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In designing optical systems for synchrotron radiation, one is

often led to conclude that optimal performance can be obtained

from optical surfaces described by conic sections of revolution,

usually paraboloids and ellipsoids. The resulting design can lead to

prescriptions for three-dimensional optical surfaces that are

dif®cult to fabricate accurately. Under some circumstances

satisfactory system performance can be achieved through the

use of more easily manufactured surfaces such as cylinders, cones,

bent cones, toroids and elliptical cylinders. These surfaces often

have the additional bene®ts of scalability to large aperture, lower

surface roughness and improved surface ®gure accuracy. In this

paper we explore some of the conditions under which these more

easily manufactured surfaces can be utilized without sacri®cing

performance.
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1. Introduction

It often happens that optical designers must choose between a

desired optical-surface shape, which is dif®cult to make, and an

alternative shape which is easier to make but only approximates

the desired one. Which will give the best result? If the ideal optic

is not suf®ciently well made, its mathematical advantages may not

be realized. On the other hand, approximations have intrinsic

errors which will only be small enough for certain ranges of the

parameters describing the system.

In this paper we focus on grazing incidence beamline optics and

study the question of approximating dif®cult optical surfaces with

easier ones. First we consider which optical surfaces really are

easier to manufacture and why. This includes manufacture by

elastic bending which, under favorable conditions, can now deliver

microradian accuracy. We then calculate the slope errors involved

in approximating an elliptical cylinder with circular and cubic

cylinder approximations. This calculation is two dimensional but it

is revealing for designing condenser mirrors that deliver light into

a monochromator entrance slit and for microprobe schemes based

on the Kirkpatrick±Baez (KB) geometry. It shows, in particular,

the very large advantage in light-gathering power of a KB

microprobe with correctly designed elliptical cylinders compared

with the same scheme with circular or cubic approximations. We

then consider the question of approximating an ellipsoid of

revolution (including a paraboloid as a special case) by a toroid.

This is necessarily a three-dimensional calculation but the two-

dimensional (elliptical cylinder) calculation is valid for rays in the

symmetry plane of the system, so that provides a useful starting

point for the calculation. Finally we summarize our conclusions.

The main conclusion is the obvious one, that optical systems will

only achieve their goals if they are designed from the beginning

around optics that can really be manufactured within all

prevailing constraints and speci®cations. This implies that

conversations with optical fabricators early in the project are

prudent so as to avoid becoming locked-in to optical-component

designs that are not state of the art.

2. Which are the easiest and hardest optical-surface shapes to
manufacture?

There are a number of factors which may make a mirror dif®cult

to manufacture but here we concentrate speci®cally on the optical

working of grazing incidence surfaces. In particular we want to

make a comparison purely of surface shapes, all other things being

assumed to be equal. The meaning of `easy' and `dif®cult' in this

context is that easier surfaces allow better ®gure and ®nish with

less effort and cost. The ®rst step is to conclude that ¯ats are

easiest. One may object that, on a planetary lap (continuous

polisher) and some other machines, long-radius spheres can be

made just as easily as ¯ats. However, this is only true when a lap of

the appropriate radius is in hand. Although producing such a lap is

now a routine operation, even for one-metre-class mirrors, it still

requires some time and effort (cost). Further advantages of ¯ats

are that they are easy to measure and can be made with a lap

which is large enough to touch the optical surface over 100% of its

area all of the time.

After ¯ats the next easiest group is certainly spheres and after

that circular cylinders. These three groups have the special

property that they have enough different types of symmetry

operations that the normal pseudo-random motion of a polishing

lap relative to the workpiece can take place while still maintaining

100% contact. This property is very advantageous in achieving a

good ®gure and ®nish at the same time.

An ellipsoid of revolution, on the other hand, has only one

family of symmetry operations (rotations about the axis) so the

normal type of polishing motions cannot be made without loss of

contact between the lap and the workpiece. Therefore, in order to

polish an ellipsoid of revolution one must use a lap or other

material-removal device which operates over only a small subarea

of the optical surface and is small enough and ¯exible enough to

approximate the correct surface locally. This is known as zone

polishing and has been developed to a high degree of sophisti-

cation and computer control for making grazing incidence Wolter

and similar optics for X-ray telescope projects. However, it is

intrinsically more dif®cult and expensive than methods based on

100% contact and tends to leave surface errors on the spatial scale

of the size of the small lap. This is the explanation why ellipsoids

of revolution are more `dif®cult' than ¯ats, spheres and circular

cylinders.

The optics that can be made without recourse to zone polishing

are therefore ¯ats, spheres and circular cylinders, and surfaces that

can be made from those by elastic bending. In the simplest type of

bending, a ¯at mirror of constant cross-sectional area is elastically

bent by end couples into a tangential cylinder. This provides the

quadratic (equal couples) or cubic (unequal couples) approx-

imation to an ellipse. A more general type of bending of an

initially ¯at mirror involves manipulation of the cross section,



most simply by controlling the width, so as to produce a cylinder

of arbitrary shape. One can make elliptical cylinders this way as

shown by the Berkeley group (Behring et al., 1988; Padmore et al.,

1996). Finally one can start with a sphere or cylinder as the initial

shape and derive further shapes from that by bending. The most

useful of these is a sagittal cylinder bent into a toroid, which,

under suitable conditions, can approximate an ellipsoid of revo-

lution. The list of optics that can be made by 100%-contact

polishing therefore comprises: ¯ats, spheres, sagittal cylinders and

toroids plus tangential cylinders of all shapes including long-

radius circular, cubic, elliptical, parabolic etc.

3. Approximating an elliptical cylinder with circular and cubic
cylinders

In this section we consider approximation of the elliptical cylinder

mirror X2=a2 � Y2=b2 = 1 shown in Fig. 1. The major and minor

semiaxes, a and b, and eccentricity e of the ellipse and the coor-

dinates (X0, Y0) of the pole of the mirror are related to the optical

parameters r, r0 and � by the following equations

2a � r� r0

�2ae�2 � r2 � r02 ÿ 2rr0 cos 2�

b2 � a2�1ÿ e2�
Y0 � �rr0 sin 2��=2ae

X0 � �a�1ÿ �Y2
0=b2��1=2:

�1�

In the (x, y) coordinate system, the ellipse can be represented as

y � a2x2 � a3x3 � a4x4 � . . . �2�
The ai's are equivalent to the terms ai0 given in Tables 1 and 2

(Rah & Howells, 1997). Each term aix
i of the series corresponds to

an aberration which will be corrected if the term is faithfully built

into the mirror shape. The i = 2 term corresponds to defocus, the i

= 3 one to coma (linear variation of curvature with position), the i

= 4 one to spherical aberration (quadratic variation of curvature

with position) and so on. The quadratic approximation corre-

sponds to building y = a2x2 and the cubic approximation to

building y = a2x2 + a3x3. In some practical situations, such as

microprobes and large horizontal collectors, where the mirrors

have high demagni®cation factors, the aberrations can be non-

negligible up to very high orders: eight or ten is not unusual. In

these cases the quadratic and cubic approximations are expected

to be highly inadequate.

In our calculation, the length of the circular or cubic mirror is

allowed to extend in each direction until the slope error relative to

the ellipse reaches a prescribed value, �. The permitted mirror

full lengths L2 and L3 for the quadratic and cubic approximations,

respectively, are thus determined to be

L2 � k2r0��=�G�1=2 �M � 0:5�
L3 � k3r0��=�G�1=3 �M � 1� �3�

where M is the magni®cation, �G is the grazing angle, and k2 and k3

are dimensionless constants with values 3.28 and 2.97, respec-

tively. With an appropriate choice of �, the mirrors de®ned in this

way can still achieve any chosen spot size, but their aperture will

be limited. When the demagni®cation factor is high, the aperture

restriction will be severe. For condenser mirrors, the requirement

is to accept a given beam and deliver a given spot. In this case,

equations (3) allow one to decide whether the approximate mirror

can meet the requirement or not. For practical synchrotron

radiation sources, the answer will often be that it can.

The situation in designing a KB microprobe is quite different.

Then we wish to collect as much light as possible and deliver a

given spot. To assess how much light-gathering power is lost by

approximating the ellipse we have to set an upper limit on the size

of the elliptical mirror. This turns out to be (surprisingly) inde-

pendent of the critical angle and roughly equal to r0. As an

example, consider the hard X-ray microdiffraction mirror at the

Advanced Light Source, Lawrence Berkeley National Laboratory,

Figure 1
Ellipse layout and notation. The pole of the mirror is at the origin o of the
xy coordinate system which is also the point (X0, Y0) of the (X, Y)
coordinate system.

Table 2
Toroidal aij's (Rah & Howells, 1997).

R and � are the major and minor radii of the toroid.

j

i 0 1 2 3 4 5 6

0 0 0 1/(2�) 0 1/(8R3) 0 1/(16�5)
1 0 0 0 0 0 0 *
2 1/(2R) 0 1/(4�R2) 0 (2� + R)/

(16�3R3)
0 *

3 0 0 0 0 * 0 *
4 1/(8R3) 0 3/(16�R4) 0 * 0 *
5 0 0 * 0 * 0 *
6 1/(16R5) 0 * 0 * 0 *

Table 1
Ellipse coef®cients Qij from which the aij's are obtained.

If r, r0 and � are the object distance, image distance and incidence angle to the normal, respectively, and a20 = (cos�/4)[(1/r) + (1/r0)], A = (sin�/2)[(1/r) ÿ (1/r0)], C = A2 +(1/rr0),
then aij = a20 (Qij/cosj�).

j

i 0 1 2 3 4 5 6

0 0 0 1 0 C/4 0 C2/8
1 0 0 A 0 3AC/4 0 *
2 1 0 (2A2 + C)/2 0 3C(4A2 + C)/8 0 *
3 A 0 A(2A2 + 3C)/2 0 * 0 *
4 (4A2 + C)/4 0 (8A4 + 24A2C + 3C2)/8 0 * 0 *
5 A(4A2 + 3C)/4 0 * 0 * 0 *
6 (8A4 + 12A2C + C2)/8 0 * 0 * 0 *
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USA. In the vertical plane, this requires r = 4 m, r0 = 0.27 m, �G =

3 mrad, � = 1.2 mrad (for a desired 0.66 mm spot size). The limits

on the lengths of the ellipse, circle and cubic mirrors are thus 270,

18 and 59 mm, respectively. In the horizontal plane, the require-

ment is r = 4.13 m, r0 = 0.13 m, �G = 3 mrad, � = 2.4 mrad (for the

same desired spot size). The limits on the lengths of the ellipse,

circle and cubic mirrors in this case are 270, 13 and 37 mm,

respectively. Neglecting manufacturing errors, the ratio by which

the area of the beam is compressed by the elliptical KB system is

7.2� 105. The loss of collection area and compression ratio due to

using the approximate mirrors is thus a factor 160 for the circle

and 16 for the cubic approximation. Even larger losses of X-ray

¯ux are found in corresponding soft X-ray microprobe geometries.

Returning to the question with which we began, it is clear that

the choice of building an elliptical cylinder for a condenser mirror

or building an approximation depends on the verdict of equations

(3). On the other hand, it will always be highly advantageous to

build an elliptical cylinder for a microprobe. Moreover, such

cylinders can be formed by bending an initially ¯at mirror that has

been polished by a 100%-contact process and does not fall in the

class of dif®cult mirrors (Padmore et al., 1996).

4. Approximating an ellipsoid of revolution with a toroid

The ®rst requirement for a toroid to be an adequate approxima-

tion to an ellipsoid of revolution is that the ®t should be within

tolerance along the tangential center line. This is determined by

exactly the same calculation that we completed in the previous

section. We now consider the slope errors in the tangential

direction (because these always dominate at grazing incidence) at

locations close to but not on the tangential center line. To do this

we will represent the ellipsoid by a two-dimensional Maclaurin

series as follows

y �P
i;j

aijx
izj i � 1; 2; 3; . . . j � 2; 4; . . . �4�

The aij's for both an ellipsoid of revolution and toroid are given in

Tables 1 and 2. There is a similar expression for a toroid and what

we are interested in is the difference between the two. We could

represent the difference series by a similar summation over

coef®cients dij, say. Now, physically, it is clear that the two surfaces

of interest will ®t, within a given slope tolerance, over a roughly

ellipse-shaped area around the mirror center. We may thus char-

acterize this area by its semiaxes, the major one that we calculate

by (3) and the minor one along the z axis that we will calculate

now. The tangential slope difference along the z axis is to sixth

order

�@y=@x�jy�0 � d12z2 � d14z4 � . . . �5�
Now the toroid coef®cients with indices (1, j) are all zero so we can

use the ellipse coef®cients instead of the dij's and write

z2
m � �ÿa12 ÿ �a2

12 � 4a14��1=2�=2a14 �6�
where zm is the half width of the area of good ®t within tangential

slope tolerance �.

As an example we could consider an ellipsoidal soft X-ray

condenser mirror of 3� grazing angle, distant 16 m from a 100 mm

source, imaging at magni®cation 0.25. This could be approximated

by a toroid without signi®cant loss of image quality if the aperture

at the mirror was restricted to 9 � 101 mm. At magni®cation 0.5

the acceptance area would increase about 4.5 times and at

magni®cation unity it would be so large that any conceivable

synchrotron radiation beam could be accepted. Toroids also have

advantages if a condenser with intentional astigmatism is desired.

For example, the radii can be chosen to give a vertical focus at the

monochromator entrance slit and a horizontal focus at the exit slit

or sample.

5. Discussion and conclusions

We have shown that approximations using easy-to-make mirrors

will often make sense for cylinder mirrors designed to image

point to point. Equations (3) allows one to determine which

cases can bene®t from the simpli®cations involved. Exceptions

to this are KB microprobe mirrors where maximal light

collection is required. In these cases, it is always advantageous

to build elliptical cylinders. Moreover, for both soft and hard X-

rays, such elliptical cylinders can generally be built by bending

an initially ¯at mirror. For mirrors where point-to-point imaging

by an ellipsoid of revolution appears to be the solution, we have

de®ned the conditions under which a more easily made toroidal

surface can provide equal performance. Even when a toroid

cannot provide equal performance to a perfectly made ellipsoid,

a realistic error budget may still favor it. If the competing

ellipsoid is large and speci®ed with a slope tolerance in the

arcsecond region, one must talk seriously to potential manu-

facturers about the challenges and costs of the fabrication that

will be required. Sometimes one ®nds that the choice is between

a relaxation of the speci®cation or a best-effort contract. In such

cases, the optimum cost±performance trade-off may again shift

towards a toroid.

Another approach to replacing a dif®cult ellipsoid with easier-

to-make optics is to use a KB pair. It is true that this involves two

mirrors, but the mirrors will be much less expensive and will give

the additional ¯exibility of being able to choose the magni®cations

separately for the horizontal and vertical directions. This is

especially useful for synchrotron radiation sources which normally

have different horizontal and vertical sizes.
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