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A simple approach for producing a high-coherent-flux X-ray beam for small-angle-scattering studies 
used at the Troika beamline of the European Synchrotron Radiation Facility is reported. For such 
small-angle studies it is permissible to reduce the longitudinal coherence .length of the beam, thus 
increasing the energy bandpass and intensity of the beam, because there is only a small optical path- 
length difference. By using mirrors and filters to cut unwanted energies from the undulator harmonic 
structure, a high-flux beam of >109 photons s -~ through a 5 ~tm-diameter pinhole at 8.2 keV with a 
bandpass of 1.3% can be produced. The coherent properties of this beam have been measured by 
analyzing a static speckle pattern from an aerogel sample imaged by a directly illuminated CCD 
camera. The speckle size and contrast are compared with the expected values based on a statistical 
analysis of the intensity distribution of speckle patterns obtained using partially coherent conditions. 
The expected widths of the spatial autocorrelation are found, but there is an apparent incoherent 
fraction of the beam which reduces the measured contrast. The method presented is to be used as a tool 
to optimize conditions for diffraction experiments using coherent X-rays. 
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1. Introduction 

Undulator sources at third-generation synchrotrons provide 
an unprecedented coheren t  X-ray flux, enabling the exciting 
opportunity of measuring the low-frequency dynamics of 
disordered systems down to atomic length scales using 
intensity fluctuation spectroscopy techniques. The possibi- 
lities have been demonstrated by such pioneering studies as 
the observation of equilibrium critical fluctuations in the 
binary alloy Fe3A1 (Brauer et al., 1995), dynamics of 
colloidal systems (Dierker et al., 1995; Thurn-Albrecht et 
al., 1996), and fluctuations in polymer micelle systems 
(Mochrie et al., 1997). These techniques rely on the fact that 
when coherent light is scattered from a disordered system, it 
produces a highly modulated 'speckle' diffraction pattern 
that is uniquely related to the exact spatial arrangement of 
the illuminated material. 

For systems not changing in time, this speckle pattern is 
static and can be used not only as an indication of the spatial 
structure of the sample but also as a tool for analyzing the 
coherence properties of the illuminating X-rays. In this 
paper we demonstrate the use of such a tool to characterize 
the properties of the high-coherent-flux beam produced by 
using simple mirror optics to isolate an undulator harmonic 
at the Troika (ID10A) beamline of the European Synchro- 
tron Radiation Facility (ESRF) for small-angle scattering 

experiments. Such a configuration allows tbc natural 
bandpass of the undulator to determine the longitudinal 
coherence length of the beam, which can be reduced for 
small-angle scattering because of the small optical path- 
length difference (Dierker et al., 1995). 

Fig. 1 shows the time-averaged small-angle scattering 
from an aerogel sample, collected using a charge-coupled 
device array (CCD) to measure the intensity by direct 
detection of the 8.2 keV photons (wavelength k = 1.63 ,~). 
The image covers a range in Q of--~ 0.03 A-l ,  where Q = k t 
- ki is the wavevector transfer of the scattering and Ikf] = ]ki] 
= k = 2rr/k. Good statistics for the intensity are ensured by 
averaging 200 1 s exposures of the CCD. A 5 ~tm-diameter 
pinhole was used to select a nominally coherent part of the 
X-ray beam. The graininess is the speckle pattern for the 
disordered gel, which in principle is directly related to the 
exact position of the scattering material in the illuminated 
volume as well as the coherence properties of the incident 
beam. Static speckle patterns using X-rays were first 
observed by Sutton et al. (1991) from antiphase domains 
in Cu3Au, thereby demonstrating that properly collimating 
an incoherent source such as an X-ray insertion device gives 
coherent radiation. Other systems showing static speckle 
patterns include synthetic multilayers (Robinson et al., 
1995), Au-coated polymer films (Cai et al., 1994), the 
charge-density wave system Ko.3MoO4 (Pindak et al., 1992) 
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and the binary alloy Fe3A1 (Brauer et al., 1995; Bley et al., 
1995). The properties of small-angle speckle patterns from 
gels (Tsui et al., 1998; Mainville et al., 1997) and the alloy 
A1-Li (Mainville et al., 1997) have also been measured. 

There are many other methods of characterizing the 
coherent properties of synchrotron radiation. Diffraction 
from grating structures (Salditt et al., 1994), imaging using 
phase contrast (Snigirev, 1996; Cloetens et al., 1996), 
interference from Fresnel mirrors (Fezzaa et al., 1997) and 
the time response of nuclear excitations in a moving 57Fe 
foil (Baron et al., 1996) have all been used recently to 
quantify the transverse coherence of X-ray radiation. The 
method presented here has the advantage for measurement 
and optimization of the coherence for X-ray intensity 
fluctuation spectroscopy (XIFS) that the sample can be 
mounted exactly as those to be used for dynamic studies, 
thus including effects of the sample environment. The 
detection system is the same as for XIFS, so that the entire 
chain of data collection is characterized. In addition, as we 
shall see from the statistical analysis, the longitudinal 
coherence and any incoherent part of the beam can also be 
analyzed. 

Extracting meaningful information from a static speckle 
pattern about the exact arrangement of the sample is a 
daunting task (Robinson et aL, 1995), but by analyzing the 
intensity distribution for a speckle pattern one can learn 
about the properties of the radiation that produced it, 
including the illuminated volume size and degree of 
coherence. Properties of the beam, such as the monochro- 
maticity, source size and nature of the optical elements in the 
path, all come into determining the statistical properties of 
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Figure 1 
Speckle pattern from an aerogel using coherent X-rays produced by 
selecting an undulator harmonic with mirrors at the ESRF Troika 
beamline. Units are 22 jam pixels relative to the direct beam 
location. The minimum Q used in the analysis, indicated by the 
black semicircle, was 0.007 A -1. The image extends to Q _~ 
0.03 A - 1  . 

the speckle intensities. In particular, the effects of the 
sample thickness on the speckle width and contrast are 
measured as well as the change in the statistics due to an 
incoherent part of the beam. We can use static speckle 
patterns to characterize the beam, thus allowing the 
optimization of the coherence for studies of dynamics. 

2. Experimental methods 

2.1. Beamline description 
The experiments were performed at the Troika (ID10A) 

beamline of the ESRF, a multi-station beamline typically 
operating with transparent monochromators (Griibel et al., 
1994). The undulator source used in this study, located at a 
high-fl straight section, is a standard ESRF 1.6 m-long 
46 mm-period undulator with a 20 mm minimum gap. The 
storage ring of the ESRF currently operates with a 
horizontal emittance of 4 nm rad, calculated using root- 
mean-square (r.m.s.) values, and a vertical coupling of 1%, 
giving an electron beam full-width-at-half-maximum 
(FWHM) source size for the Troika beamline of 760 ~tm 
(H) and 53 ~tm (V), with FWHM divergences of 28 ~trad (H) 
and 4 prad (V). The beamline arrangement is given 
schematically in Fig. 2. Radiation from the undulator passes 
through a front end consisting of a 0.25 mm graphite filter 
and a 0.50 mm unpolished Be window at 23 m from the 
source. The primary slits of the beamline, located at 27 m 
from the source, were used to limit the X-rays to the central 
cone from the undulator and to control the effective source 
size. After a second unpolished 0.50 mm Be window and 
secondary slits, the beam was incident on a 50 x 25 z 
7 mm 3 water-cooled Si mirror placed at the usual mono- 
chromator position 44 m from the source. After specular 
reflection, the beam passed through a 0.30mm-thick 
diamond-film exit window. A lead beamstop in air after 
this window stopped the remaining unreflected beam, thus 
cutting the background in the experimental hutch to 
acceptable levels. After passing two evacuated flight paths 
with 0.08 mm Kapton windows, a nominally coherent part 
of the beam was selected by a 5 lam-diameter pinhole 
aperture in an 80 ~tm-thick gold foil at a distance Rs = 46 m 

g S 

Rsli t 

irror 

i - ~  / Guard 
/~eams top  slits 

CCD 

Figure 2 
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Schematic diagram of the beamline configuration showing major 
optical components and definitions of distances used in evaluating 
the static speckle pattern. Lines are guides to the eye indicating 
possible photon paths from the source to the detector. 
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from the source. The sample was at a distance Rc = 100 mm 
from the aperture, with a guard slit just in front of it to cut 
stray scattering from the windows and apertures. The sample 
scattering was measured using a CCD placed at a distance 
Rd = 1.435 m from the sample. 

To check that the given beamline configuration is 
appropriate for producing a nominally coherent X-ray beam, 
we can estimate the coherence lengths using some simple 
approximations. The transverse coherence length, e ,  of the 
X-ray beam of wavelength I, for a source size d,. at a distance 
R,. is approximately given by 

~, = )~R,/2d,, ,  

and should be at least as large as the size of the aperture 
used to select the coherent portion of the beam. For 8.2 keV 
X-rays the transverse coherence lengths at 46 m from the 
source should be 4.5 Mm horizontally and 65 pm vertically. 
The primary slits located at a distance R~,t = 19 m upstream 
from the aperture can also be used to set the effective size. 
For the image shown in Fig. 1 the horizontal primary slits 
were set to a width d s i i t  = 0.25 mm, giving a horizontal 
transverse coherence length of 5.7 p.m. Thus, the 5 p.m 
pinhole used should nominally be coherently illuminated. 

The longitudinal coherence length, ~z, is determined by 
the monochromaticity of the beam and the wavelength, 

and should be at least as large as the maximum optical path- 
length difference to be used in the experiment. In this work 
we are interested in small-angle scattering in transmission 
geometry, where these lengths are typically "--100 A. Thus, 
the bandpass can be relaxed to "-,1%, instead of the typical 
10 -4 for S i ( l l l )  monochromators, giving a much larger 
incident intensity. The advantages of this for diffraction 
using coherent X-rays have been demonstrated by Dierker et  

al. (1995), who used a multilayer monochromator at a 
wiggler source to perform XIFS of Au colloids. 

The unusual geometry of replacing a monochromator or 
multilayer by a mirror was employed for this study to take 
advantage of the natural undulator source energy bandwidth. 
By varying the incidence angle of the mirror, different 
critical energies for the reflected beam could be chosen. 
Lower energies were eliminated by upstream carbon 
absorbers and beryllium windows. Energy spectra from 
the undulator after reflecting from the mirror are shown in 
Fig. 3. An S i ( l l l )  analyzer in horizontal scattering 
geometry and an NaI scintillation detector in integrating 
mode were used to measure the transmitted flux through 
0.4 mm (H) x 0.2 mm (V) slits versus  energy. The detector 
acceptance was limited by slits in the diffraction plane to 

A(20) = 1 mrad, and scans were performed by moving the 
analyzer and detector angles in a 1:2 ratio (0 -20  scans). Thc 
vertical scale was calibrated to give the number of photons 
per second for 160 mA ring current in the Si(11 l) bandpass 
and angular acceptance by measuring the scattering from a 
Kapton foil of known thickness using the scintillation 
counter (Grfibel et  al. ,  1994). The measurements were 

performed with the incidence angle of the mirror set to cxi = 
0.175 and 0 .35 ,  corresponding to critical energies of 20 and 
10 keV. Fig. 3 .shows the third, fourth and fifth harmonics of 
the undulator with a gap of 21.7 mm, giving a fundamental 
harmonic of 3.05 keV. 

The bandpass of the undulator was measured to be 1.3% 
FWHM for the third harmonic of the 35-period source. This 
value is consistent with the predicted bandpass 

A)~/~. = 1 / n N ,  (3) 

where n is the harmonic number and N is the number of 
(1) periods in the undulator. For the energy spectrum in Fig. 3 

with the mirror set for a 10 keV cutoff, 85% of the counts 
shown are within twice the 1.3% FWHM bandpass around 
the third harmonic at 9.15 keV. For the measurements using 
the CCD, this harmonic rejection ratio should increase 
because of the decreased efficiency of the detector at higher 
energies compared with the scintillation counter. This 
method of using a simple mirror reflection should be well 
suited for small-angle scattering because of the limited 
optics involved and the improving methods of producing 
low-slope-error mirror surfaces for X-ray optics. 

It is important to compare the measured flux with 
estimates based on calculations of the source flux and 
losses in the beamline optics. Using the X O P  set of X-ray 
optics programs (Dejus & Sanchez del Rio, 1996), the peak 

(2) flux through 0.4 mm (H) x 0.2 mm (V) slits at 46 m is 
found to be 8.9 x 1012 photons s -1 (0.1% bandwidth) -1 for 
the third harmonic at 9.1 keV and 160 mA ring current. This 
value must be corrected for the S i ( l l l )  bandpass (1.3 x 
10-4/0.1% = 0.13), horizontal primary slits (R,.dslit/Rslit d,. = 

0.80), mirror reflectivity (0.85), and absorption by air 
(0.90 m = 0.5), Be (1 mm = 0.87), carbon (0.55 mm = 0.64) 
and Kapton (0.56 m m =  0.85). The total estimated flux is 
thus 1.3 x 10 ~1 counts s -1, somewhat larger than the 
measured flux of 3.3 x 10 ~° counts s -1. 
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Figure 3 
Energy spectra from the Troika undulator analyzed by an Si(111) 
reflection after a single mirror reflection. The nominal energy 
cutoff of the mirror was either 20 or l0 keV. 
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The flux through the 5 pm-diameter aperture was 
measured using the same Kapton scattering technique with 
the scintillation counter in differential mode after setting the 
undulator gap to produce 8.2 keV photons in the third 
harmonic and setting the mirror energy cutoff to just above 
this value. Typical rates were between 2-5 x 109 counts s-l  
at 160 mA. The variation reflects the strong modulation of 
the vertical beam structure on lengths from 20-50 pm due to 
optical imperfections in the beamline elements, in particular 
the systematic surface variations of the unpolished Be 
window before the mirror. Integration of the flux in the third 
harmonic passing through an area equivalent to the circular 
pinhole at Rs = 46 m of a calculated spectrum for 160 mA 
gave 2.5 × 10~°photonss - ~. After correction for the 
primary slits (0.80), mirror reflectivity (0.85), and absorp- 
tion by air (0.40 m = 0.64), Be (1 mm = 0.82), carbon 
(0.55 mm = 0.53) and Kapton (0.32 mm -- 0.87), the 
expected flux is 4.1 x 109countss -1. This value is 
consistent with using the calculated brightness of 6.0 × 
1018 photons s -l  (0.1% bandwidth) -1 mm -2 mrad -2 at 
160 mA ring current. To within the accuracy of the 
calculation and the uncertainty of the flux measurement, 
the number of photons passing through the aperture is as 
expected. 

It is interesting to note that while the analysis using the Si 
crystal found a factor of four loss compared with the 
calculated value, the measurement with a Kapton foil, which 
samples all of the radiation through the pinhole, found 
agreement with the theoretical value. The analyzer acts not 
only as an energy selector but also as a collimator, since it 
accepts only those X-rays within its Darwin width and 
which are within the detector acceptance. This fact was 
used, for example, by Cloetens et al. (1996) to determine the 
effects of random phase objects on the divergence of the 
beam, thereby measuring coherence losses. Apparently there 
is some extra divergence introduced by imperfections of the 
optics, which has little effect on the measurement just after 
the pinhole but appears as a loss of intensity for the analyzer 
configuration. 

pixels. There are deviations beyond counting statistics from 
the average scattering, which is the expected speckle 
structure seen when a disordered sample is coherently 
illuminated. The aerogel sample works well as a speckle 
producer because there is significant intensity over a large 
range of Q due to the fractal-like correlations in the sample. 
We note that the longest correlation length scale is of the 
order of 1000 A, so that it is possible to separate the 
contribution of the short-range correlations, which give the 
slowly varying Q-dependence of the average scattering, 
from the intensity variations due to the phase interference 
from different parts of sample that are uncorrelated, i.e. from 
the speckle structure. This allows an analysis of the speckle 
intensities to be made which is independent of the exact 
nature of the sample, as we show below. 

Also seen in the scattered intensity, for the region where 
Q < 0.007A -1 enclosed by the black arc in Fig. 1, is 
parasitic scattering from the direct beam. Besides having a 
beamstop for the beam passing directly through the sample 
to protect the CCD, seen as the dark box at the left of Fig. 1, 
it was found that a guard slit just at the sample was needed 
to cut parasitic scattering. This extra intensity, found to be in 
streaks coming from the beam center position, was 
attributed to excess scattering due to imperfections in the 
collimating pinhole. The use of the CCD camera, which 
could be viewed in real time to adjust the guard slit and 
beamstop to best cut this extra scattering, greatly facilitated 
the alignment. 

2.3. Detector 

The detector was a Princeton Instruments model CCD- 
576E thermoelectrically cooled CCD chip with 576 x 384 
22 lain square pixels. It was designed for direct detection of 
X-rays, incorporating a thick depletion layer to achieve 
roughly 30% detective efficiency of the 8.2 keV photons. 
The camera was controlled by and the images stored on a 
Silicon Graphics workstation, using a custom-modified 
version of the program Yorick (Munro, 1995), which was 

2.2. Sample and alignment 

The sample used to produce the speckle patterns was a 
silica gel, made in a one-step process from a mixture of 
tetramethoxysilane, water and methanol catalyzed by 
NH4OH. Silica gels exhibit a large range of correlations 
due to the diffusion-limited aggregation of the 10-20 A 
silica particles during gelation, and are of interest in many 
types of studies concerning the effects of random media and 
porous structures (Chan et al., 1996). In this work the 
sample was 95% porous and 0.5 mm thick. Typical small- 
angle scattering from this sample, recorded using the CCD 
detector, are shown in Fig. 1. Strong scattering could be 
seen out to 0.03-0.04 A -~ with a shoulder at --~0.01 A -l ,  as 
seen in the circularly averaged scattering intensity shown in 
Fig. 4 as the open circles. 

Also seen in Fig. 4 as the solid line is the scattered 
intensity along the horizontal direction for a single row of 

15.0 

'._ 12.5 

E. 
10.0 

t 

~ 7.5 

5.0 

~ 2.5 E 

0 
0 

i . i • i . 

A c r o g e l  

, i i , i 

0.01 0.02 0.03 

O (,,~- 1) 

Figure 4 
Circular averaged scattering (circles) from the aerogel sample, 
normalized to give detected photons per second. The line is the 
intensity in one pixel row in the horizontal direction, showing the 
speckle structure. The intensity below Q = 0.005 .A-1 is dominated 
by parasitic scattering of the pinhole and slits. 
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also used for image viewing and data processing. Data were 
acquired as a series of 1.00 s exposures, separated by 0.24 s 
for readout and storage of the images. Fig. 1 is the average 
of 200 such exposures, after subtracting an average dark 
image found from ten 1.00 s exposures with no X-ray beam 
o n .  

Owing to the limited dynamic range of the direct- 
detection CCD, the data must be taken as a time series. 
Using this sequence, it is possible to implement the 
statistical technique to characterize the CCD demonstrated 
by Dufresne et al. (1995). In brief, the idea of the method is 
that the mean and variance of the intensity measured in time 
at a given position of the scattering pattern should be related 
by Poisson counting statistics. For a perfect detector with no 
spreading of the signal between pixels and no electronic 
noise, the ratio of the variance over the mean will give the 
value in detector units of one photon. Spatial correlations 
and dark noise must be taken into account, as explained by 
Dufresne et al. (1995). 

One change must be made for this procedure to be 
applied to speckle data. Since the signal itself is a strongly 
varying function on a length scale near the pixel size, the 
detector correlations or leakage between pixels must be 
found independently of any assumption about a uniform 
illumination of the detector. One possibility is to look at the 
individual exposures, where the statistics are dominated by 
photon counting and not the speckle intensity variations. By 
correlating individually these 1 s images and then averaging 
these correlations, a picture of the spreading of the signal is 
found. The solid symbols in Fig. 5 show that for this 
detector there is only significant leakage to the nearest 
neighbors, and it is symmetric in the two directions. This 
correction can be applied to the measured ratio of the time 
variance to the average intensity, giving a value of 240 + 20 
detector units per photon. This value was used to calibrate 
the intensity of detected photons shown in Fig. 4. 

We note that an alternative approach is to analyze the 
individual clusters of charge, or 'droplets', resulting from 
the absorption of the X-rays. The total charge induced by 
single photon events can be seen directly, as well as the 
average spatial distribution. This technique can also 
distinguish multiple photon events. Applying such a droplet 
analysis to typical data taken with the detector gives a value 
of 238 + 5 detector units per photon, as well as accounting 
for the correlations seen in Fig. 5 quantitatively (Livet, 
1996). 

3. Analysis of a static speckle pattern 

In order to extract information about the coherence proper- 
ties of the beam, we turn to a statistical analysis of the 
speckle pattern shown in Fig. 1. Speckle statistics have been 
well studied using laser light scattering, and the analysis of 
the effects of partial coherence, detector and source sizes 
and bandpass are known (Dainty, 1975; Goodman, 1985). In 
this section, this theory is applied to our X-ray speckle 

pattem. In particular, it is important to consider the effect of 
the sample thickness, as well as losses of coherence due to 
the imperfections of the optical elements in the beamline. 

To illustrate the technique, we calculate the statistical 
properties of the expected speckle pattern when the 
monochromatic incident radiation is perfectly coherent, 
and the detector resolution is much smaller than any spatial 
variation in intensity in the speckle pattern. It is convenient 
to calculate a normalized two-point intensity correlation 
function 

C ( r l , r 2 ) = [ ( l ( r l ) I ( r 2 ) ) / ( I ( r l ) ) ( l ( r 2 ) ) ] -  1. (4) 

The brackets ( . . . )  denote an ensemble average of an 
appropriate set of samples. Fig. 6 shows the coordinate 
system used to describe the experimental configuration. 
Points in the image are denoted by the vectors ri relative to 
the beam-zero position at the detector. Given a distance Ra 
from the sample to the detector and X-ray wavenumber k = 
27r/~, ri can be related to the wavevector transfer Q, 
depending on the geometry. For the speckle pattern 
discussed in this paper, one can use the small-angle 
approximation that IQ[ = ]~rl/Rd. 
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Figure 5 
Insets: spatial autocorrelations for the areas outlined in Fig. 1 for 
azimuthal angle 0 = 0 ° (horizontal) (a) and 0 = 60 ° (b). Main 
figures: cuts in the horizontal (squares) and vertical (triangles) 
directions through the spatial correlations. Units are 22 pm pixels. 
The filled symbols represent the detector resolution found from 
averaged autocorrelations of the 1 s exposures. 
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We expect that the correlation function defined in (4) will 
peak at r~ = r2 and fall to zero for large separations. The 
FWHM of C(rl, r2) is a reasonable measure of the size of  
the speckles. The contrast of the speckle pattern can be 
defined by the value 

/~(r) = C(r, r). (5) 

In practice, instead of measuring many speckle patterns and 
then averaging over them, we assume the ensemble average 
is well approximated by taking an average over a suitable 
region of a single pattern. Then C(r, r + Ar) is found from 
the normalized autocorrelation of an area centered at r of a 
given detected speckle pattern. 

To calculate the expected correlations explicitly, we write 
the intensity at a given point in the speckle pattern r as the 
square of a total complex field A,[Q(r)]. We imagine that the 
sample can be divided into many small volumes dp such that 
each volume scatters with an amplitude IAo[Q(r)]l given by 
the short-range correlations in the sample. However, these 
regions are assumed to be uncorrelated, so that the phase 
qg(p) of  this scattered field amplitude varies independently 
from region to region. This separation of length scales, such 
that any correlations in the sample are smaller than the 
illuminated volume, guarantees that the speckle statistics are 
characteristic of the incident radiation and detection scheme 
and not sample-dependent. The total field measured also 
depends on the incident radiation field B(p) at each point in 
the illuminated volume and a phase term describing the 
change in phase due to the propagation of the field from the 
sample to the detector. Working in the far-field (Fraunhofer) 
regime, the intensity is then 

I(r)  = A/[Q(r)] 2 

I f  B(p)IA0[Q(r)]I exp[i~o(p)]exp[iQ(r).p]dp 2. (6) 
J 

The large variations in intensity as r varies come from the 
interference of the different phase terms ~o(p) across the 
sample, thus giving the resulting speckle pattern its 
individual character. On average, correlations in the 
intensity for small Ar are given by the propagation of the 
scattering to the detector, thus giving a characteristic size to 
the speckles. Assuming that the incident intensity is 

Q = kf  - k i 

D [ ki 

W 
Detector Sample 

Figure 6 
Schematic diagram of the scattering geometry and coordinates used 
to analyse static speckle statistics. 

normalized, i.e. 

f B~) 2 d p -  1, (7) 

then the average intensity is simply 

(l(r)) = [A0[Q(r)] 2, (8) 

since in the average only the terms coming from the same 
point p survive. 

The intensity correlation function defined in (4) is fourth 
order in the fields At [Q(r)]. Because of the assumption that 
the fields are the sum of many independent phases, they 
obey circular complex Gaussian statistics (Dainty, 1975; 
Goodman, 1985). This may be thought of as a consequence 
of the central limit theorem, and the fields are considered as 
random walks in the complex plane. The result is that the 
fourth-order correlation function can be written as the sum 
of products of second-order correlations, 

(I(rl)I(r2)) = (At[Q(rl)]A~[Q(rl)]At[Q(r2)]At [Q(r2)]) 

= (IAt[Q(rl)]12)(IAt[Q(r2)]l 2) 

+ I(At[Q(rl)]At[Q(r2)])l 2. (9) 

Normalizing this result as defined in (4), we can write the 
intensity correlation function as 

C ( r l ,  r2) --  I#0(rl, r2)[ 2, (10)  

with 

f IB(p)l 2 exp {i[Q(rl) - Q(r2)] .p} dp. (11) / z0( r l ,  r2) 

We note that in the small-angle scattering approximation 
with monochromatic radiation, the function #o, known as 
the complex coherence factor, depends only on the 
difference between the points Ar = r2 - rt and it has a 
contrast ~(r) = 1. In fact, for the case where the incident 
radiation B(,a) is constant within a given aperture and zero 
outside of that region, (10) and (11) show that the 
autocorrelation function of the speckle pattern follows 
exactly the form of the Fraunhofer diffraction pattern from 
the aperture (Goodman, 1975). 

To see how the statistics of the measured speckle pattern 
compare with the ideal case, the normalized autocorrelation 
functions for two regions of Fig. 1 are shown in Fig. 5. Both 
areas, outlined by 50 x 50 pixel squares, are centered at the 
same Q = 0.009 A-~ but have different azimuthal positions 
~/, relative to the horizontal direction. It is found that a 
convenient way to calculate the autocorrelation is to first 
normalize the speckle pattern by the circularly averaged 
values corresponding to the radius of  each pixel from the 
beam center. Then a fast Fourier transform technique can be 
used to calculate the autocorrelations (Dufresne et al., 
1995). By normalizing first, correlations due to the slow 
variations of the intensity are removed. Extra correlations at 
and near-zero displacement due to photon-counting statistics 
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must also be subtracted, using the measured resolution of 
the detector (Dufresne, 1995). 

The insets in Fig. 5 show the normalized autocorrelations 
as two-dimensional gray-scale images, labeled by the 
displacements in pixels At. In the main panels, cuts through 
the autocorrelation peak are shown for both the horizontal 
(open squares) and vertical (open triangles) directions. In 
Fig. 5(a) one can see that the correlations extend over a 
larger distance in the horizontal, which is the direction along 
Q for the azimuth ~p = ft .  In Fig. 5(b) this smearing is seen 
to rotate along with the direction of Q. The elongation of the 
correlations along Q is expected because of the broad 
bandpass of the radiation used (Dainty, 1975). The broad- 
ening also shows an interesting dependence, increasing from 
Q = 0 until a maximum and then decreasing. To quantify 
this behavior, we must take into account the loss of 
resolution of the speckle pattern due to the variation in the 
wavenumber k, as well as the detector resolution and source 
sizes. 

We can return to the calculation of the speckle statistics as 
outlined above, and include the possibility that there is a 
normalized distribution of wavenumbers S(k) with a mean ko 
and that the detector has a normalized resolution given by 
R(r), where r varies over the surface of the detector. The 
equation for the detected intensity is then 

l(r) = f S(k)R(r - r')B(p)lAo[Q(k, rf)]] 

x exp[iqg(p)] exp[iQ(k, r').p] dp dk dr' 2 (12) 

where we note explicitly that the momentum transfer Q 
depends on both the wavenumber k and the position on the 
detector r. Following the outline of the previous calculation, 
one arrives at a generalized version of the correlations in a 
partially coherent speckle pattern 

C(rl, r2) = f S ( k ' ) S ( k " ) R ( r  1 - rl)R(r2 - r") 

x ]g (k ' , k " , r ' , r " )12dk 'dk"dr 'd r  '', (13) 

with 

k', r, r') = . [  B(p) 2exp {i[Q(k, r) - Q(k', r')].p} do. /z(k, 

(14) 

This is the complex coherence factor for partially coherent 
radiation, and the application of (13) and (14) to our 
conditions can be compared with the measured speckle 
statistics. 

We first evaluate the effects of the integrations over the 
wavenumber spread S(k). For illuminated sample volumes 
that are cylindrically symmetric about the incident beam, the 
dot product of Q with p ensures that the transverse width of 
the correlations are unaffected by the wavenumber smearing 
(Parry, 1975). There is a broadening which is second order 
in the bandpass, as would be seen in the Fraunhofer 
diffraction from the aperture, which we neglect. Thus, we 
take the width derived from the monochromatic case, (10) 

and (11), as the transverse width A,. For the case of a 
circular pinhole with diameter D, the FWHM is 

or 

A t = 1.030~Ra/Ddp) (pixels) 

A t = 1.03(2rr/D) (wavevectortransfer), (15) 

in units of pixel size dr, and in reciprocal space units. For a 
slit of width Wthe formulae are the same with D replaced by 
Wand the numerical factor replaced by 0.89. 

In order to calculate the smearing of the correlations in 
the longitudinal direction At we must now apply (13) and 
(14). For convenience we work at zero azimuth and apply 
the small-angle approximation, as illustrated in Fig. 6. For r 
= (X, 0, 0) we have 

Q(r) = ( kX /R  d, O, -k.X2/2R2). (16) 

Taking p = (x, y, z), then the phase term in the complex 
coherence factor [equation (14)] is 

exp {i[(kX - k 'X ' )x /R  a - (kX 2 - k'X'2)z/2R~]}. (17) 

If we assume that the incident intensity IB(p)l z is simply a 
constant within an illuminated volume defined by the 
pinhole of diameter D and the sample thickness W, then the 
integration over p in (14) yields 

u(k, k ' , X , X ' )  = sin[(kX2 - k'X'2)W/4R~] 
(kX 2 - k 'Y  '2) W/4R~ 

2J 1 [(kX - k'X')D/2Rd] 
x (18) 

(kX - k 'X ' )D/2R a ' 

where J1 is the Bessel function of the first kind. We take the 
wavenumber spread to be a Gaussian 

S(k) = exp[-(k - ko)2/Z82kg], (19) 

with the width 8 found from the FWHM bandpass of 
1.3% by the relation for a Gaussian that the FWHM is 
212(1n 2)] 1/23 = 2.35& By numerically calculating the double 
convolution of (19) with (20) the wavenumber-smeared 
complex coherence factor ~,  can be found. This results in a 
peaked function of the position difference ~xX = X' - Xwith 
a maximum we denote/3, and an FWHM A,. 

The resolution of the system must also be taken into 
account before comparing the calculated speckle widths 
with experimentally found ones. If the resolution of the 
detector R is characterized by an FWHM AR, then the 
double convolution in (13) leads to a reduction of the 
contrast approximately given by 

fl = f lkAk/(A~ + aA~) 1/2, (20) 

and a broadening 

A = (A~ --t- aA~)  1/2. (21) 

The parameter a depends on the shape of the resolution 
function, and is chosen to match the case where the width is 
dominated by the convolution of the resolution function 
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with itself. The results are exact if  the resolution and 
complex coherence factor are Gaussian, using a = 2. 
Because the CCD detector has a box-like resolution of a 
single pixel dp in width, as shown in Fig. 5, we use a = 1 
since the convolution of a box with itself gives a triangle of 
FWHM equal to the box width. 

There is also a loss in resolution due to the finite width of 
the incoherent source. Assuming that the same sample 
volume is illuminated, each point of  the incoherent source 
contributes the same speckle pattern slightly shifted, since 
the pattern depends only on the product Q.p. Thus, atter 
scaling by the ratio of the sample-detector and source- 
sample distances Rd/R, the source size can be taken into 
account in the same way as a detector resolution 
(McKechnie, 1975). Assuming the shape of the source is 
Gaussian with FWHM A,, the corrections made to the 
contrast flk and correlation widths Ak calculated from the 
wavenumber smearing due to the resolution are 

2 2 2 2 1/2 fl = flkAkl(A~ + all, + AsRalR~) (22) 

and 

2 2 2 (23) a = + + 2a Rde ) '/2 

The comparison of measured and calculated correlation 
widths is made in Fig. 7. Correlations in regions of Fig. 1 of 
50 x 50 pixels in the horizontal direction centered at 

different Q values were evaluated, and the longitudinal 
FWHM AI (open squares) and transverse FWHM A, (open 
circles) for the spatial correlations C were found. In order to 
assess the error involved, the correlations at each Q were 
performed for azimuths varying in the range - 1 5  < ~ < 
15 °. The averages of A~ and A, are plotted, with error bars 
given by the r.m.s, deviations. We note that at smaller Q the 
regions overlap significantly, so that the errors are under- 
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Figure 7 
Correlation widths versus Q of the speckle pattern in Fig. 1 in the 
transverse (circles) and longitudinal (squares) directions. Lines are 
models of the widths based on evaluation of the complex coherence 
factor, as described in the text. 

represented. The transverse widths are constant as a function 
of Q, as anticipated. At all Q the longitudinal widths are 
larger, as seen in Fig. 5, and for small Q At increases with Q 
as expected for the large bandpass. There is an unexpected 
crossover to decreasing longitudinal widths at higher Q. We 
take this to be the result of  the loss of  correlation due to the 
finite sample thickness, which at larger Q starts to dominate 
over the longitudinal smearing of the speckles. 

The numerically calculated values of A, and At using the 
pinhole diameter D -- 5 lam, sample thickness 0.5 mm and 
r.m.s, bandpass 8 = 0.013/2.35 = 0.0055 are plotted as the 
dashed line in Fig. 7. Broadening due the detector resolution 
AR = 1 pixel and the scaled source sizes are included, as 
defined by (23). The difference in width at Q = 0 is due to 
the larger horizontal source size. The essential features of 
the widths are reproduced, including the decrease in Az at 
larger Q. The values of the widths are, however, typically 
larger than measured. 

For a better idea of how different parameters of the model 
affect the calculated widths, it is useful to make an 
approximate solution to the partially coherent correlations. 
Instead of the sharp illuminated volume, we can make a 
Gaussian approximation to the incident beam profile O'D and 
to the thickness of the sample Ow. Substituting 

[B(p) 2= exp( -z  2/2a~u) exp[-(x  2 + f)/Za2D] 
3/2 2 (24) 

(2n') awa b 

into (14) gives the complex coherence factor for the 
Gaussian model 

#g(k, k ' ,X ,X ' )  = exp[-cs2(kX - k'X')2/R 2] 

x exp[-ef l (kX 2 - k'X'2)2/4R2a]. (25) 

The convolutions with the Gaussian wavenumber spread in 
(13) can now be performed exactly. It is more useful to find 
the lowest-order terms in the bandpass 8 < <  1 when the 
exact shape is compared with a Gaussian in the deviations 
Ar or AQ by expanding about the peak at zero deviation. 
The result is that the transverse FWHM in this approxima- 
tion A, g is given by 

At g = 2(ln 2)1/2/cro (26) 

in reciprocal space units. The longitudinal FWHM A~ 
depends on Q, and is given by 

1 +  4o'~2Q 2 + ~w~ Q~/ko (27) 
a f  = 2(ln2) '/2 +  'wO/g + 2 2 2 2 2 2 2 

The values of o'1) and CSw can be set by requiring that the 
predicted widths should match those found for the 
calculation using the sharply defined illuminated volume. 
Numerically, this gives the values 

(~D = 2(In2)'/2D/1.03(27r) = 0.26D, (28) 

and similarly 

cr w = 2(ln2)l/2W/O.89(27r) = 0.30W. (29) 
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Using these values and convolving with the detector and 
source sizes as before, the dotted lines in Fig. 7 are 
calculated. The results are almost indistinguishable from the 
numerically calculated dashed lines, demonstrating that the 
approximations used are valid in the Q region studied. 

It is interesting to examine (27) to see how the bandpass, 
pinhole size and sample thickness affect the longitudinal 
correlation widths. For a monochromatic beam (5 = 0), the 
width decreases as Q increases. This is a result of  the 
apparent increase in width of the sample for larger Q 
because of the sample thickness (Chu, 1974). If the sample 
has no thickness ( a w  = 0) then the width increases 
continuously for increasing Q. It is the interplay of the 
bandpass and sample thickness that causes the crossover 
from increasing to decreasing width versus  Q. In fact, the 
peak of the width is determined in this approximation by 

Qmax = ( k o / ~ ° w )  1/2, (30)  

giving Qm~× = 0.0225 A -~ for the parameters used to 
calculate the dotted line in Fig. 7. 

Equations (26) and (30) allow the two size parameters C~D 
and o'w to be determined from the data directly. The 
measured transverse width, corrected for the detector and 
source sizes, is best fitted by taking c~t~ = 0.34D, and Qma× = 

0.02 A -~ implies aw -- 0.34W. Using these values gives the 
solid lines in Fig. 7, which accurately describe the data 
except for the small-Q longitudinal width. At small Q there 
may still be some stray scattering from the pinhole and 
guard slit which causes an excess width in the horizontal 
direction. The difference in ~w is consistent with the 
accuracy to which the sample thickness is known. The 
increase in aD can be explained by the fact that the sample is 
not directly behind the pinhole, but the beam propagates a 
distance R,. -- 100 mm and therefore can diverge before 
hitting the sample. The observed increase in size is a factor 
of 1.3, which seems reasonable given that R,. approaches the 
near-field cutoff of D 2 / X  = 165 mm. 

Now that the correlation widths are reasonably well 
understood, we turn to the contrast of the speckle pattern, 
¢3(Q). For the Gaussian model of  the partial coherence, the 
predicted value from the wavenumber spread is found to be 

fig(Q) = (l -t- 4ry2~2Q 2 -qt- 0"2v(~2Q4/k~o) -1/2. (31) 

This value is further reduced by the detector and source 
smearing according to (22) for both the longitudinal and 
transverse directions. This smearing introduces more Q- 
dependence because the longitudinal width also depends on 
Q. To see how this prediction compares with the measure- 
ment, the value for Q = 0.0086 A -1, using C~D and Clw 
determined from the widths, is calculated. The predicted 
total contrast is found to be ]3 = 0.38, which is an order of 
magnitude larger than the measured value as seen in Fig. 5. 
Even though the speckle widths are well represented by a 
theory of partial coherence, which takes into account the 
effects of  bandpass, detector and source sizes, we find that it 
does not predict the measured contrast. 

To find a clue to help solve this discrepancy, we turn to 
another means of characterizing the statistics of a speckle 
pattern: the intensity probability distribution at a single 
point. For a speckle pattern where there are several 
independent coherence areas contributing, as in the case 
of partial coherence we have been developing, the intensity 
distribution is expected to follow approximately the gamma 
distribution (Dainty, 1975; Goodman, 1985) 

p ( I )  = ( M / ( 1 ) ) M I  M-n e x p ( - M l / ( l ) ) / F ( M ) .  (32) 

This distribution has a mean (I) and mean-squared deviation 
a f = (I)2/M. The definition of contrast we are using is 
equivalent to fl = a~2/(I) 2 = 1/M. For partially coherent 
speckle patterns the value of M is Q-dependent. 

Fig. 8 shows the measured probability distribution for the 
intensities in an annulus where 0.0080 < Q < 0.0092 A -~, 
plotted versus  the intensity divided by the mean. Such 
distributions are easily calculated by histogramming the 
normalized speckle pattern used to determine the speckle 
widths. The gamma distribution [equation (32)] with mean 
and mean-squared deviations determined from the set of  
intensities (M = 25) is plotted as the dashed line. Apparently 
there are strong deviations from the expected distribution for 
partially coherent speckle patterns, even though the widths 
of the speckles are well predicted. 

A closer examination of the measured intensity distribu- 
tion shows that there are almost no scaled intensities below 
roughly 60-70% of the mean. This is common with other 
regions of the speckle pattern as well, indicating that there is 
a constant part of the incident beam which does not 
participate in the coherent interference leading to the 
speckle pattern. Calling the fraction of the beam which is 
described by the partial coherence theory or, one can show 
that the 'incoherent' fraction, 1 - c~, reduces the measured 
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Figure 8 
Intensity distribution of the 3432 pixels in an annulus where 
0.0080 < Q < 0.0092 A -n. The dashed line is the gamma 
distribution with the mean and variance of the measured 
distribution (M = 25), and the solid line is the gamma distribution 
after correcting for an incoherent background (M = 2.7). 
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contrast by a factor off. It does not affect the widths of the 
speckle pattern, since it is a smooth function which follows 
the circularly averaged (I(Q)).  The solid line in Fig. 8 is the 
gamma distribution that results if  the mean and standard 
deviation are calculated after subtracting 1 - ct = 0.67 from 
the scaled intensities (M = 2.7). There is better agreement 
with the measured intensity distribution. 

As a final check of the consistency of the idea that only a 
fraction ot of  the beam contributes to the coherent scattering, 
the contrast as a function of Q can be compared with the 
calculated value scaled by ct 2. In Fig. 9 the circles are the 
measured contrast from the regions used to determine the 
speckle widths. Again, the errors are estimated from the 
azimuthal variations. The solid line is a calculation of the 
contrast in the Gaussian approximation [equation (31)] 
using values of o" D and aw determined from the correlation 
widths, corrected for the detector and source sizes [equation 
(22)] in both directions and scaled by a z = 0.332. This gives 
a reasonable match to the measured values, except at small 
Q where some slit scatter seems to affect both the width and 
the contrast. 

4. Conclusions 

At the Troika beamline of the European Synchrotron 
Radiation Facility, a high-coherent-flux X-ray beam for 
small-angle scattering studies has been produced. Using 
mirrors and filters to cut unwanted energies from the 
undulator harmonic structure provides >109 photons s-1 
through a 5 ~tm-diameter pinhole at 8.2 keV with a bandpass 
of 1.3%. Such a beam makes studies of equilibrium 
dynamics at small wavevectors practical using the develop- 
ing technique of X-ray intensity fluctuation spectroscopy, as 
has recently been demonstrated (Thurn-Albrecht et al., 
1996; Mochrie et al., 1997). 
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Flgure 9 
Contrast of the speckle pattem in Fig. 1 as a function of Q, 
calculated in the region used to measure the speckle widths. The 
solid line is calculated from a Gaussian model scaled by the square 
of the coherent fraction of the beam or. 

Using a strongly scattering sample to produce speckle and 
an area detector, the coherence characteristics of a particular 
configuration can be measured in only a few minutes. This is 
a tool for evaluating and optimizing beamline optics and 
alignments for experiments using coherent radiation. At the 
same time, the procedure naturally leads to the characteriza- 
tion of the detector used. 

A detailed analysis of  the statistics of  the static speckle 
pattern leads to the conclusion that the speckle widths can 
be described by the expected results from a partially 
coherent beam, taking into account the bandpass, detector 
and source sizes. In order to explain the intensity 
distribution and contrast, however, it must be assumed that 
only a fraction ct _~ 1/3 of the beam scatters coherently. The 
rest of  the beam acts as a background to reduce the contrast 
by tr 2. That the contrast is almost an order of  magnitude 
below expected is also seen in XIFS experiments (Thurn- 
Albrecht et al., 1996; Mochrie et al., 1997), since the r --+ 0 
intercept of the time correlation function g2(r) - 1 is also a 
measure of  the contrast. 

Possible sources of this 'incoherent' background are the 
random phase changes induced in the beam by non-ideal 
optical elements, such as the various windows and filters in 
the beam, as well as the mirror figure errors. Some part of  
the coherent beam is scattered out of the coherence volume 
on passing through each of these random phase objects. 
Thus, while the pinhole is meant to act as a spatial filter for 
coherence, there will be some of this scattered beam that 
passes through the pinhole and causes the reduction of the 
contrast. This conclusion is supported by the observation 
that the intensity of the beam is reduced from the expected 
value when measured using an analyzer, which acts as a 
collimator to reject the part of  the beam scattered outside of 
its acceptance. 

It is interesting to compare this study and its conclusions 
with another study of X-ray speckle statistics at the X25 
wiggler beamline of the National Synchrotron Light Source 
by Tsui et al. (1998). That study, which used the same 
sample as the one employed here, concluded that the 
contrast was slightly reduced from the expected value and 
there was also less flux than expected. The present study 
finds a coherence which is a factor of nine too low, but the 
flux through the pinhole seems to be correct. The main 
difference in the measurements seems to be that the X25 
configuration was more effective in reducing the loss of 
coherence, perhaps due to having fewer elements in the 
beam and to the fact that there was a larger distance between 
the pinhole and the main optical elements, which were a pair 
of  multilayer monochromators. 

Recent measurements at the Troika beamline after 
removal of  several Kapton windows and polishing of the 
two beamline Be windows succeeded in increasing the 
contrast by a factor of  three. It was observed that careful 
setting of guard slits all along the beamline was important in 
achieving the best contrast. We conclude that it is important 
to have optics which are as perfect as possible and to do the 
utmost to eliminate unwanted scattered radiation from 



D. L. Abernathy et aL 47 

falling on the sample. Further experimental and theoretical 
studies are needed to better understand the origins of  the 
observed coherence loss, in order to take full advantage of  
the newest synchrotron sources. 

We wish to thank the staff of  the Troika beamline for 
assistance with these experiments. Discussions with O. Tsui, 
E. Geissler, E Livet and C. Sutter were much appreciated. 
Work at MIT was supported by the NSF (Grant DMR- 
9312543). 
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