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RADIA is a three-dimensional magnetostatics computer code

optimized for the design of undulators and wigglers. It solves

boundary magnetostatics problems with magnetized and current-

carrying volumes using the boundary integral approach. The

magnetized volumes can be arbitrary polyhedrons with non-

linear (iron) or linear anisotropic (permanent magnet) character-

istics. The current-carrying elements can be straight or curved

blocks with rectangular cross sections. Boundary conditions are

simulated by the technique of mirroring. Analytical formulae

used for the computation of the ®eld produced by a magnetized

volume of a polyhedron shape are detailed. The RADIA code is

written in object-oriented C++ and interfaced to Mathematica

[Mathematica is a registered trademark of Wolfram Research,

Inc.]. The code outperforms currently available ®nite-element

packages with respect to the CPU time of the solver and accuracy

of the ®eld integral estimations. An application of the code to the

case of a wedge-pole undulator is presented.

Keywords: insertion devices; undulators; wigglers;
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1. Principle

Contrary to the majority of three-dimensional magnetostatics

computer codes which are based on the ®nite-element method,

RADIA uses a boundary integral method. A brief description of

the basics of the ®nite-element and boundary integral methods

can be found, for example, in the overview by Tortschanoff

(1984). The general features and some details of the computation

methods used in RADIA have been published recently (Elleaume

et al., 1997). In this paper, the basic principles of the code are

brie¯y recalled and the method of computation of the ®eld

produced by a uniformly magnetized polyhedron is presented.

1.1. Problem description

To describe a problem, a user of RADIA creates different

types of objects and links them together properly. The basic type

of object is a source object capable of creating a magnetic ®eld.

This includes magnetized volumes, current-carrying coils and

container objects. The volumes can be divided into a number of

smaller volumes for which uniform magnetization is assumed.

Another type of object describes the magnetic material proper-

ties through the magnetization versus ®eld-strength law. Linear

anisotropic (such as NdFeB or SmCo) and non-linear isotropic

(such as iron) magnetic materials are supported. The next type of

object includes space transformations such as translation, rota-

tion or plane symmetry. Planar boundary conditions are simu-

lated using the mirroring technique. The use of such mirrors

allows a dramatic reduction in the memory requirements and

shortens the CPU time needed for the solution.

1.2. Solving the problem

An essential step in solving the problem consists of computing

a so-called interaction matrix, which is, for N volumes with

unknown magnetization, a 3N � 3N matrix. Multiplication of the

interaction matrix by a 3N vector representing magnetization in

each volume gives a 3N vector representing the ®eld produced by

all the volumes in the centre of each individual volume. The ®nal

magnetization values in all the volumes are obtained by applying

a proper relaxation scheme which involves the interaction matrix,

material properties of the volumes and external ®eld sources.

Details of the relaxation scheme used in RADIA have been

published recently (Elleaume et al., 1997). Following the relaxa-

tion procedure, the magnetization in each volume is known and

the ®eld or ®eld integral anywhere in space is obtained by adding

together the contributions from all the magnetized volumes and

external ®eld sources. The ®nal accuracy of the computed ®eld

(®eld integral) depends only on the level of subdivision of the

magnetized volumes.

2. Field produced by a volume with uniform magnetization

2.1. Generalities

Let V 0 be a volume bound by the closed surface S 0 and

magnetized according to M(r0). This volume produces a magnetic

®eld strength H(r0) at the observation point r0 given by the well

known formulae of magnetostatics (in SI units)

H�r0� �
1

4�

Z
V 0

�r0 ÿ r0�rM

jr0 ÿ r0j3
dV 0

ÿ 1

4�

I
S0

�r0 ÿ r0��MnS0 �
jr0 ÿ r0j3

dS0; �1�

where nS 0 is a unit vector normal to the surface S 0 and pointing

outside the volume, and r0 is a point inside the volume or on the

surface. If M is uniform inside the volume, the ®rst integral in (1)

vanishes and we obtain the following matrix representation

H�r0� � Q�r0�M; �2�

Q�r0� �
1

4�

I
S0

�r0 ÿ r0� 
 nS0

jr0 ÿ r0j3 dS0; �3�

where 
 is the symbol of the dyadic (or tensor) product of three-

dimensional vectors.² The 3 � 3 matrix Q is a geometrical entity

which only depends on the observation point and the shape of the

surface S 0.
From (2) and (3) one derives the following expression for the

®eld integrals along a straight line parallel to a unit vector v and

passing through the point r0,

I�r0; v � �
Z 1
ÿ1

H�r0 � vl� dl � G�r0; v�M; �4�

G�r0; v� � 1

2�

I
S0

f��r0 ÿ r0� � v� � vg 
 nS0

j�r0 ÿ r0� � vj2 dS0; �5�

where the matrix G is fully de®ned by the line and the shape of

the surface S 0.

² The dyadic product of three-dimensional vectors a and b is a 3 � 3
matrix such that for any three-dimensional vector c, (a
b)c � a(bc).
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For current-carrying volumes, a representation of the ®eld and

®eld integrals similar to (2)±(5), with the uniform magnetization

replaced by the uniform current density, can be obtained. The

corresponding matrices are derived from the Biot±Savart law.

For a wide variety of shapes, both in the case of the volumes

with uniform current density and uniform magnetization, analy-

tical expressions for the ®eld and ®eld integral can be found.

Moreover, often the components of the matrices Q and G can be

expressed through elementary transcendental functions for which

ef®cient computation algorithms are well known. Several authors

have proposed analytical formulae for the ®eld induction and

vector potential produced by the current-carrying volumes of

various shapes (Urankar, 1982; Ciric, 1992). The formulae for the

®eld produced by a uniformly magnetized rectangular parallele-

piped are well known (see, for example, Marechal et al., 1990).

The latter particular case was treated in a previous publication on

RADIA (Elleaume et al., 1997). In the next section, an expression

for the matrix Q is given for a more general case when the shape

is a polyhedron (see Fig. 1).

2.2. Field produced by a uniformly magnetized polyhedron

Let us consider an arbitrary polyhedron bound by N faces.

Each face, labelled by the index � = 1, 2, . . . , N, is a planar

polygon with vertex points r0�,p, p = 1, 2, . . . , N�. The polyhedron

is uniformly magnetized according to M. The magnetic ®eld

produced by such a polyhedron at the observation point r0 is

described by (2) in which the matrix Q can be expressed as a sum

of contributions from all the faces

Q � 1

4�

PN
��1

T�Q� 
 n�; �6�

Q� �
PN�

p� 1
x�;p�1 6� x�;p

q
�
x�;p; x�;p�1; �y�;p�1 ÿ y�;p�=�x�;p�1 ÿ x�;p�;

�x�;p�1y�;p ÿ x�;py�;p�1�=�x�;p�1 ÿ x�;p�; z�
�
; �7�

where n� = (nx�, ny�, nz�) is a unit vector normal to the face � and

pointing outside the volume. T� is a 3 � 3 rotation matrix that

transforms the laboratory Cartesian frame into a local frame of

the face �, in which the unit vector parallel to the z axis (0, 0, 1) is

normal to the face � and points outside the volume. It can be

expressed as

T� �
n2

y��nz� � 1�ÿ1 � nz� ÿnx�ny��nz� � 1�ÿ1 nx�

ÿnx�ny��nz� � 1�ÿ1
n2

x��nz� � 1�ÿ1 � nz� ny�

ÿnx� ÿny� nz�

24 35: �8�

Q� 
 n� in (6) is the contribution to the matrix Q from the face �
computed in the local frame of the face �. x�,p, y�,p, z� are

components of the vector r�,p = (x�,p, y�,p, z�) de®ned by

r�;p � Tÿ1
� �r0�;p ÿ r0�: �9�

The expressions for r�;N��1 required in (7) are given by the cyclic

identity r�;N��1 � r�;1. The vector function of ®ve scalar argu-

ments q(x1, x2, a, b, z) is de®ned by the following set of auxiliary

functions:

q�x1; x2; a; b; z� � �qx�x1; x2; a; b; z�; qy�x1; x2; a; b; z�;
� qz�x1; x2; a; b; z��;

qx�x1; x2; a; b; z� � ÿaqy�x1; x2; a; b; z�
� ln�f1�x1; a; b; z�=f1�x2; a; b; z��;

qy�x1; x2; a; b; z� � �a2 � 1�ÿ1=2

� ln�f2�x1; a; b; z�=f2�x2; a; b; z��;
qz�x1; x2; a; b; z� � tanÿ1�f3�x1; a; b; z�=f4�x1; a; b; z��

ÿ tanÿ1�f3�x2; a; b; z�=f4�x2; a; b; z��

� C�x1; x2; a; b; z�; d�a; b; z� > 0

0; d�a; b; z� � 0,

�
where

C�x1; x2; a; b; z� � � sgn��x2 ÿ x1�z�

�P2

k�1

�ÿ1�k���k�a; b; z�; a; b; z�

� �f�x1 ÿ �k�a; b; z����k�a; b; z� ÿ x2�g
� sgnf�bÿ a�k�a; b; z��f3��k�a; b; z�; a; b; z�g;

f1�x; a; b; z� � ax� b� ��x; a; b; z�;
f2�x; a; b; z� � ab� �a2 � 1�x

� �a2 � 1�1=2��x; a; b; z�;
f3�x; a; b; z� � 2�x2 � z2�abz2

� �az2 � bx��a2z2 � b2�f1�x; a; b; z�;
f4�x; a; b; z� � ��a2z2 ÿ b2��x2 � z2�

� �axÿ b��a2z2 � b2�f1�x; a; b; z��z;
��x; a; b; z� � �f�bÿ ax���a2z2 ÿ b2��x2 � z2�

� �a2x2 ÿ b2��a2z2 � b2��g;
��x; a; b; z� � �x2 � �ax� b�2 � z2�1=2;

�k�a; b; z� � ��a2z2 � b2�2ab� �ÿ1�k�1ja2z2 ÿ b2j
� d�a; b; z�1=2

���
4a2b4 ÿ �a2 � 1�

� �a2z2 ÿ b2�2�;
d�a; b; z� � ��a2 � 1�z2 � b2��4�a2z2 � b2�a2b2

ÿ �a2z2 ÿ b2�2�; �10�
where one makes use of the logarithm and arctangent of a real

argument, step function �(x)² and the sign function sgn(x).

Symbolic calculation features built into Mathematica were

applied when deriving (6)±(10) from (3). In the RADIA code,

(6)±(10) are used for the construction of the interaction matrix

required for the relaxation, as well as for the ®eld computation.

Figure 1
The polyhedron is de®ned as a volume bound by a set of planar polygons. ² �(x) � 1 for x � 0, or 0 for x < 0.
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For the ®eld integral along a straight line, formulae similar to (6)±

(10) were obtained from (5) and implemented in the code.

In RADIA, two particular cases of polyhedron are treated

separately: an extruded polygon (or a straight prism with poly-

gonal base) and a rectangular parallelepiped. For these shapes

one can further simplify (6)±(10) in order to reduce the CPU

time.

3. Application to a wedge-pole undulator

This section presents an example in which the RADIA code is

used to model a 35 mm-period hybrid wedge-pole undulator. In

this example, magnetized volumes of polyhedron shape are used

extensively. Fig. 2 presents a three-dimensional plot of the

geometry under study, produced by using a combination of

Mathematica and RADIA function calls. Since the geometry is

symmetrical with respect to mirror planes x = 0, y = 0 and z = 0,

only the 1/8 part of the total geometry (Fig. 2b) and boundary

conditions at the mirror planes were really de®ned. The boundary

conditions enforce the ®eld strength at x = 0 (y = 0) to be parallel

to the plane x = 0 (y = 0), the ®eld at z = 0 to be perpendicular to

the plane z = 0. As a result of these boundary conditions, the

number of degrees of freedom and the CPU time needed to solve

the problem have been reduced by a factor of eight and the

memory required reduced by a factor of 64.

The poles and magnets are subdivided into a number of

smaller volumes. The magnetization in iron poles being less

uniform than in magnet blocks, a ®ner subdivision is used for the

poles than for the magnets. The subdivision is indicated in Fig. 2

by lines drawn at the surface of the poles and magnets.

For an absolute accuracy of the undulator peak ®eld better

than 1%, one requires 45 s of CPU time and 2.5 MB of memory

using a PC with Intel Pentium 133. As a result of the solution, the

magnetization in each volume of the poles and magnets is known.

The ®eld and ®eld integral can then be quickly computed

anywhere in space by adding together the contributions from all

the volumes. Testing the absolute accuracy can be performed by

re®ning the segmentation of poles and magnets and re-solving.

Fig. 3 presents a plot of the vertical ®eld pro®le on the axis of the

electron beam (x = z = 0) as a function of the longitudinal

coordinate y.

4. RADIA versus ®nite-element codes

For a number of undulator and wiggler structures, we have

compared the results produced by RADIA with those from the

®nite-element code FLUX3D (copyright Cedrat Recherche;

http://www.cedrat-grenoble.fr). Once the necessary precautions,

such as a suf®ciently ®ne meshing in FLUX3D and suf®cient

subdivision in RADIA, have been taken, both codes always agree

to better than 1% in the peak ®eld. Having checked the consis-

tency of the results from both codes, we have noticed a number of

differences.

(i) Geometries opened to in®nity are more easily simulated

with RADIA.

(ii) The precision of the results produced by RADIA only

depends on the re®nement of subdivision of the poles and

magnets. With the ®nite-element codes one needs to mesh the

whole space (including air) up to in®nity and the estimation of

the dominant source of errors is dif®cult (pole, magnet, air,

boundary condition at in®nity etc.).

(iii) There is an area where RADIA is particularly

successful: the prediction of the ®eld integral from an undu-

lator or wiggler. Comparison of the ®eld integral predicted by

RADIA with that measured on a real device results in

concurrence (Elleaume et al., 1997), allowing the use of

RADIA for a proper optimization of the terminations of

undulators and wigglers. Reliable prediction of the ®eld

integral from a ®nite-element code has never been reported.

This is not surprising in view of the fact that the accuracy in

the ®eld integral is very sensitive to the truncation at in®nity,

the step of the numerical integration in addition to the

precision required for the computation of the ®eld at each

Figure 2
Three-dimensional geometry plot of a 35 mm-period hybrid wedge-pole
undulator simulated by RADIA: (a) total geometry; (b) the part of the
geometry really de®ned before applying boundary conditions.

Figure 3
Vertical ®eld pro®le on the axis of the electron beam (x = z = 0) as a
function of the longitudinal coordinate y for the structure shown in Fig. 2.
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point. On the other hand, RADIA is insensitive to the

truncation at in®nity and to the step size since it uses

analytical formulae for the ®eld integral.

(iv) An experienced user solves the peak ®eld of an

undulator in 20 times less CPU time with RADIA than with

FLUX3D for the same accuracy. The time required to set up

a parametrized model of the geometry is also much shorter

with RADIA. A smaller number of comparisons have shown

that the situation is similar (precision and CPU time) when

comparing RADIA with TOSCA (copyright Vector Fields;

http://www.vector-®elds.co.uk).

(v) At this time, the most important drawback to RADIA is the

discontinuity of the ®eld inside the iron at the border between

individual volumes introduced by the subdivision. It originates

from the assumption of a uniform magnetization in each indivi-

dual volume. We are investigating methods to improve this. Note

that this drawback is harmless for the precision of the ®eld

computation outside the magnetized volumes.

Versions of the RADIA code for PowerMac (Mac OS) and PC

with Intel Pentium processor (Windows95/NT) are available at

http://www.esrf.fr/machine/support/ids/Public/index.html.

References

Ciric, I. R. (1992). IEEE Trans. Magn. 28(2), 1064±1067.
Elleaume, P., Chubar, O. & Chavanne, J. (1997). Proc. IEEE, PAC-97,

9P27. In the press.
Marechal, X., Chavanne, J. & Elleaume, P. (1990). ESRF-Synchrotron

Radiation/ID-90-43. ESRF, Grenoble, France.
Tortschanoff, T. (1984). IEEE Trans. Magn. 20(5), 1912±1917.
Urankar, L. K. (1982). IEEE Trans. Magn. 18(6), 1860±1867.

484 A three-dimensional magnetostatics computer code for insertion devices

Files: c:\acta-doc/hi3178/hi3178.3d, c:\acta-doc/hi3178/hi3178.sgm Paper number: S971350^HI3178 Paper type: SCN


