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The focusing properties and resolution of a doubly bent crystal in

the Bragg case have been analytically studied from a geometrical

viewpoint. Simulation using the Takagi±Taupin equations was

also performed for singly bent crystal re¯ections to study the

re¯ectivity. The critical radius of curvature for changing from

dynamical to kinematical diffraction is calculated to be of the

order of a few tens of metres for an Si 400 re¯ection of 110 keV

X-rays.
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tical; high-energy synchrotron radiation.

1. Introduction

The resolution of a bent-crystal monochromator is determined

by the natural width of the crystal, the crystal perfection, the

deviation of the crystal curvature from the ideal one, and the

distortion due to heat load or other reasons. When a crystal is

bent to focus the beam, not only the energy spread but also the

integrated intensity normally changes. Depending on the

experiments, there should be an optimum bending radius and

focusing condition. In the SPring-8 beamline BL08W, two kinds

of single-crystal monochromators are installed. Both types are

bent for inelastic scattering experiments (Sakurai et al., 1995).

One is a doubly bent crystal to re¯ect 100±150 keV photons and

the other is a singly bent crystal for 300 keV photons (Yamaoka

et al., 1996, 1998). Here we present a simple analysis for a

doubly bent crystal to determine geometrically the optimum

focusing condition for high-energy synchrotron radiation. At

high energies, greater than �100 keV, when a crystal is bent the

re¯ection changes gradually from dynamical to kinematical as a

function of the radius of curvature. A simple calculation is

performed by using an analytical formula for a lamellar model.

We also simulate a bent crystal for 110 keV photons using

Takagi±Taupin equations to con®rm our analytical analysis. In

these calculations the crystal is singly bent for simplicity.

2. Focusing of a doubly bent crystal

Two coordinate systems, (x; y; z) and (X;Y;Z), are introduced,

as shown in Fig. 1(a). The wavevector of incident X-rays, k, is

expressed in (x; y; z) coordinates as k � k�cos �z sin �x;
cos �z cos �x; sin �z�. The reciprocal lattice vector, h, is written in

�X;Y;Z� coordinates as h � �ÿhX ;ÿhY ; hZ�. Taking

tan � � ÿhX=hZ, tan � � ÿhY=hZ and h2 � h2
X � h2

Y � h2
Z �

h2
Z�tan2 � � tan2 �� 1�, we may write

h � h=�tan2 �� tan2 � � 1�1=2�ÿ tan �;ÿ tan �; 1�; �1�
where h � jhj. The coordinate systems are related by

x

y

z

0@ 1A � 1 0 0

0 cos � ÿ sin �
0 sin � cos �
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where � is the incident angle of the X-rays. The reciprocal lattice

vector in �x; y; z� coordinates is

h � h=�tan2 � � tan2 �� 1�1=2
� ÿÿ tan �;ÿ tan � cos � ÿ sin �;ÿ tan � sin � � cos �

�
: �2�

From the Bragg relation, kh � k� h and jkj � jkhj, the angle

deviation, ��, from the Bragg angle of a doubly bent crystal at

point A in Fig. 1 is written as

�� � �inc ÿ �B � arcsin�ÿk:h=kh� ÿ �B �3�
� arcsin

�ÿ 1=�tan2 �� tan2 � � 1�1=2

� �ÿ tan � cos �z sin �x

ÿ cos �z cos �x�tan � cos � � sin ��
� sin �z�ÿ tan � sin � � cos ���	ÿ �B: �4�

When �inc � �B, (4) is written approximately as

2��x ÿ 2� cos � ÿ ��2 � �2
x � �2� sin � ' 0: �5�

Normally we can derive the angles of � and � from the approx-

imate relation � ' p�x=N and � ' p�z=�R sin ��, where p, N and

R are the distance from source to crystal, sagittal radius and

meridian radius, respectively. In (4), if we set �x � 0, � � 0 and

� � �B, the angle deviation becomes �� � �ÿ �z. When �� � 0,

� � �z. Then we can obtain the relation p � R sin � and q=p � 1

for symmetrical re¯ections, where q is the distance from the

crystal to the focus point. If � � �z, � � �B and �� � 0 in (4), the

following relation is approximately derived neglecting higher-

Figure 1
(a) Coordinate system. k, h, R and N are the wavevector of the incident
beam, the reciprocal lattice vector of the crystal, the meridional radius
and the sagittal radius, respectively. (b) Another point C on the crystal
surface that affects the angle deviation.
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order terms, 2��x ÿ ��2 � �2
x� sin � ' 0. Then we ®nd

N � �1ÿ cos ��p= sin �: �6�
It is noted that at small incident angles the above result agrees

with the relation N0 � p sin �=2 derived from the known relation

N0 � 2pq sin �=�p� q� when q=p � 1/3. In practice, the ratio

�N ÿ N0�=N is less than 1% for incident angle less than 10�.
Figs. 2(a) and 2(b) show examples of the energy spread of the

Si 400 re¯ection as a function of the ratio q=p (magni®cation),

and incident energy from 100 keV to 150 keV where p = 41.2 m,

�z = 0.06 mrad and �x = 0.4 mrad. In Fig. 2(a), the sagittal bend

radius, N (or the magni®cation), is varied while the meridional

bend radius, R, is constrained to satisfy the optimum condition

q=p = 1. In Fig. 2(b), conversely, R (or the magni®cation) is varied

while N is constrained to satisfy the optimum condition expressed

in (6). To understand the results easily, we use the magni®cation

�q=p� as a parameter in Fig. 2 and in the calculation the value of

the magni®cation is substituted into (6) for sagittal focus and

R � 2pq=�p� q�= sin � for meridian focus, respectively. The

optimum focus point of the sagittal focus that minimizes the

energy spread is apparently different from that of the meridian

focus. To coincide the two (meridian and sagittal) focus points, we

can utilize a crystal cut asymmetrically in the meridional direc-

tion.

Another possible angle deviation is caused by the re¯ection at

point C in Fig. 1(b) (Kawata et al., 1998). We take into account

the depth effect along the Z direction in Fig. 1 for the incident

X-rays of �z = 0 that land at the location with different � and

different Z. In Fig. 1(b), �0 is written as �0 =

N�1ÿ cos ��=�R tan ��. Figs. 2(c) and 2(d) show the results when

�0 is substituted into (4) instead of � under the condition of �z = 0

for sagittal focus and meridional focus, respectively. For changing

N there is an optimum for the magni®cation at about 0.2. For

changing R the deviation monotonously decreases as a function

of the magni®cation, as shown in Fig. 2(d). It is noted that if we

choose the focusing condition so that q=p = 1/3 in the sagittal

direction and q=p = 1 in the meridian direction, the angle

deviation at the point C gives a wider energy spread than that at

point B. This fact will be more important when high resolution is

required in the experiment.

It is worthwhile to make an additional remark about a double-

crystal arrangement. Koyama et al. (1992) showed the effect of

misalignment in a double-crystal re¯ection with sagittal focus. If

there was no misalignment, the relation N0 � p sin �=2 was

derived for the sagittal focus. This indicates that N0 gives

minimum angle deviation at any incident angle in the double-

crystal case, while, in the corresponding relation for the single-

crystal case, given by N in (6), N is almost the same as N0 at low

incident angles, as shown above.

3. Re¯ection of a singly bent crystal

The integrated re¯ectivity and the width of the re¯ectivity curve

have been calculated in the Bragg case using a simple formula

derived for a lamellar model, as shown in Fig. 3 (Erola et al.,

1990). The following conditions were chosen for the two calcu-

lations: Si 400 symmetric re¯ection at 110 keV, and Si 771

re¯ection with asymmetry angle of 1� at 300 keV, respectively.

There are critical radii for the integrated re¯ectivities: �50 m for

the 110 keV re¯ection and �104 m for the 300 keV re¯ection. In

practice, the bending radius of the 100±150 keV monochromator

crystal in the SPring-8 BL08W is much higher than the above

value. For a 100±150 keV monochromator, dynamical diffraction

still dominates. For a 300 keV monochromator, where the radius

is much less than the above critical radius, kinematical diffraction

is expected.

The effects on the angle resolution when the crystal is bent

have been studied by simulations using the Takagi±Taupin

equations. The simulation code ODDS (Optics for Distorted

Figure 2
(a) Sagittal focusing as a function of incident energy from 100 to 150 keV and the magni®cation at point A when �z � � is assumed and � is used. dE=E is
the energy spread and the magni®cation corresponds to q=p. The following parameters are used: Si 400 re¯ection; p = 41.2 m; �z = 0.06 mrad and �x =
0.4 mrad. (b) Meridional focusing as a function of incident energy and the magni®cation at point A when equation (6) is assumed and � is used. (c)
Sagittal focusing as a function of incident energy and the magni®cation at point C when �z � � is assumed and �0 is used. (d) Meridional focusing as a
function of incident energy and the magni®cation at point C when equation (6) is assumed and �0 is used.
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Crystal of Diffraction Simulation; Ohtomo & Ishikawa, 1995) was

used. Fig. 4(a) shows the re¯ectivity curves of the Si 400

symmetrical re¯ection at 110 keV (Bragg angle of 2.379� and �

polarization) for several bending radii of curvature. W is the

normalized angle deviation from the Bragg condition (the same

as y in the text by Zachariasen, 1945). Here the deformation, u, of

the crystal is included in the simulation according to

ux � �R� �t=2� ÿ y� sin�x=�R� t=2��; �7�

uy � �R� �t=2� ÿ y�f1ÿ cos�x=�R� t=2��g; �8�
where R, t and �x; y� are the radius of curvature, crystal thickness

and original crystal position, respectively. The calculations were

performed to a depth of 100 mm, much greater than the extinction

distance, with a mesh of 1000 points in depth and 4985 points in a

length of 24 mm. Fig. 4(b) shows the integrated intensity and the

energy spread in Fig. 4(a) as a function of radius of curvature. Fig.

4 shows that the critical radius is �20 m, so the order of the

magnitude of the critical radius agrees with that in Fig. 3. From

these results it is concluded that at �100 keV the dynamical

effect is dominant for a bending radius of the order of a few tens

of metres, whereas at �300 keV the kinematical effect dominates

for almost any bent crystal. This means that when a crystal is bent

to have a radius of the order of a few hundred metres, as used at

SPring-8, an increase in the integral intensity for the re¯ected

beam would not be expected at around 100 keV. Mosaic crystals

are one of the candidates for obtaining a much higher integral

intensity for a 100 keV photon beam re¯ection (Yamaoka et al.,

1997).
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Figure 4
(a) Simulation results using the Takagi±Taupin equations for various radii
of curvature for the Si 400 re¯ection at 110 keV with the �x; y� coordinate
system used in the calculation, where t is the crystal thickness. A beam
width of 1 mm, constant intensity pro®le and � polarization are assumed.
(b) Integrated intensity of the re¯ectivity curves as a function of bending
radius derived from the results of (a).

Figure 3
Calculated results of integrated re¯ectivity and energy spread by an
analytical formula for a lamellar model as a function of radius of
curvature of a singly bent crystal in the Bragg case.
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