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Gauss-Schell light sources are considered as models for synchrotron radiation. These sources can be 
viewed as random superpositions of coherent Gaussian beams. The relationships of the various widths 
that can be defined for the description of intensity and coherence, as related to the widths of the 
electron beam and the single-electron radiation (diffraction) pattern, are summarized. The description 
is also applied to the temporal coherence, which is of interest in the case of free-electron lasers. 

Keywords: free-electron lasers; coherence; Gauss-Schell model. 

1. Introduction 

Gaussian beams (beams with a Gaussian transverse in- 
tensity distribution) are widely used as models for the 
propagation of monochromatic collimated coherent light 
beams (Arnaud, 1976). Gauss-Schell beams (or 'Gaussian 
Schell-model' beams, i.e. Gaussian beams with a Gaussian 
degree of coherence) are their natural generalization to 
partially coherent fields (Baltes & Steinle, 1977; Collett & 
Wolf, 1980). This is a very useful model as it may represent 
actual beams to a good approximation, and because it 
offers a qualitative insight into the physical properties of 
partially coherent beams by providing simple analytical 
relationships. Gori & Palma (1978) have shown that any 
Gauss-Schell source can be considered as an incoherent 
superposition of Gaussian coherent beams. We will call this 
the random superposition model. 

In the case of synchrotron radiation, Kim (1986) has 
demonstrated that in four-dimensional transverse phase 
space the Wigner function of the synchrotron radiation 
emitted by an ensemble of randomly positioned electrons is 
the convolution of the Wigner function of the electron beam 
and of that of the intensity emitted by a single electron. 

By approximating the spectral angular distribution 
of synchrotron radiation from a single electron with 
a Gaussian, synchrotron radiation can be described 
as a Gauss-Schell source, and this model can be 
useful in discussing the relationships among the various 
characteristic widths (of the electron beam, intensity, 
coherence etc.) that can be defined for the description 
of the angular and spatial coherence properties of 
synchrotron radiation. This description can be extended 
to the 'longitudinal' phase space (time-frequency), as this 
may be of interest in the case of free-electron lasers, where 
short electron bunches produce radiation with a coherence 
time close to the Fourier transform limit. 

After a summary and discussion of the general concept 
of Gauss-Schell beams, we will outline the relationships 

~. Present address: DRFMC, CEA. 38054 Grenoble CEDEX 9. France. 

among the various characteristic widths that can be defined 
for a bunch of synchrotron radiation in six-dimensional 
phase space, modelled as a Gauss-Schell source which is 
an incoherent convolution of the electron beam phase space 
and the single-electron phase-space distribution (diffraction 
pattern). 

2. Mutual intensity and Wigner function 

Let us summarize the definitions and symbols for the 
description of spatial or temporal coherence, where p (x, y) 
are the transverse coordinates and z is the longitudinal 
coordinate. The spatial (transverse) coherence of f(p) is 
described by the mutual intensity, M f:  

Mf (p ,  Ap)  =_ ( f ( p -  Ap/2) f*(p  + Ap/2)), (1) 

where ( . . . )  is the ensemble average. 
The degree of (spatial) coherence is defined as 

#(p, Ap)  -- Mf (p ,  Ap)/[l(p - Ap/2) l (p  + Ap/2)] ~/2, (2) 

where l(p) = Mf(p ,  0) is the field intensity. 
From Fresnel's formula we obtain the propagation law 

for the mutual intensity, 

Ap) = (Az)-2 f d2p0 dZApo Mfj(po, Apo) Mf:(p, 

x exp[-ik(p - p o ) ( A p  - Apo)/z], (3) 

where f:  is the field in the transverse plane, z is a constant, 
and f~ and p0 are at z = 0. 

In the far  field (a sphere at infinity) the propagated 
field has a mutual intensity, expressed as a function of 
the variable k_L = k O (k± is the transverse component of 
the wavevector k and 0 is the angle between the direction 
of observation and the z axis) and of the difference Ak±, 
which is related to the source (z = 0) mutual intensity by 
a Fourier transform: 
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Mf-(zk±/k,  zAk±/k )  = (AZ)-'-M~)(k±, A k ± )  /. 
= (AZ): Mrs(p,  Ap)  

× exp I i k± .Ap  + ip .Ak±] dZpd2Ap. 

(4) 

Note that in the Fourier transform, p is transformed into 
/_3k± and Ap into k±. 

This choice of angular variable is that used in crystal- 
lography. With these variables (p and k± etc.) the volume 
in phase space is dimensionlcss, and the unity represents 
one mode of the electromagnetic field. The usual angular 
(two-dimensional) variable, O. is obtained from 

0 = k±/k = Ak±/2rr. (5) 

The Wigner function is the Fourier transform of the mutual 
intensity with respect to the variable Ap, i.e. j. 

Wf(p ,  k±) =_ M f ( p ,  Ap ) exp ( i k± .Ap ) d 2 Ap .  (6) 

It is a real (almost always positive) function and it can 
be considered as a phase-space energy density: note that 
this phase-space area is dimensionless. The Wigner function 
propagates in the same way as the radiance (or brightness) 
of geometrical optics, i.e. 

Wf:(p,  k±) = Wf~lp - k±dk ,  k±). (7) 

The Wigner function of a beam produced by an inco- 
herent superposition of coherent beams with a phase-space 
distribution in position and angular divergence, g(p, k±), 
is the convolution of the Wigner function of the individual 
coherent beam, fe, with the distribution, g (Gori & Palma, 
1978; Kim, 1986), 

Wf(p ,  k±) = /" dep0d2~7± Wfe(P, k,±)g(p - fi, k± - £±), 
J 

(8) 

while for the mutual intensity it is the convolution in p and 
the product in Ap, 

/ M f ( p ,  Ap)  = d2fiMfk(f i ,  A p ) g ( p -  p, Ap) .  (9) 

different variables will be qualitatively discussed later. 
This means, in general, that the mutual intensity, in two 
dimensions, for example x and ~ = u, can be written in 
the form 

Mf(x ,  u) = l(x)m(u) exp(ic~xu) 

= N exp(-x2/2o -2) exp(-u212a2m) exp(i{,xu), (1 O) 

where I is the intensity, m is a function of u, N is a 
normalization constant and ~ is a parameter that provides 
a curvature of the wavefront. 

For the whole four-dimensional or six-dimensional func- 
tion we have for each variable (x, u, y, v = Aly, t, r = 
At) a corresponding width and for each couple of variables 
another parameter in the imaginary exponential. Each of 
these widths will be indicated by o" with indices indicating 
the quantity (1, m,/1,). Other indices will be discussed later, 
e for the electron beam and R for single-electron radiation. 

In the case where ~, = 0 we say that the mutual intensity 
is separable, or satisfies Walther's condition (Walther, 
1968), and this for x and u means that we are at the waist of 
the beam. In the waist the Wigner function is also separable, 
i.e. 

Wf(x ,  ~) ~ l(x)J(g)  N'  exp(-x2/2a 2) ", 2 = exp( -g- /2a j ) ,  ( 11 ) 

where N '  is a normalization constant and J is the intensity 
in the far field as a function of g = kx and ~rj = llam. The 
propagation of the Gauss-Schell beam from the waist at 
z = 0 is described by 

Mf:(x, u) = N: exp[-x212s~(z)] exp[-u212SZm(Z)] 

× exp[-ik.xu/R(z)], (12) 

2 2 2 2 2--2 2 2-1/2 where R = z(l + k crlcr,,Iz ), sl(z) = or1(1 + z m O'mO'l ) 
2 2 2 2 1/2 and s,,,(z) = O'm(1 + Z ]k O'mCrl ) where sl(z) and Sm(Z) are 

the r.m.s, size of the intensity l:(x) and of the u-dependent 
term m:(u). The Rayleigh range is/3 = kcrt(rm = kcrJo'j and 

the emittance is o'/crj = o 1 / o  m = SI(Z)/Sm(Z).  

Equation (12) shows that for all values of z during 
propagation from the source to the far field the ratio of 
mutual intensity width and intensity width remains constant 
(Friberg & Sudol, 1982).-t This can also be seen as a 
consequence of Liouville's theorem (emittance = constant). 
In the far-field limit (and 0 << 1) this means 

3. Gauss-Schell  beams 

A simple and general way of defining a Gauss-Schell beam 
(in n dimensions) is as a beam with a mutual intensity 
which is a (2n-dimensional) Gaussian, or, which is the 
same, its Wigner function is a Gaussian. For simplicity 
we express them in one dimension, x, while for the other 
dimensions, y and t = z/c, the expressions will be identical:l- 
The consequences of the possible non-separability of the 

t This relationship is valid for perfectly collimated light beams only. We 

will discuss the effect of this in the tinal paragraph. 

Mf(~ ,  A~)  = J ( ~ ) n ( A n )  
2 2 "~ 2 = N"  exp( -~ /2a  s) exp(-At¢/2o,,), (13) 

where N" is a normalization constant. 
Then for a Gauss-Schell source we have the following 

reciprocity relations [a particular case of Walther (1968), 
Coisson (1983) and Friberg & Wolf (1983)]: 

aj  = 1/Crm, a,, = 1/o1. (14) 

~- We will see below [equation (16)] that the same holds for the ratio of 
the width of the degree of coherence to the intensity width. 
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It is easy to see that equation (10) in the waist (~ = 0) 
implies the Schell condition [#(x, u) only function of u], 
and we can calculate the coherence width, 0-/,, in terms of 
the widths of mutual intensity,l  

Mf(x ,  u) - [l(x + u / 2 ) l ( x -  u / 2 ) ] l / 2 1 t ( u )  

= 10 exp{-[(x  + u/2) 2 + (x - u/2)2]/40-~ }/t(u) 
9 

= l(x)#(u)  exp(-u-/80- 7) 

= l(x) m(u). (15) 

The widths of l(x), It(U) and m(u) are then related by 

1/0-~,, = 1/0-~, + 1/40-~. (16) 

In the far field an analogous relationship holds: 

11o .2 = 1/0-~ + l/4crj. (17) 

When 0-m << or/ the beam is 'quasi-homogeneous '  (Carter 
& Wolf, 1977; Goodman,  1985): in this case 0-m ~- or/, and 
there is no need to distinguish between the two different 
'coherence lengths'.  Also in this case the far field is quasi- 

homogeneous [see (14) and (17)]. 
When the Gaussian size, cr .... of the mutual intensity 

becomes comparable with the beam size, 0-/, the coherence 
factor is still Gaussian but with a coherence size different 
from 0-, (16). In the limit 0-m ~ 2cr/ the beam is a 
completely coherent Gaussian beam (0-/, ~ .%). 

In this section we have considered each couple of trans- 
verse variables separately, and then it is always possible 
to find a waist (the 'source ') ,  while in four dimensions it 
is not possible in general. The separability of the trans- 
verse coordinates means that if we represent the x - u or 
phase-space distribution with equal density curves, these 
are ellipses which have their principal axes along the 
coordinate axes.:l: In particular, the separability between 
two 'conjugate '  variables (for example x with u for the 
mutual intensity or with ~: for the Wigner function) means 
that the wavefront is fiat (i.e. the beam is in the waist); 
if it is not, the angular distribution depends on position. 
If two pairs (x, u and y, v) are separable in two different 
positions of the optical axis then the beam is astigmatic. The 
non-separability between x, y (and z.kx, Ay) means that the 
beam cross section is an ellipse with axes not parallel to the 
coordinate axes. Non-separability between x (u) and t (7-) 
means that the beam is not cross-spectrally pure (Mandei, 

f This equation shows that separability (Walther, 1968) and Gaussian 

intensity ,---, Gaussian intensity and Shell condition. It is easy to show 

that the Gaussian intensity is the only one that satisfies the Shell and 

Walther condition (Walther + Shell --, Gaussian intensity): 
[I(x + u ) l ( x  - u)]l/21t(2U) = M f ( x ,  2u) = l ( x ) m ( 2 u ) .  

By applying the logarithm and by calling h(u)  = l o g [ p ( 2 u ) / m ( 2 u ) l  and 

L(x) = log[l(x)l, the previous equation becomes 
2L(x) - L (x  + u) - L(x - u) = 2h(u). 

By Taylor expanding L around 0, then in order to have a dependence on 

u on the left-hand side the coefficients of  the third or higher order must 
be 0 (i.e. constant, exponential or Gaussian intensity). In order to have a 
finite power light the second term must be smaller than 0, i.e. a Gaussian 

intensity. 
+ We will not consider twisted Gauss-Schell  beams with phase exp[ i ( xv  - 

yu)] that are not interesting for describing synchrotron radiation. 

1961). Between t and w the spectrum evolves in time during 
the pulse, or the pulse is 'chirped'  (these two cases will be 
discussed below). 

In conclusion, we have seen that the transverse coherence 
of a Gauss-Schei l  beam is characterized by six Gaussians: 

l(x), m(u) and It(u), and those corresponding in the far field, 
J(~), n(AK) and u(A~) ,  linked together by equations (16), 
(14) and (17). 

4. Random superposition model of electron 
beam and radiation 

Let us now consider the synchrotron radiation beam as a 
random superposition of single-electron radiation pulses, 
making a random superposition model of our Gauss-Schel l  
source. We can then find the relationships of the above- 
mentioned sizes with the characteristics of the electron 
beam (Coisson, 1995). 

Let the electron beam be described by a Gaussian 
distribution,f g(x, ~:), where Crh, and 0..h. are the electron- 
beam size and divergence and 0.m, 0..m = 1/20.m are the 
width and divergence of the coherent beams emitted by 
each electron (approximated to a Gaussian beam). The 
Gaussian approximation for the radiation from one electron 
is applicable when we restrict our attention to the central 
part of the spatial and angular distribution and, in the case 
of an undulator, for frequencies near the peaks (Kim, 1986). 

From the intensity convolution theorem (Kim, 1986) 
"7' q' 9 9 ~ Z, 

or? = 0-7,, + 0-7R, 0-J = 0-,7c + cr.TR" ( 1 8 )  

As this is a coherent beam (0-/m = ~ ) ,  the spatial and 
angular intensity widths are related by diffraction (or the 
uncertainty principle), which in the Gaussian limit is:l: 

crm0-.m = !/2. (! 9) 

In the t, a~ phase space this is called the Fourier transform 
limit. The diffraction limit is reached when the electron 
beam is contained in a phase-space area smaller than this 

limit 0-j,. << 0-JR and o.h. << o.m = 1/20-jR. 

5. Longitudinal phase space 

Until now we have used a language adapted to the trans- 
verse dimensions: for the longitudinal dimensions (which 
can be labelled as z and k: _~ k or t and .~) the relationships 
are the same, but the language may be a bit different and 
needs some  comments  about the physical interpretation. 

If we write, as in the transverse case, the mutual intensity 
(self-coherence function) as Mr(t ,  7-) = Y(t)r(7-), its double 
Fourier transform is M f ( ~ ,  ~)  = S(.;)C(;~),  where S(~) is 
the Fourier transform of r(7-) and C(~]) of Y(t). 

We can define the pulse (intensity) length, cr v, the mutual 
intensity coherence time, C~r, the coherence time, 

O'p = ( l [ O r  2 - 1/40.v) - m ,  (20) 

5- Here it is assumed that the electron beam is in the waist but the model 

can be applied when the electron beam is converging or diverging. In this 

case the radiation beam will be converging or diverging. 

Remember  that the intensity width is 1/2 I/2 times the amplitude width. 
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the total (inhomogeneous) spectral (intensity) width, 

crs= l/err, (21) 

and the two coherent (or 'homogeneous')  spectral widths, 

ac  = l/cry, (22) 
2 -I/2 Crc = (l/ere - 1/4O's) . (23) 

In the case of synchrotron radiation from bending mag- 
nets or undulators the coherence times are much shorter 
than the pulse length, so we are in the quasi-stationary 
case (intensity varies little over a coherence time), and the 
two coherence times or r and a t, coincide, as well as the 
two homogeneoust  spectral widths cr c and a c. In the case 
of a free-electron laser we might be close to the Fourier 
transform limit, and the 'quasi-stationarity' condition does 
not apply. 

Synchrotron radiation is a random superposition of wave- 
trains (which for our purposes we will approximate also 
as Gaussian, which is applicable when the undulator is 
apodized or we restrict our attention to the central part of 
the peak), each of duration cr v,v, and of spectral width as,v, 
for example for an undulator ~rrR ~- NA/21nc and ask ~- 

c/2]/2NA [where N is a suitably defined number of periods 
(Coi'sson, 1988)], emitted by an electron beam of duration 
ove and frequency spread crse = 2AE/E ,  where E is the 
electron energy and the factor of two comes from the E 2 
dependence of the photon frequency. 

The photon bunch duration is then 

o'v ~ (a~t ¢ + cr2ve) I/2, (24) 

and the spectral width is 

Os ~- (a~A, + o'~e) I/e (25) 

In the following we discuss the spatio-temporal corre- 
lations. Until now we have studied separately the field 
correlations in the transverse coordinates and in time. This 
is applicable when the transverse variables of the mutual 
intensity are separable from the temporal ones, i.e. the 
corresponding ~ parameters in (10) are zero. This means 
that representing the mutual intensity as a function of 
one spatial and one temporal variable, the ellipse has 
its axes along the coordinate axes, then the distributions 
of the two variables are not correlated. This kind of 
field is called cross-spectrally pure (Mandel, 1961). In 
other words we have treated the propagation of a quasi- 
monochromatic component of the spectrum. But when we 
consider the general (polychromatic) case, the propagation 
of each spectral component depends on wavelength: for 
the same coherence width, shorter wavelengths are more 
collimated than longer ones. This means that a source 
with a uniform spectrum beam will be more 'blue' at the 

1 The word 'homogeneous' here has two different and conflicting mean- 
ings: in spectroscopy a "homogeneous' spectrum is a coherent one 
(different spectral components having a correlated phase), while in the 
language of spatial coherence theory a "quasi-homogeneous' spectrum 
would be an almost incoherent one. 

centre after propagation (Dacic & Wolf, 1988). When the 
components at different wavelengths have beam sizes and 
coherence proportional to their wavelengths, the beam has 
the same spectral distribution (although in different scales) 
at any distance: in this case the beam is cross-spectrally 
pure. The radiation from an undulator is not cross-spectrally 
pure as the spectrum is angle-dependent. 

Non-separability between t and a; means that the spec- 
trum is time-varying (chirped): the longitudinal ellipse is 
oblique. It may be produced by an electron beam with an 
oblique longitudinal phase-space ellipse (a beam where the 
leading electrons are travelling at a speed different from that 
of the trailing ones) or by a special synchrotron radiation 
device producing a chirped single-electron radiation pulse, 
as for example a chirped (tapered) undulator (an undulator 
with a period varying along z). 

6. Conclusions 

In the case of synchrotron radiation we have an exam- 
ple of a source that in some cases can be described 
by a Gauss-Schell model in all three dimensions, the 
two transverse directions and time. For each Gauss-Schell 
distribution there is a corresponding far-field or reciprocal- 
space (or Fourier-transformed) Gauss-Schell distribution. 
Each Gauss-Schell distribution is characterized by three 
Gaussians [of which, due to equation (16), only two are 
independent]: the intensity, the z3~c (or Ay or At)-dependent 
part of the mutual intensity and the degree of coherence. In 
total we have 18 Gaussians (12 for the spatial distributions 
and six for the temporal ones) but for equations (16) and 
(14) only six are independent. 

We have also seen that these widths result from the com- 
bination of six Gaussian electron widths (beam size, diver- 
gence, bunch length etc.) and six single-electron radiation 
widths (8). In conclusion, we have 12 independent widths 
from which all the other 12 can be calculated. 
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