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The EXAFS Debye-Waller factor depends on the correlation of atomic motion and can yield original 
information on the vibrational dynamics of crystalline solids. In this paper an introductory treatment 
of thermal disorder in EXAFS, based on thc cumulant approach, is given. Thc general relation 
between mean-square relative displacement (MSRD) measured by EXAFS and atomic thermal 
vibrations in harmonic approximation is explored. Strengths and limitations of the phenomenological 
Einstein- and Debye-correlated models are discussed. Some of the most significant results so far 
obtained are reviewed. A relatively simple method for estimating anharmonic corrections to the 
MSRD is proposed. 
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1. Introduction 

The amplitude and phase of EXAFS oscillations are 
influenced by local disorder of thermal and static origin. 
EXAFS is generally more sensitive to disorder than 
X-ray diffraction (XRD) because of the higher values 
of momentum transfer 2k, k being the photoelectron 
wavevector. This sensitivity to disorder, added to the 
unavailability of low-k data, represents a drawback in 
structural investigations beyond the short-range order. It can 
instead be positively exploited, thanks also to the relative 
easiness of temperature-dependent EXAFS measurements, 
to gain original information on local vibrational dynamics 
of both crystalline and non-crystalline solids and on local 
structural distortions. 

The effect of disorder on the amplitude of the EXAFS 
signal is generally accounted for by an EXAFS Debye- 
Waller factor exp (-2k2o-2), where cr 2 is the mean-square 
relative displacement (MSRD) of absorber and backscat- 
terer atoms (Lee, Citrin, Eisenberger & Kincaid, 1981 ). The 
peculiar sensitivity of the MSRD to the correlation of vibra- 
tional motion in crystals was recognized early on (Shmidt, 
1961, 1963; Beni & Platzman, 1976; Sevillano, Meuth & 
Rehr, 1979), suggesting the use of EXAFS for checking the 
phase relationships between eigenvectors of the dynamical 
matrix obtained from ab-init io or model calculations. On 
more general grounds the temperature dependence of the 
MSRD provides a measure of the effective bond-stretching 
force constant between absorber and backscatterer atoms, 
and can be utilized for studying the strengths of chemical 
bonds. As a further enhancement of the potentialities of 
EXAFS it was shown that the analysis of spectra by the 
cumulant expansion method (Bunker, 1983) allows one, 
in principle, to single out and quantify the anharmonic 
contributions to the MSRD (Dalba, Fornasini, Gotter & 

Rocca, 1995; Dalba, Fornasini, Grazioli & Rocca, 1995), 
leading to a more accurate comparison with theoretical 
calculations based on the harmonic approximation. 

A gcncral procedure to take into account the effects of 
thermal and static disorder in multiple-scattering contribu- 
tions was developed by Benfatto, Natoli & Filipponi (1989). 
A method to calculate the EXAFS Debye-Waller factor in 
the case of weak anharmonicity, based on a first principles 
quantum statistical approach, was presented by Fujikawa 
& Miyanaga (1993). 

In spitc of thcsc considerations and with the exception of 
a few pioneering studies (B6hmer & Rabe, 1979; Greegor 
& Lytle, 1979; Sandstrom, Marqucs, Biebesheimcr, Lytlc 
& Greegor, 1985; Knapp, Pan & Tranquada, 1985; Balerna 
& Mobilio, 1986), only occasional usc has been made 
of EXAFS to probe the vibrational properties of solids. 
An extended compilation of experimental results, including 
thermal expansion studies, has recently been made by 
Tr6ger et al. (1994). The scarcity of experimental data has 
prevented a reliable assessment of the ultimate accuracy 
attainable in the comparison between the EXAFS Debye- 
Waller factor and theoretical predictions. 

This paper is intended to give an up-to-date introductory 
account of the effects of thermal disorder on EXAFS, main- 
taining as much as possible a phenomenological approach. 
Only crystalline unoriented systems will be considered. A 
general introduction to the treatment of thermal disorder 
in EXAFS based on the cumulant expansion method is 
given in !i2, and !i3 is dedicated to some peculiar details on 
measurements and data analysis. The connection between 
the MSRD and atomic thermal displacements is madc in 
!i4: here the general expression of the MSRD in terms 
of eigenvectors and eigenfrequencies of the dynamical 
matrix within the harmonic approximation is given; besides, 
strengths and limitations of the frequently used Einstein- 
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and Debye-correlated models are explored. In !i5 the an- 
harmonic contributions to the MSRD are discussed briefly, 
and !i6 is dedicated to concluding remarks. 

2. Disorder in EXAFS 

Thermal disorder spreads atomic positions in crystals into 
tridimensional distributions, which in harmonic approxima- 
tion are described by Gaussian thermal ellipsoids (Willis 
& Pryor, 1975). The sampling time of an EXAFS photo- 
electron (,~10 -16 S) is much shorter than the atomic vibra- 
tional periods (,~10 -~3 s). An EXAFS experiment samples 
a unidimensional canonical distribution of instantaneous 
interatomic distances, p(r), for each coordination shell of 

"the absorber atom (Fig. 1). The distribution p(r) also 
contains contributions from structural disorder, site disorder 
and compositional disorder (Bunker, 1983). In this paper we 
will consider only thermal disorder. 

Within the single-scattering and plane-wave approxima- 
tions the normalized EXAFS function for one coordination 
shell of an unoriented sample (such as a crystalline powder) 
is generally expressed (Crozier, Rehr & Ingalls, 1988) as 

x(k) = (SoN~k) Im [f(k, Tr)exp (2ib) 

/,i ] x p(r) exp (-2r/A) exp (2ikr)lr 2 dr , (1) 

where N is the coordination number, f(k,7r) is the complex 
backscattering amplitude and b is the central atom phase 
shift. S O and A take into account intrinsic and extrinsic 
anelastic effects, respectively. All the r-dependent factors 
within (1) are globally referred to as the effective distribu- 
tion of distances 

P(r, A) = p(r) exp (-2r/A)/r 2. (2) 

The applicability of (1) in the high-temperature limit and 
pairwise central force approximation has been confirmed 

0 < g >  F 

Figure 1 
Schematic comparison between the harmonic descriptions of ther- 
mal disorder in diffraction (XRDI and EXAFS. The interatomic 
spacing R is the distance between the centres of thermal ellip- 
soids (upper part of the figure). An EXAFS experiment samples 
the unidimensional distribution p(r) of instantaneous distances r 
(lower part, continuous line), whose average value (r) is generally 
larger than R owing to the effect of thermal vibrations normal 
to the bond direction (Dalba, Fornasini, Gotter & Rocca, 1995). 
The dashed line represents the effective distribution P(r,A) = 
p(r) exp (-2rlA)lr 2. 

by Fujikawa & Miyanaga (1993). The single-scattering ap- 
proximation can be safely utilized when only the first-shell 
signal is analyzed. For outer shells, multiple-scattering con- 
tributions can be non-negligible. Also, curved-wave effects 
can be non-negligible in calculations of thermal disorder, 
particularly when dealing with asymmetric distributions 
of distances (Brouder, 1988; Rennert, 1992; Fujikawa, 
Yimagawa & Miyanaga, 1995). However, curved-wave cor- 
rections can be to a good extent compensated, for systems 
with not too high degrees of disorder and asymmetry, if 
the analysis of data is performed utilizing backscattering 
amplitudes and phase shifts extracted from an experimental 
reference, which for vibrational dynamics studies is the 
same sample measured at very low temperature (see §3.2). 

The basic problem of EXAFS analysis is the inversion 
of (1) in order to recover, from an experimental EXAFS 
signal x(k), the distribution p(r), or at least its leading 
statistical parameters such as mean value and variance. 
This problem cannot be exactly solved, the main limitation 
being the lack of the low-k part of the spectrum. Among the 
different approximate solutions which have been proposed 
for this problem, the one based on the cumulant expansion 
is particularly appealing for the treatment of purely thermal 
disorder. 

Basically, the structural part of the EXAFS formula, (1), 
can be expanded as a MacLaurin series of the wavevector k, 

In P(r, A) exp (2ikr) dr = [(2ik)"/n !]Cn, (3) 
n = 0  

where the coefficients C,, are the cumulants of the effective 
distribution P(r, A). 

The cumulants C; are connected to the moments by 
simple linear relations (Gnedenko, 1976). One advantage 
of cumulants is their immediate relation with EXAFS 
formula (1), odd and even cumulants determining phase 
and amplitude, respectively. 

~b(k) = 2kC~ -4k3C3/3 + 4k5C5/15 + . . .  + ~, (4) 

A(k)= (S~N/k)[f(k,Tr)[ 

x exp (Co - 2k2C2 + 2k4C4/3 - 4k6C6/45 + . . . ) .  

(5) 

A second advantage of cumulants is their simple physical 
interpretation. Co depends on the normalization of the 
distribution and contains information on A. Cj is the mean 
value, C2 the variance of the distribution. Higher order 
cumulants characterize the shape of the distribution: they 
are zero for Gaussian distributions. The third cumulant, C3 
(and possibly higher-order odd cumulants), depends on the 
asymmetry of the distribution and is connected to thermal 
expansion. The fourth cumulant, C4 (and possibly higher- 
order even cumulants), describes symmetric deviation from 
Gaussian shape (Fig. 2). 

The convergence of the cumulant series in (3) critically 
depends on the shape of the distribution (Crozier et al., 
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1988; Dalba, Fornasini & Rocca, 1993). For small degrees 
of disorder only the first cumulants (Co, CI and C2) 
are significant, the effective distribution of distances can 
be considered Gaussian and (1) reduces to the standard 
formula for EXAFS in harmonic approximation (Lee et al., 
1981): 

x(k) = (SoN/k)lf(k,Tv)l[ exp(-2C,/A)/C~] 

x exp (-2k2C2) sin (2kCt + ~). (6) 

Equation (6) can be safely used for low-temperature spectra 
(measured at liquid-nitrogen or better liquid-helium temper- 
ature), where anharmonicity contributions are negligible. 
When the Debye temperature is approached, anharmonicity 
effects cannot be neglected: the Gaussian approximation 
for the effective distribution is no longer valid and high- 
order cumulants become important. When the temperature 
increases further, a larger number of cumulants become 
significant and eventually the convergence interval of the 
cumulant series becomes shorter than the EXAFS range. 
In !i3.1 some criteria will be presented to check the con- 
vergence properties of the cumulant series, while !i5 is 
dedicated to the treatment of anharmonicity. 

Equations (4) and (5) express EXAFS as a function of 
the cumulants Ci of the effective distribution P(r, A), while 
one is interested in the corresponding cumulants of the real 
distribution p(r): (r), cy 2, cr 131, cr 14) . . . . .  For small disorder 
the second- and higher-order cumulants of the effective and 
real distributions are generally considered equal, within the 
experimental uncertainties (Bunker, 1983); that is why in 
the standard formula (6) the EXAFS Debye-WallerJactor 

e . - ,  

" , . 4  

l ' I i I 
( a )  

(h) 

1 I 
--0.4 0 0.4 

R (A) 
Figure 2 
Dotted lines: Gaussian distr ibution with variance C2 = 0.013 ~2. 
Continuous lines: distributions obtained by adding to the Gaussian 
a third cumulant C3 = 10 -3 ,~3 (a) or a fourth cumulant C4 = 
10 4 A 4 (b). 
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is directly expressed as exp(-2k2cr2). For large disorder, 
however, the difference between the cumulants of the two 
distributions could be not negligible (Dalba, Fornasini, 
Gotter & Rocca, 1995). 

The difference between the first cumulants of the effec- 
tive and real distributions, Ci and (r), respectively, is not 
negligible also for small disorder (Bunker, 1983): 

C, = ( r ) -  (2o2/(r))(1 + (r)/A). (7) 

For example, it amounts to about 0.002 A for the first shell 
of germanium at 300 K, and grows to about 0.01 ,~ for the 
first shell of AgI at the same temperature. A consistent 
difference can exist between the mean value (r) of the real 
distribution and the actual interatomic distance R, owing to 
the effect of thermal vibrations normal to the bond direction 
(Eisenberger & Brown, 1979; Ishii, 1992; Dalba, Fornasini, 
Gotter & Rocca, 1995; Dalba et al., 1996). This difference 
can be larger than the difference between Ci and (r) and 
is of opposite sign. 

The cumulant expansion of EXAFS has been utilized 
in several cases for reconstructing the low-k missing part 
of the experimental spectra and recovering the full dis- 
tribution of distances by inversion of (1) (Stern, Ma, 
Hanske-Petitpierre & Bouldin, 1992; Dalba et al., 1993). 
In cases of poor convergence of the cumulant series the 
low-k reconstructed EXAFS function can be spliced to the 
high-k experimental spectrum (Crozier et al., 1988; Ono, 
Yokoyama, Sato, Kaneyuki & Ohta, 1992). 

3. Exper imenta l  

3.1. Measurements 

To gain information on vibrational dynamics of crystalline 
solids from EXAFS spectra it is necessary to perform 
temperature-dependent measurements with very high 
signal-to-noise ratios. The explored range of temperatures 
depends on the compound examined (in particular its Debye 
temperature) and the phenomena which one wants to study 
(correlation of vibrational motion, anharmonicity, phase 
transitions etc.) 

A low-temperature spectrum is always necessary, to 
be used as a harmonic reference if a phenomenological 
analysis based on the ratio method is planned, or for 
calibration purposes in case of analysis performed using 
calculated amplitudes, phase shifts and anelastic terms. 
Liquid nitrogen can be appropriate for relatively high 
Debye temperatures (typically higher than 300K). For 
lower Debye temperatures a liquid-helium reference should 
be preferred. The temperature should be measured directly 
on the sample with an accuracy no worse than +2 K. 

3.2. Data analysis 

Various methods for the analysis of EXAFS spectra have 
been proposed and are currently utilized. In this paper 
we will consider the phenomenological method based on 
complex Fourier filtering of the contributions of different 
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coordination shells and separate analysis of phase and 
amplitude by comparison with a low-temperature refer- 
ence (phase difference and amplitude ratio method).  The 
implementation of this method is well documented in the 
literature (Lee et al., 1981; Bunker, 1983). Here we will 
emphasize only some relevant points. 

Fourier filtering separates the contributions of suffi- 
ciently distant coordination shells; this procedure is par- 
ticularly useful for the first shell, whose signal can be 
safely treated within the single-scattering approximation. 
The alternative analysis of the whole unfiltered spectrum 
would require a multiple-scattering approach, which for the 
low-temperature EXAFS of a crystal should include a large 
number of coordination shells and scattering paths. Fourier 
filtering introduces signal distortions due to finite windows; 
this effect can be reduced by using the same windows for 
all analyzed spectra. The residual errors on final parameters 
can be quantified and possibly reduced by suitable tests on 
model EXAFS spectra. 

For a well separated coordination shell, as a consequence 
of (4) and (5), the difference of EXAFS phases is 

ck,+(k) - q3r(k ) = 2kACI  - 4k~AC3/3 + 4k-S,_.ACs/15 - . . .  

(8) 
and the logarithm of the amplitudes ratio is 

In [A,(k)/A,.(k)] = In [N,/N, + ACo - 2k2AC2 

+ 2 k a A C d 3  - 4 k 6 A C r / 4 5  + . . . .  (9) 

where AC, = A C i ' -  A C  r, s labelling the spectrum at 
temperature T, r the low-temperature reference spectrum. 

For not too large distributions one can approximate 
exp(C0) = exp(-2CI/A) /C~,  so that 

thermal vibrations of crystals 

efficients A ~ ,  owing to the criterion that the maximum 
number of independent parameters obtainable from an 
EXAFS spectrum is n i n d  = 2AkAr/Tr, where Ak and Ar  
are the k- and r-space windows, respectively (Lee et al., 
1981). The significance of high-degree terms has in any 
case to be checked in view of the smooth behaviour of the 
experimental phase differences and amplitude ratios. The 
amplitude analysis is generally made up to the fourth-degree 
and exceptionally the sixth-degree term. 

Whether the polynomial coefficients obtained from 
EXAFS analysis are actually a good approximation of 
the cumulants of the effective distribution depends on the 
convergence properties of the cumulant series. A test of the 
correspondence of polynomial coefficients with cumulants 
can be made by checking the regularity of their temperature 
dependence (Dalba et al., 1993). To first order, an Einstein- 
like behaviour is expected for the second cumulant C2, and 
a proportionality to T 2 and T 3 for C3 and Ca, respectively 
(Tranquada & Ingalls, 1983). An example is given in Fig. 4. 

The analysis based on the ratio method gives only rela- 

tive values ACi of the cumulants. If the temperature of the 
reference spectrum is sufficiently low, the corresponding 
distribution can be considered Gaussian, so that C[ = 
0 for i > 2 and absolute values of third- and higher- 
order cumulants are directly obtained for high-temperature 
spectra. As far as the second cumulant is concerned, one 
generally obtains the absolute values C2 by fitting an 
Einstein- or a Debye-correlated model to the slope of the 
experimental data AC2 and vertically shifting the data to 
match the theoretical model (Fig. 4). This procedure will 
be discussed in §§4.5 and 5. The alternative data analysis 
based on the use of calculated backscattering amplitudes 

AC0 = -2(C i' - C[)/A - 2(lnCi" - lnC[). (10) 

This term, often negligible, can be estimated from a rough 
knowledge of interatomic distance and mean free path. 

The main advantage of the method of analysis based on 
(4) and (5) relies on the elimination of backscattering ampli- 
tudes and phase shifts and anelastic terms, and of the errors 
connected with their calculations. The main drawback is 
its uselessness when dealing with composite coordination 
shells. Moreover, one should be very cautious in using this 
method when non-negligible multiple scattering or curved- 
wave effects are expected. 

The separate analysis of phases and amplitudes, (8) and 
(9), eliminates the correlation between phase and amplitude 
parameters. Besides, it allows a direct check of the influence 
of anharmonicity and, as a consequence, of the applicability 
of the standard formula, (6): for a Gaussian distribution 
of distances the plots of phase difference versus k and 
logarithm of amplitude ratio versus k 2 must be linear; the 
deviations from linearity are fingerprints of anharmonicity 
and suggest that the standard formula should not be used. 
A working example of the difference between a linear and 
a non-linear behaviour is shown in Fig. 3. 

Polynomial fits to phase differences and logarithms of 
amplitude ratios give a finite number of polynomial co- 
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Figure 3 
Logarithm of the ratio between EXAFS amplitudes at 300 and 
77 K plotted against k 2 for the first shell of c-Ge (a) and Agl 
(b). In case (a) equation (8) can be safely truncated at the linear 
term (second cumulant); in case (b) higher-order cumulants must 
be considered. 
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and phase shifts and anelastic terms directly gives absolute 
values of cumulants; the accuracy of these values depends, 
however, on the accuracy of theoretical calculations. A 
comparative use of both methods of analysis can help in 
obtaining at the same time accurate and absolute values of 
the second cumulant (Dalba, Fornasini, Kuzmin, Purans & 
Rocca, 1995). 

4. M e a n - s q u a r e  r e l a t i v e  d i s p l a c e m e n t  

The second cumulant C2 is the variance of the effective 
distribution P(r,A). In the case of small disorder it is a 
good estimate of the variance ~r 2 of the distribution p(r), 

e.g. of the mean-square relative displacement of absorber 
and backscatterer atoms. In this section we will examine 
the connection between MSRD and vibrational properties 
of crystalline solids in harmonic approximation. 

4.1. MSRD and atomic displacements 

Let R be the vector connecting the centres of the thermal 
ellipsoids of the absorber atom and one backscatterer atom. 
The instantaneous interatomic distance, r, is 

r = R + uj - uo ,  ( 1 1 )  

where u0 and uj are the instantaneous atomic displace- 
ments of the absorber and backscatterer atoms, respectively 
(Fig. 5). The modulus of r can be expanded in power series 

of the atomic displacements (Busing & Levy, 1964), 

r = R + AUll + ( A u 2 ) / 2 R  + . . . .  (12) 

where Aull = R.(uj - u0) is the component of the relative 
atomic displacement paral le l  to the bond direction, Au± 
the corresponding normal  component; [I is the unit vector. 

The mean-square relative displacement of the pair of 
absorber and backscatterer atoms is the canonical average 

~r 2 = ( ( r -  R)2) ~ <(Aul[)2> = ([fi-(Uj -- U0)] 2) 

= <(I~'uj)2> + ((I~'U0)2> -- 2 ( (R.u j ) ( l~ .Uo)  >. (13) 

To first order the MSRD only depends on the relative atomic 
displacements parallel to the interatomic vector distance. 
The MSRD contains the contribution from the mean,square 
displacements (MSD) of both absorber and backscatterer 
atoms, ((R'u0) 2> and ((R-uj)2), respectively, and the dis- 
placement correlation function (DCF) ((l/.uj)(R-u0)) (Beni 
& Platzman, 1976). 

4.2. Harmonic approximation 

In the harmonic approximation the expansion of the 
crystal potential, ~, in series of the atomic displacements is 
truncated at the second-order term. The vibrational motion 
of N atoms can be decomposed in 3N normal modes, each 
mode being identified by a wavevector q and a branch index 
A. The instantaneous displacement of the j t h  atom within 
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Figure 4 
Polynomial coefficients obtained from the analysis of phases and amplitudes of EXAFS at the K edge of Ag in AgI (Dalba et al., 1993). 
A k range extending to 16 A -~ was considered. A growing discrepancy between polynomial coefficients and the expected behaviour of 
cumulants (continuous lines) is evident above 300 K, suggesting that the number of coefficients considered is inadequate with respect 
to the k range. Absolute values of C2 were obtained by fitting an Einstein model to the slope of the experimental points. 
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the nth unit cell can be expressed as (Brfiesch, 1982) 

u,,j(t) = (Nmj) -1/2 Z Q(q,A,t) wj(q,A) exp (iq-r,,j), (14) 
q,A 

where N is the number of unit cells and mj and rnj are the 
mass and vector position of the atom, respectively. Q(q,A,t) 
is the normal coordinate of mode (q,A), and wj(q,A) is a 
normalized eigenvector of the dynamical matrix, 

D = (mimj) -I/2 (02~/OuiOuj). (15) 

From (14) and (13) one obtains a general expression for 
the MSRD of a pair of atoms in harmonic approximation: 

EXAFS Debye-Waller factor and thermal vibrations of crystals 

The EXAFS of a given coordination shell is the sum 
of the contributions from all atoms composing it. Using 
standard harmonic formula for one coordination shell, (6), 
one has 

x(k)= Zxj(k)~ Zexp( -2k2cr f ) s in (2kR  + qo). (19) 

J J 

¢,j2 = (Na)-'  ~ (IQ(q,A,t)l 2) I[wj(q,A) exp (iq.R)l(myllz) nn 
q,A 

- wo ( q, A) / (mo/#)  in ]. 1~ I 2, ( 16 ) 

where m0 and mj are the masses of the absorber and 
backscatterer atoms, respectively, and lZ is their reduced 
mass. The canonical averages of the normal coordinates 
depend on the eigen frequencies, ~o(q,A), of the dynamical 
matrix D and on temperature, 

(]O(q,A,t)] 2) = [h/2~(q,A)] coth [hco(q,A)/2kT]. (17) 

When the square of the binomial expression inside 
the modulus bars in (16) is calculated, the two direct 
terms correspond to the uncorrelated MSD of absorber and 
backscatterer atoms, and the cross product corresponds to 
the DCF. 

For a monatomic Bravais crystal the number, N, of atoms 
is equal to the number, N, of unit cells, all atoms have the 
same mass, m = 2#, and eigenvectors, and (16) reduces to 

r u .  

0 .2 = (N#)-' Z (IQ(q,A,t)l 2) 
q,A 

x [w(q,A)-l~12[1 - cos (q.l~)], 

In monatomic Bravais crystals, where only acoustical 
modes are present, the correlation depends on the phonon 
wavevectors through the dot product q.R. In non-Bravais 
crystals the phase relationships between eigenvectors can 
add a significant, if not predominant, contribution to cor- 
relation. 

(]8) 

Figure 5 
Schematic picture of the relation between instantaneous distance 
r and thermal displacements u0 and uj. 

4.3. EXAFS and diffraction: correlation effects 

Let us compare the Debye-Waller factor of standard 
EXAFS formula, exp (-2k2o-2), with the Debye-Waller fac- 
tor of X-ray diffraction. To keep the notation simple we 
will consider only monatomic crystals. 

The time-averaged intensity of diffracted beams can be 
expressed, in electronic units, as 

leu(G) = If(G)l 2 Z exp [iG'(Rm - R,,)] 
m , n  

x e x p  { - G 2 ( [ G ' ( u m  - u,)12)/2}, (20) 

where G is the scattering vector, f (G)  is the atomic scatter- 
ing factor, and the sum is over all atomic pairs (m, n) within 
the crystal. R; and ui (i = m, n) are the equilibrium position 
and thermal displacement, respectively, of atom i. The last 
factor in (20), the Debye-Wallerfactor, has been written in 
a form directly comparable with that of EXAFS. In EXAFS 
the scattering vector has magnitude 2k, and is directed along 
the bond direction R. The XRD exponent ( [ G . ( u  m - an ) ]2 ) ,  

like the EXAFS exponent ([l~-(uj - u0)]2), can be expanded 
as a sum over normal modes: an expression similar to (18) 
is found for the exponent of the XRD Debye-Waller factor, 
the distance between absorber and backscatterer neighbours 
R being replaced by the distance R,,,., between any two 
atoms of the crystal. 

There are, however, several important differences be- 
tween XRD and EXAFS. First of all, diffraction patterns 
carry information on average atomic displacements in all 
directions perpendicular to Bragg planes even for powdered 
samples; on the contrary, an EXAFS spectrum carries 
unidimensional information on the averaged atomic move- 
ments along the different bond directions of the absorber 
atom, and even for polarized beams and monocrystalline 
samples the angular sensitivity is relatively poor. 

On the other hand, while the EXAFS signal of one 
coordination shell is the sum of the contributions of a few 
atoms, the XRD signal is a sum over all the (m,n) atomic 
pairs within the crystal. As a consequence of long-range 
averaging, the effect of short-range correlations is dispersed 
into thermal diffuse scattering. The XRD Debye-Waller 
factor only monitors the uncorrelated MSD. 

The MSD of each atom of a crystalline powder can be 
obtained from X-ray diffraction measurements as 

(U2)all dir. = (trace B)/3, (21) 

where B is the 3 x 3 mean-square displacement matrix 
(Willis & Pryor, 1975). By subtracting the sum of the MSDs 
of absorber and backscatterer atoms measured by XRD 
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from the EXAFS MSRD, one can obtain the experimental 
value of the correlation function DCF. 

Figs. 6, 7 and 8 illustrate the effects of correlation in 
different systems. In general, the correlation decreases with 
increasing interatomic distance, and the MSRD of the outer 
shells progressively approaches the uncorrelated MSD. In 
the f.c.c. Bravais crystals of Cu and Pt only acoustical 
modes are present, and the correlation is accounted for 
by long-wavelength phonons; although absolute values of 
the MSRDs are quite different for the two metals, the 
ratios between MSRDs of the first and second shell are 
very similar (Fig. 6). Crystalline germanium has two atoms 
per primitive cell and three optical branches in addition to 
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the three acoustical ones. The correlation term also con- 
tains the contribution from the phase relationships between 
phonon eigenvectors; its effect on the first shell (Fig. 7) is 
proportionally stronger than in the Bravais metals. 

The MSRDs plotted in Figs. 6 and 7 have been ob- 
tained by phenomenological data analyses based on the 
amplitude ratio method within the single-scattering and 
plane-wave approximations (Stern, Bunker & Heald, 1980; 
Dalba, Fornasini, Grazioli & Rocca, 1995). The MSRDs 
of the second and third shells are then biased by residual 
multiple scattering and spherical wave effects which are 
not compensated by the ratio method. However, the extent 
of these residual effects does not significantly modify 
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values calculated from available XRD data. 
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the basic information on correlation. As will be shown 
below, the MSRDs of germanium plotted in Fig. 7 are 
in good agreement, after subtraction of the anharmonic 
contributions, with recent theoretical calculations. 

Correlation effects stronger than in germanium have been 
found in fl-AgI, which has the wurtzite structure, with 
four atoms per primitive cell (Fig. 8). In AgI the presence 
of low-frequency optical modes strongly characterizes the 
vibrational properties; their phenomenological study helps 
in better understanding the possible role of optical modes 
in correlation (Dalba, Foruasini, Rocca & Mobilio, 1990). 
Fig. 9 shows the ionic displacement patterns calculated at 
the centre of the Brillouin zone for the 0.5 THz optical 
modes of AgI. Let us consider an iodine central atom. 
The three basal Ag atoms of the first shell move in phase 
with the central I atom; the apical Ag atom moves out 
of phase, but the atomic displacements are normal to the 
bond direction; as a consequence, although the MSD values 
of both atomic species are quite high, the contribution to 
the MSRD is negligible. Considering now the second shell, 
six of the twelve I atoms move in phase with the central 
atom and do not contribute to the MSRD; the other six 
move out of phase and their displacement vectors have a 
finite component along the bond direction, so we expect a 
non-negligible contribution to the MSRD. Otherwise stated, 
the low-frequency optical modes of AgI can account for 
large distortions of the iodine tetrahedral cage and strong 
displacements of the silver ion inside without affecting the 
I-Ag MSRD. As a consequence, EXAFS spectra of AgI 
are consistent not only with a liquid-like excluded-volume 
model, which can explain the strong Ag-I correlation only 
in terms of long-wavelength acoustical phonons (Hayes, 
Boyce & Beeby, 1978), but also with more realistic models 
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in which the ion mobility and possibly the superionic phase 
transition are related to vibrational dynamics (Fornasini, 
1995). 
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Figure 8 
MSRDs of the first-shell I-Ag distance (open squares) and second- 
shell I-I distance (open triangles) in ,'~-AgI as a function of 
temperature (Dalba et al., 1990). Absolute values have been ob- 
tained by fitting the slope of the experimental points to correlated 
Einstein models. Full squares and full triangles are the MSDs for 
the I-Ag and I-I pairs, respectively, calculated from the XRD data 
of Yoshiasa, Koto, Kanamaru, Emura & Horiuchi (1987). 

4.4. Theoretical mode l s  

The calculation of the MSRD through (16) requires 
a full knowledge of eigenvalues and eigenvectors of the 
dynamical matrix. Sevillano et al. (1979) calculated the 
MSRD of monatomic cubic crystals of Cu, Fe and Pt from 
different force-constant models, finding results differing by 
5-10%, and suggested that EXAFS could provide a useful 
test of the validity of models. 

The peculiar vibrational information contained in 
EXAFS is the DCF, which depends, for non-Bravais 
crystals, on the phase relationships between eigenvectors 
of the dynamical matrix. It is well established that 
different vibrational dynamical models, though giving the 
same dispersion curves, can yield different eigenvectors 
(Cochran, 1971). In the case of AgI the temperature 
dependence of the experimental MSRD of first-shell I- 
Ag and second-shell I-I pairs could be reproduced via (16) 
with eigenvectors calculated at the centre of the Brillouin 
zone (Dalba et al., 1990). However, when the entire 
Brillouin zone was sampled, using eigenfrequencies and 
eigenvectors calculated via a valence-shell model which 
satisfactorily reproduced the phonon dispersion curves 

Figure 9 
Atomic displacement patterns of iodine (open circles) and silver 
(solid circles) corresponding to the eigenvectors of the 0.5 THz 
optical modes at the centre of the Brillouin zone (Dalba et al., 
1990). 
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(Btihrer, Nicklow & Brtiesch, 1978), the strong correlation 
effects experimentally found for the MSRD could not be 
reproduced at all. 

The phonon dynamics in harmonic approximation can 
be determined from first principles, through a perturbative 
approach to the density functional theory (Giannozzi, de 
Gironcoli, Pavone & Baroni, 1991). Using this method the 
EXAFS MSRD of the first three coordination shells of 
germanium have been calculated and compared (Strauch et 
al., 1996) with the experimental data of Dalba, Fornasini, 
Grazioli & Rocca (1995). The agreement is good for the 
first shell when experimental data are fitted by an Einstein 
model (see below); for the outer shells a good agreement 
is obtained only when the anharmonic contribution to the 
MSRD is subtracted using the procedure which will be 
outlined in §5. 

Recently, Loeffen & Pettifer (1996) have performed a 
full ab-initio calculation of temperature-dependent EXAFS 
for the zinc tetraimidazole molecular cluster, using a 
multiple-scattering approach tailored for the treatment 
of general disorder effects (Benfatto et al., 1989). For 
the first time dynamical information determined from 
inelastic neutron scattering has been used in an EXAFS 
calculation. A coarse agreement has been obtained with 
experimental spectra at different temperatures. The non- 
negligible residual discrepancies have been attributed to 
the muffin tin effects of the potential. 

The Debye-Waller factors of mono- and bi-atomic one- 
dimensional chains have been calculated by Miyanaga & 
Fujikawa (1994a) on the basis of ab-initio quantum statis- 
tical methods, considering an anharmonic Morse potential 
for the nearest-neighbours interaction. The low-temperature 
deviations from the classical behaviour of the anharmonic 
contribution to the MSRD and the third cumulant have 
been quantified. Different features have been found for the 
contributions of the optical and acoustical modes in the 
bi-atomic linear chain. 

4.5. Phenomenological models 

Debye or Einstein models are frequently used in EXAFS 
data analysis (a) to estimate absolute values of MSRD 
from the relative values determined by phenomenological 
analyses (e.g. the ratio method), and (b) to parametrize the 
Debye-Waller factor when theoretical values of amplitudes 
and phase shifts are used in data analysis. 

4.5.1. Debye-correlated model. The Debye-correlated 
model was developed for monatomic Bravais lattices by 
Beni & Platzman (1976) as a natural extension of the Debye 
models of specific heats and atomic thermal displacements. 

In the Debye approximation the first Brillouin zone is 
substituted by a sphere of radius qo = (67r2/V,) !/3, where Va 
is the volume per atom in the real space; three acoustical 
branches are considered with the same linear dispersion 
relation, ~v - Vsq. The density of vibrational states is 
proportional to ~v 2. When the sum over the normal modes in 
(18) is substituted by the integral over the Debye sphere one 
obtains the expression for the EXAFS MSRD (Sevillano et 
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al., 1979), 

f0 cr~(WA,T) - (3h/2a~3#) dco al coth (haJ/2kr) 

x [1 - sin (wqoROlaJA)l(wqoROla~A)], (22) 

where aJA = v~qo is the Debye cut-off frequency. The Debye 
temperature is OA = h~AIkB. The first term in (22) is the sum 
of uncorrelated MSDs of absorber and backscatterer atoms, 
and corresponds to the XRD Debye model. The second 
term is peculiar to the correlated Debye model for EXAFS, 
and gives the DCF. Equivalent analytical expressions for 
the Debye-correlated model can be found in the literature 
(e.g. B6hmer & Rabe, 1979). A Debye model specifically 
tailored to small metallic clusters, taking into account the 
low-frequency cut-off and the surface to bulk ratio, has been 
developed by Balerna & Mobilio (1986). 

Different physical parameters, such as specific heat or 
atomic thermal displacements, depend in different ways on 
the density of vibrational states (DOS). The discrepancies 
between the true DOS and the DOS approximated by 
the Debye model can give rise to different values of 
Debye temperature for different parameters (Herbstein, 
1961). In this paper we will label 0o, OM and 0A the Debye 
temperatures best fitting specific heats, XRD and X-ray 
absorption (EXAFS) data, respectively. 

The Debye temperatures best fitting the temperature 
dependence of MSRDs available in the literature for the 
f.c.c, metals Cu and Pt are listed in Table 1. A reasonable 
agreement has been found between the 0A values of the first 
four coordination shells, in spite of the reduced number of 
data points and the neglect of multiple-scattering effects 
in data analysis of outer shells. The OA values are also 
in agreement, within the experimental uncertainty, with 
the specific heat and XRD Debye temperatures. One sin- 
gle Debye temperature is then able to describe different 
physical phenomena in the case of Cu and Pt. 

The use of the Debye model for non-Bravais lattices, 
in which optical modes are present, is questionable. Let 
us firstly consider a monatomic non-Bravais crystal, such 
as germanium, which has two atoms per primitive cell. A 
Debye-correlated model with an extended Brillouin zone 
was used to fit the temperature dependence of the MSRDs 
of the first three coordination shells (Dalba, Fornasini, 
Grazioli & Rocca, 1995). The corresponding Debye tem- 
peratures, OA, are listed in Table 1 for both cases of a purely 
harmonic fit and a fit including first-order anharmonic 
contributions (see §5). 

In the case of germanium the Debye model is unable 
to describe different correlation effects for different coor- 
dination shells by one characteristic temperature. Also, the 
specific heat and XRD Debye temperatures are different. 
The EXAFS Debye temperature decreases with increas- 
ing interatomic distance, reflecting a first-shell correlation 
stronger than expected (see also Fig. 7b). At large distances 
OA approaches the Debye temperature, OM, determined from 
XRD, which describes the uncorrelated atomic motion. 
This trend is more accurately obeyed when anharmonic 
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Table 1 
Debye temperatures (K) determined from the fit of a Debye-correlated model to the temperature dependence of MSRD available 
in the literature. 

(a) Stern et al. (1980); (b) Greegor & Lytle (1979); (c) and (d) Dalba, Fornasini, Grazioli & Rocca (1995), harmonic and anharmonic analysis, 
respectively; (e) Dalba et al. (1990): qf) Dalba, Fornasini, Kuzmin et al. (1995). The last two lines show the available values of Debye temperatures 
from X-ray diffraction and from specific heat measurements. 

Cu Pt Ge Agl ReO3 
(a) (b) (a) (c) (d) (e) (f) 

EXAFS First shell 334 325 242 431 442 156 800 
Second shell 310 228 276 312 96 
Third shell 348 232 252 290 
Fourth shell 312 230 344-360 

XRD 290 360 
Specific heat 315-343 230-240 354 157 327-460 

contributions are included in the analysis: in this case Oa 
never becomes lower than 0~t. No match is instead found 
with the specific heat Debye temperature, 0o. 

Still more questionable is the Debye approximation for 
a non-monatomic crystal. The differences between specific 
heat and XRD characteristic Debye temperatures for binary 
alloys have been evidenced by Homing & Staudenmann 
(1988). In the case of EXAFS the phase relationships 
between eigenvectors of the dynamical matrix can introduce 
further significant differences between different coordina- 
tion shells. In Table 1 the examples of AgI and ReO3 are 
reported. 

4.5.2. Einstein-correlated model. The Einstein model 
for the EXAFS MSRD (Sevillano et al., 1979) considers the 
pair of absorber and backscatterer atoms as an independent 
oscillator with frequency ~E: 

O'2(WE, T) = (h/21zw~:) coth (h~e/2kT). (23) 

(The Einstein model for specific heat and XRD considers 
instead the individual atoms as independent oscillators.) 

The Einstein-correlated model is particularly suited to 
monitor intramolecular vibrational modes in molecular or 
quasimolecular crystals. Yang, Paesler & Sayers (1987) 
studied the MSRD of As-As and As-S pairs in arsenic 
and some arsenic chalcogen compounds. They found a 
satisfactory agreement between Einstein frequencies and 
Raman symmetrical stretching frequencies, concluding that 
the MSRD was dominated by optical stretching modes. 

Also for some f.c.c, metals, where no optical modes are 
present, Knapp et al. (1985) found that the EXAFS MSRD 
could be fitted by an Einstein model, whose frequency was 
to a good approximation equal to the square root of the 
second moment of the phonon density of states. 

In general, the Einstein frequency does not correspond to 
defined peaks of the density of states. It can be considered 
a measure of the effective bond-stretching force constant, 
f = #w~.. Its value can be utilized to estimate and compare 
the strength of different bonds. 
4.5.3. Comparison of Einstein and Debye models. The 
superiority of the Debye model over the Einstein model for 
interpreting the temperature dependence of specific heats 
is well established. In the case of the EXAFS MSRD, 

however, the correlation of vibrational motion plays a 
fundamental role, and a specifically tailored approach has to 
be used. The Debye-correlated model is particularly suited 
when only acoustical modes are present. The Einstein- 
correlated model better describes the effects of optical 
modes. In general, one considers the Einstein model 
superior for the first shell of non-Bravais crystals, the 
Debye model for the outer shells (Stem, 1988). In the 
case of AgI, however, it has been found that the low- 
frequency optical modes have much more of an effect on 
the second-shell than the first-shell MRSD (Fig. 9). 

An exhaustive test of the relative merits of the two 
models is still lacking. A theoretical investigation on the 
Einstein and Debye models for one-dimensional chains 
including anharmonicity effects has been recently per- 
formed by Miyanaga & Fujikawa (1994b): for monatomic 
chains the Debye model gave good results even for the third 
and fourth cumulants, while for diatomic chains a mixed 
Einstein-Debye model was appropriate for the harmonic 
MSRD but unable to account for anharmonic cumulants. 

The usual accuracy of EXAFS experiments and data 
analyses (which seldom take into account anharmonicity 
effects) hardly enables one to appreciate the differences 
between the two models. By imposing the high-temperature 
classical harmonic behaviour, 0 .2 ~ T, to the MSRD it can 
be shown that the Einstein and Debye temperatures are 
connected through the relationship 

0 E = O A ] ( 3 S )  I/2, 

o n  

Z (q°R)2"(-1)"+l/[(2n + l)(2n + 1)!]. (24) S 
/ 

n = l  

A non-negligible difference can be found at low tempera- 
tures, particularly for small qDR values, the Einstein models 
giving higher MSRD values than the Debye model (Dalba, 
Fomasini, Kuzmin et al., 1995). 

When, as it is common practice, an Einstein or Debye 
model is fitted to the temperature dependence of experi- 
mental points, different absolute values can be found for 
the two models. For germanium (Fig. 7) the difference is 
significant only for the first coordination shell. Fig. 10 gives 
an enlarged picture of the Einstein- and Debye-correlated 
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models best fitting the slopes of first-shell experimental data 
from the ratio method (Dalba, Fornasini, Grazioli & Rocca, 
1995). The Einstein model is in good agreement, both in 
slope and absolute values, with the a b - i n i t i o  calculations 
of Strauch et al. (1996). Also in Fig. 10 the MSRD values 
obtained by Filipponi & Di Cicco (1995) using calculated 
backscattering amplitudes and phase shifts are reported for 
comparison. 

5. Anharmonici ty  effects 

The vibrational properties of crystalline solids which are 
relevant to EXAFS (eigenvalues and eigenvectors of the 
dynamical matrix) are generally calculated, a b - i n i t i o  or 
from force-constant models, in harmonic approximation. 
Accordingly, in the previous sections a treatment of the 
MSRD in harmonic approximation was made. It is well 
established, however, that anharmonicity effects should be 
taken into account in EXAFS analysis not only when 
dealing with highly disordered systems, such as CuBr 
(Tranquada & Ingalls, 1983) or AgI (Dalba et  al . ,  1993), 
but also for relatively ordered systems, such as Ge (Dalba, 
Fornasini, Grazioli & Rocca, 1995), GaAs (Dalba, Diop, 
Fornasini & Rocca, 1994) or ZnSe (Diop & Grisenti, 1995). 

In this section we show a simple approximate method 
for determining and subtracting the first-order anharmonic 
contribution to the MSRD. The method is based on the 
cumulant analysis of experimental EXAFS spectra and 
relies on classical approximation for third and fourth 
cumulants. We assume that the low-temperature quantum 
deviations of the third and fourth cumulants from the 
classical behaviour (Miyanaga & Fujikawa, 1994a) are 
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Figure 10 
MSRD of the first shell of germanium. Absolute values obtained 
by fitting an Einstein-correlated (circles) or a Debye-correlated 
(squares) model to the temperature dependence of experimental 
points obtained from the ratio method (Dalba, Fornasini, Grazioli 
& Rocca, 1995). The two models differ by about 15% at T = 
0 K. The triangles are the values obtained by Filipponi & Di 
Cicco (1995) using calculated backscattering amplitudes and phase 
shifts. 
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negligible with respect to typical experimental un- 
certainty. 

The distributions of interatomic distances sampled by 
EXAFS can be connected to an e f f ec t i ve  p a i r  p o t e n t i a l ,  

V,, (Dalba, Fornasini, Gotter & Rocca, 1995; Yokoyama, 
Kobayashi, Ohta & Ugawa, 1996; Yokoyama, Yonamoto, 
Ohta & Ugawa, 1996). The deviation of the distributions 
from Gaussian shapes is reflected in the anharmonicity of 
the potential Ve, which can be expanded as 

Ve(u) = au2 /2  + bu  3 + CU 4 + . . . .  (25) 

where u is the variation of interatomic distance with respect 
to the potential minimum. The effective pair potential, 
V~, depends on the statistically averaged behaviour of all 
the atoms in the crystal; its anharmonicity reflects not 
only the physically relevant anharmonicity of the crystal 
potential but also the asymmetry artificially generated when 
the tridimensional distributions of two thermal ellipsoids 
are reduced to the unidimensional distribution of distances 
sampled by EXAFS (Fig. 1). 

In the classical approximation the first four cumulants 
Ci of the effective distribution of distances P(r ,  A) can be 
related to the force constants a, b, c . . . .  of the effective 
potential V,, by (Tranquada & Ingalls, 1983; Stern, Livins 
& Zhang, 1991) 

6Cl  = - ( 3 b / a 2 ) k s T  + . . .  (26) 

C2 = (kRT/a)  + (kt~T/a)2[(6b/a)  2 - (12c /a)]  + . . .  (27) 

C3 = - ( k s T / a ) 2 ( 6 b / a )  + . . .  (28) 

C4 = ( k n T / a ) 3 [ ( l O 8 b 2 / a )  2 - ( 2 4 c / a ) ]  + . . . .  (29) 

In the expression of the MSRD Ce, the first term on 
the right, representing the harmonic contribution, can be 
substituted by an Einstein model, (23), which takes into 
account quantum effects, and whose frequency is connected 
to the force constant a by a = i ~ 2 , ;  the second term, 
representing the lowest-order anharmonic contribution, can 
be expressed as a function of the cumulants C3 and C4. 
The final result is 

C 2 ( T )  = O2(WE, T ) -  I 2 2 2 (kBT/#tOE) C 3 ( T )  

+ ½(kRT/~)C4(r). (30) 

If the third and fourth cumulants are known with good 
accuracy from experimental data, (30) contains only one 
free parameter, ~E, and can be fitted to the slope of 
the experimental points AC2(T), allowing the separation 
of the harmonic MSRD from the first-order anharmonic 

contribution. 
The analysis based on (30) was applied to the MSRDs 

of the first three coordination shells of germanium. A 
fit to the experimental values better than the one given 
by the purely harmonic Debye or Einstein models was 
obtained, especially for the second and third shells, where 
anharmonicity effects are stronger (Fig. 11). The Einstein 
frequencies obtained from (30) have been connected to 
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Debye temperatures through the asymptotic relation of (24); 
the Debye temperatures determined in this way (Table 1, 
column d) are more consistent with the XRD Debye 
temperature than those determined from a purely harmonic 
analysis (Table 1, column c). 

The harmonic contributions to the MSRDs of germanium 
determined from experiment (dashed lines in Fig. 11) were 
shown by Dalba, Fornasini, Grazioli & Rocca (1995) to 
be in good agreement in slope and absolute values with 
the calculations of Nielsen & Weber (1980), based on a 
bond charge model, and of Filipponi (1988), based on 
the high-temperature expansion of the projected density 
of vibrational states. More recently, a good agreement has 
been found also with ab-init io calculations of vibrational 
properties (Strauch et al., 1996). 

6. Conclusions 

The EXAFS Debye-Waller factor of crystals, like the 
XRD Debye-Waller factor, can be expressed as a sum 
of contributions of all normal vibrational modes within 
the Brillouin zone. The peculiar information contained in 
EXAFS concerns the correlation of vibrational motion. 
The reproduction of the temperature dependence of the 
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Figure 11 
MSRD of the first (a), second (b) and third (c) coordination shells 
of germanium. The temperature dependence of the experimental 
.3C2 values (circles) has been fitted by equation (29), taking into 
account anharmonicity effects (continuous line). The dashed line 
is the harmonic term. 

and the rma l  v ib ra t ions of c rys ta ls  

MSRD measured by EXAFS is an important test for the 
phase relationship between eigenvectors of the dynamical 
matrix, calculated from force-constant models or from first 
principles. 

For Bravais crystals the correlation is referable only to 
long-wavelength acoustical modes; for non-Bravais crystals 
the role of optical modes can be determinant. In some cases, 
such as AgI, useful information on the properties of optical 
modes has been obtained directly from a phenomenological 
comparison of the correlation for different coordination 
shells. 

The approximate Debye- or Einstein-correlated models 
are often used to describe the temperature dependence of 
the MSRD. The use of the Debye-correlated model for 
non-Bravais crystals (even if monatomic like germanium) 
is not trivial; different Debye temperatures can be found 
for different coordination shells, whose values approximate 
the XRD Debye temperature for large interatomic dis- 
tances, while no match can be found with the specific heat 
Debye temperature. The frequency determined by the much 
simpler Einstein-correlated mode, although generally not 
corresponding to definite peaks of the density of vibrational 
states, gives direct information on the effective bond- 
stretching force constant. The study of the relative merits 
of Einstein and Debye models by comparison with more 
refined dynamical calculations, although highly desirable, 
up to now has been limited only to a few simple systems. 

The study of the effects of thermal disorder on EXAFS 
can greatly benefit from the cumulant method. The analysis 
based on the cumulant expansion allows one to monitor 
the growth with temperature of the anharmonicity effects 
and to decide the adequacy of the standard formula. It 
is also possible to perform an evaluation of the anhar- 
monic contribution to the MSRD and subtract it from 
the experimental values to obtain data directly comparable 
with the harmonic theoretical calculations. More refined 
information can be obtained in principle from the study of 
cumulants, in particular conceming thermal expansion. It is, 
however, necessarily a preliminary work for understanding 
the origin of the anharmonicity of the EXAFS effective 
pair potential and its relation with the anharmonicity of the 
crystal potential. 

The calibration of EXAFS on vibrational properties 
of relatively well characterized crystalline solids should 
promote a more systematic use of EXAFS for the study of 
local vibrational properties of non-crystalline solids. One 
advantage of EXAFS in this field of investigations is the 
sensitivity to short-range correlations, which, unlike XRD, 
produces comparable spectra for non-crystalline systems as 
well as their crystalline equivalents. Another advantage is 
the relative quickness of temperature-dependent EXAFS 
measurements. 

The authors are indebted to F. Rocca, R. Grisenti, F. 
Monti, M. Grazioli, R. Gotter, D. Pasqualini, D. Diop, 
A. Kuzmin, J. Purans and S. Mobilio for collaboration in 
experimental work and for helpful discussions. 
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