too small to be measured in the present experiments. 
On second pressurization the compression behaviour is due 
to stages III and IV only. 

NaC1 is not a suitable pressure medium for ductile 
(soft) materials. It begins to transmit shear stresses even 
at very low pressures. The confining pressure at which 
stresses in NaCI saturate and the maximum stress deter- 
mined here agree very well with previous determinations 
of pure NaC1 in an opposed tungsten carbide anvil cell 
(Singh & Kennedy, 1976), an ungasketted diamond-anvil 
cell (Kinsland & Bassett, 1977: Wu & Bassett, 1994), and 
cubic anvil devices (Weidner, Wang, Meng & Vaughan, 
1994b; Otto, Vassiliou & Frommeyer, 1997c, who used 
both pure NaCI and NaC1 enclosing a Ni3A1 foil). In all 
of these studies the Reuss state was assumed. It should 
be emphasized that the effects observed occur at well 
defined confining pressures only if the sample consists of a 
continuous network of crystals (a foil rather than a powder). 

JWO would like to thank Professor W. B. Holzapfel for 
the loan of a diamond-anvil cell. 
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