
1998 International Union of Crystallography Journal of Synchrotron Radiation

Printed in Great Britain ± all rights reserved ISSN 0909-0495 # 1998

593

J. Synchrotron Rad. (1998). 5, 593±595

Object library for a new generation of
experiment-controlling applications under
the UNIX operating system

Yu. A. Gaponov,a* K. Itob and Y. Amemiyac

aSiberian Synchrotron Radiation Center, Budker Institute of
Nuclear Physics, Institute of Solid State Chemistry,
Lavrentyeva 11, Novosibirsk-90, 630090 Russia, bPhoton
Factory, National Laboratory for High Energy Physics (KEK),
1-1 Oho, Tsukuba, Ibaraki 305, Japan, and cEngineering
Research Institute, School of Engineering, The University of
Tokyo, Yayoi, Bunkyo, Tokyo 113, Japan.
E-mail: gaponov@inp.nsk.su

(Received 4 August 1997; accepted 3 December 1997)

The Interface Object Library based on the Motif extension of the

X Windows system and on the ESONE SVIC-VCC Library is

presented. Some features of the applications for controlling a

synchrotron radiation experiment are discussed. The Interface

Object Library is written in the object-oriented C++ language.

The library class-hierarchy structure is presented and discussed.

Several interfaces were realized in the Interface Object Library:

the Windows interface, the CAMAC interface and the interface

for supporting the experiment. The behaviour of the objects

describing the CAMAC crate and CAMAC block is discussed.

The application of these protocols for controlling the fast one-

coordinate position-sensitive X-ray detector OD3 is presented.

Keywords: controlling applications; object-oriented program-
ming; C++; UNIX; data acquisition; graphical user interfaces.

1. Introduction

The programming of experimental control applications involves

the solution of several different tasks. It is necessary to create an

experimental-control-device interface to provide the connection

and interaction of a computer with different modules needed to

construct the experiment (step motors, detectors, monitors,

temperature or pressure regulators). The display user interface is

necessary to provide input and output of the experimental and

control information (presentation of digital and graphical infor-

mation on the screen, control of the keyboard and mouse for input

of experimental parameters and control of the experiment

operation). It is also very convenient to have some experimental

procedure interface to provide simple programming of different

experimental conditions.

The UNIX operating system is popular among programmers

working with experiment control applications. Creation of the X

Windows system, X Toolkit Intrinsics (Xt) and Motif (Xm)

extensions has stimulated the writing of new extensions and

specializations of such systems (see Kinder et al., 1996; Skinner et

al., 1996; Heller, 1992). Such extensions are generally created to

simplify user programming with de®ned hardware.

Very often, creation of a control application for new hardware

forces the programmer to undertake system programming. From

this point of view the C++ language is a very convenient and

useful programming language (see Stroustrup, 1991). The main

goal of the work presented in this paper is to create a class library

(Interface Object Library) for the writing of experimental control

applications in the object-oriented C++ language.

2. C++ as an instrument for object-oriented programming

Control applications always have different control elements

(managed objects). The control application is linked with external

control devices that may also be managed objects. Any experi-

ment may be considered as several processes running simulta-

neously. Choosing the process as an object gives control of the

process and organizes communication between different

processes during the experiment. The existence of specialized yet

quite simple objects allows the construction of the more complex

and specialized objects necessary for the controlling application.

In C++ language the object is described by the declaration and

de®nition of the class. The class is a structure of data, functions

(called method functions) and operations that may be executed

with an object of the class. After creation, an object is initialized:

its parameters and, if necessary, communications with other

objects are de®ned. Finally, the method functions of the object are

used to control it.

Figure 1
General overview of the Interface Object Library. There are four levels of
hierarchy. TIOLMain is a derived class derived from both TIOLBoard and
TIOLApplication. The classes TIOLShort, TIOLInt, ..., TIOLString,
TIOLFile, TIOLGraph, TIOLCCrate and TIOLCBlock use classes from
correspondent levels.

Synchrotron radiation experiments have particular character-

istics that have to be considered when creating the controlling

application. As a rule, synchrotron radiation beamline experi-

mental stations consist of two types of devices and equipment:

beamline optics and experimental X-ray equipment. Taking

account of the large number of devices (mirrors, monochromators,

shutters, slits, goniometers, detectors, temperature and pressure

controllers, scanners), it is better to have one controlling appli-

cation to ensure that all components of the complex system are

under control. This is possible when writing an object library

which hides many details of the operations of the devices.

Experimental information from diffractometry, spectroscopy or

other X-ray methods may need to be registered while the process

is running. This means that one has to organize several synchro-

nized processes for collecting, storing and visualizing the experi-

mental data with the possibility of in¯uencing and controlling

each process without stopping the experiment. These require-

ments may be taken into account in C++ programming under the

UNIX operating system. The object-oriented C++ language

allows one to modify any object from a class library without

modifying the library itself.

3. Interface Object Library

Fig. 1 shows a general overview of the Interface Object Library.

The library has a hierarchical structure. The root classes TIOL-

Window, TIOLApplication, TIOLCBlock and TIOLProcess

de®ne the main objects of the controlling application. All classes

of the display user interface are constructed with the X Windows

system (X), X Toolkit Intrinsics (Xt) and Motif (Xm) Libraries.

Classes for CAMAC access are based on the ESONE SVIC-VCC

Library.

The object of the TIOLMain class is as an application with a

main application window. After creation of this object the main

window of the application appears on the screen. One may de®ne

the main menu bar (with sub-menus) by using the corresponding

method functions of this object.

Different controls are represented by objects from the

TIOLEdit, TIOLButton, TIOLSwitch and TIOLScrollBar

classes of the library. The completion function is realized in the

Interface Object Library. When any control is made active, the

de®ned completion function is called. It is not necessary to

create a completion function for every control. As a parameter

of this function the library sends the object pointer that allows

one to identify the control that is active. The object of the

TIOLEdit class may check the type of input character.

The diagnostic indicator is represented by the object of the

TIOLMeter class. This is a bar with a different colour bar of a

variable size inside. This indicator represents an application

variable changing within some limits.

A very important class of the library is TIOLVariable. Objects

of this class represent the different variables of the application.

The pointer of the application variable is passed to the object of

this class during creation. During input operations in the

editable ®eld, the value of the variable is automatically updated.

If the input value does not belong to the de®ned range, the

colour of the numeric information and the editable border area

changes, indicating an incorrect input. This incorrect value will

not be updated in the application, the last valid value being

kept.

Groups of operational classes are created with the window

objects, as with the different kinds of language variables. This

group of classes is TIOLInt, . . . , TIOLString. Creation of

objects of these classes is similar to creation of those of the

language general types. The only difference is that it is addi-

tionally necessary to initialize the created object. During initi-

alization one can de®ne the limits of the object changes, i.e. the

completion function. The completion function will be called after

every successful input to the editable ®eld of the object. The

objects of these classes may be used in arithmetical equations

(Fig. 2).

In the library the specialized class TIOLFile for ®le opera-

tions is created. The ®le in the Interface Object Library consists

of a heading block and several user blocks. The heading block

consists of the ®le identi®er, creation date, a comment string

and space reserved for future use. The identi®er is used by a

checking procedure. The user block consists of the number of

records, the format of the record, a comment string for the data

block and the column of data. All user blocks are de®ned after

initialization by calling the method function of the object

AddBlock with the description of the structure block and the

pointer to the data that will be used during the Read/Write

operations. For reading or writing the ®le block one has only to

point on the necessary block by using the method function

Seek(nBlock) and call the Read/Write method function.

For presentation of one-dimensional arrays the TIOLGraph

class was created. To optimize the quantity of information

output the graphical controls were hidden in an additional

dialogue panel that is called by pushing the middle mouse

button under the plot area. Several arrays may then be

connected to this object with different colours. To update the

information of this object the method function Update is used

after any modi®cations of the arrays (Fig. 2).

Figure 2
Examples using the objects of the TIOLInt and TIOLGraph classes. A
view of the simpli®ed source code of the constructor of the TGCP class of
the application (the Generator panel in Fig. 3).

594 Object library for new generation of experiment-controlling applications

The main class for CAMAC access is TIOLCLib. The object of

the TIOLCLib class uses objects of the TIOLCCrate class

previously de®ned with the objects of the TIOLCBlock class, or

derived from it.

For simplifying experiment programming the TIOLProcess

class was created. Objects of this class are initialized with the

pointer pertinent to some procedure that has to be carried out

during the experiment. A data buffer may be de®ned for data

exchange between different objects of the TIOLProcess class.

Synchronization during the operation with the data buffer is

carried out automatically.

Fig. 3 shows the view of the OD3Tools application for control of

experiments using a fast one-coordinate position-sensitive X-ray

detector (see Aultchenko et al., 1995). From the menu bar (I) the

dialogue panel (II) was created for checking the state of CAMAC

modules and for changing their descriptors. Another dialogue

panel (IV) was created by pushing the middle mouse button under

the plot area of the graphical object (III). These dialogue panels

are a feature of the Interface Object Library. The simpli®ed

source code of the constructor of the TGCP class, for a Generator

panel, is shown in Fig. 2.

4. Conclusions

The base Interface Object Library with graphical user, CAMAC

and process interfaces was created in the Solaris 2.4 operating

system. There is a smaller IBM PC realization of this library for

Windows 95 (written in Borland C++ 4.0). There is the possibility

of adding another device interface using a corresponding device

access library. In the example of the OD3Tools application for

controlling the fast detector, good real-time response of the

application during actual experiments was achieved.

The authors would like to thank Professor N. Yagi for the

valuable and constructive discussions about the contents of the

Interface Object Library. Special thanks are expressed to Dr R.

Thissen for very useful remarks about the window interface of the

Interface Object Library. This work was made possible with the

®nancial support of the Ministry of Education, Science, Sports and

Culture (MONBUSHO) of the Government of Japan.

References

Aultchenko, V. M., Baru, S. E., Dubrovin, M. S., Titov, V. M., Velikzhanin,
Ju. S. & Usov, Ju. V. (1995). Nucl. Instrum. Methods Phys. Res. A, 367,
79±82.

Heller, D. (1992). Motif Programming Manual. USA Sebastopol, CA:
O'Relly and Associates.

Kinder, S. H., McSweeney, S. M. & Duke, E. M. H. (1996). J. Synchrotron
Rad. 3, 296±300.

Skinner, J. M., LaBarca, R. S. & Sweet, R. M. (1996). Nucl. Instrum.
Methods Phys. Res. A, 383, 627±630.

Stroustrup, B. (1991). The C++ Programming Language. Reading, MA:
Addison Wesley.

Figure 3
View of the OD3Tools application.

Yu. A. Gaponov, K. Ito and Y. Amemiya 595

