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This paper presents a parameter study and design optimization of

a ¯exural hinge-based bender by use of ®nite-element modelling

and analytical formulation. The relationship between the mirror

shape and the driving forces, the so-called bender driving

equation, is established. Various parameters are investigated:

the material properties, the geometrical parameters, the stress and

deformation of the mirror and ¯exural hinge, the residual slope

error of the mirror, and the resolution required for the actuators.

Analysis results have been compared with test results for a

prototype bender and a silicon mirror (170 � 40 � 10 mm). Both

analysis and test results con®rm the microradian accuracy of the

bent mirror. Finally, a bender design for short-bending-radius

applications is also presented.

Keywords: X-ray optics; elliptical mirrors; dynamical benders;
¯exural hinges.

1. Introduction

Dynamical bending devices for focusing X-ray optics in synchro-

tron radiation applications are attractive development subjects.

Such devices respond to the energy tunability requirements, and

can possibly be used to correct thermal deformation of the optical

surface. Mechanical benders have mostly been used for this

purpose. A cylindrical shape can be achieved by using a

mechanical or a pneumatical bender (developed by Carl Zeiss,

D-7082 Oberkochen, Germany) with identical moments applied at

the end of a rectangular mirror, or by applying identical forces at

the end of a crystal of variable width (MuÈ llender et al., 1995, 1997)

or variable thickness. Elliptical bending X-ray mirrors can be

produced by applying equal or unequal moments to a mirror of

variable width (Padmore et al., 1996) or variable thickness

(Howells & Lunt, 1993). A piezoelectric bimorph mirror (Susini et

al., 1994; Zhang et al., 1994) has also been developed for dyna-

mical bending of synchrotron radiation mirrors (Signorato et al.,

1998).

As a small focal spot is often required, it is more and more

dif®cult to apply the moment or force with suf®cient accuracy.

Padmore et al. (1996) have discussed the fact that unintended

additional forces may be applied to the mirror by some benders

and compromise the optical performance. Flexural hinges have

been introduced in the bender design to minimize unintended

additional forces. A bender using ¯exural hinges has been

developed for crystal bending by Henins (1987). One rotational

axis and one stationary axis were used to produce cylindrical

bending with changeable radius of curvature. Two-rotational-axes

bending devices have been designed at the ESRF by Hustache

(Freund, 1992; Krisch, 1993) for thin-crystal bending application,

and modi®ed to bend multilayer optics and thick mirror substrates

(Ziegler, 1995; Ziegler et al., 1996). Howells & Lunt (1993) have

also used the ¯exural hinge in the monolithic design of mirror

benders. Design strategies for a monolithic adjustable-radius

metal mirror have been discussed by Howells (1995).

This paper deals with the analysis of the ¯exural hinge

bender used at the ESRF for multilayer optics and a thick

substrate of mirrors by analytical formulation and ®nite-element

analysis. A two-dimensional model of the prototype bender for

multilayer optics with actuators is shown in Fig. 1. The multi-

layer optics are 170 mm long, 50 mm wide and 10 mm thick

(Ziegler, 1995). The width of the bender is also 50 mm. The

clamped length of the mirror is 10 mm. The useful length of the

optics is then L = 150 mm. The pushing forces F1 and F2 are

applied by two piezo actuators. This prototype bender has two

rotating axes on the top surface of a 10 mm-thick mirror, as

indicated in Fig. 1. The length of the bending lever, h, is 92 mm.

The bender with the ¯exural hinges is cut from a single block of

high-strength stainless steel by wire-electric discharge machining.

All hinges have the same critical dimensions: thickness tf =

0.14 mm, cutting radius Rf = 3 mm. Based on this bender, design

optimization is made to increase the bending capacity and to

reduce the sensitivity of the slope to the accuracy or resolution of

the actuators. Test results in the ESRF optics metrology labora-

tory and on an X-ray beamline will be compared with the results

from the analysis. Finally, a new bender design for short-bending-

radius applications is presented.

2. Modelling of the mirror bender assembly

2.1. Mirror in pure bending condition

Ideally, the bender should apply to the mirror pure-bending

moments, M1 = hF1 and M2 = hF2. The bending of the mirror can

be analysed by using standard mechanical beam theory. The

validity conditions for such an analysis have already been

discussed by Roark (Young, 1989). The shape of the bent beam

under the action of two different moments M1 and M2 is de®ned

by the following differential equation (Ugural & Fenster, 1995)

d2z=dx2 � �h=EI���F1 � F2�=2� �F2 ÿ F1�x=L�; �1�
where E is Young's modulus of the material and I � t3W=12 is the

moment of inertia of a rectangular beam cross section, where t is

the thickness and W is the width.

Figure 1
Finite-element model of the ¯exural hinge-based bender for the multilayer
mirror. The piezo actuators are illustrated by two arrows. Triangles
represent ®xations.



2.2. Bender driving equation

The prototype bender for multilayers and for a thick mirror was

tested in the ESRF optics metrology laboratory (Ziegler et al.,

1996). The driving forces were applied by two actuators of capa-

city 100 N. The measured shape of a 10 mm-thick silicon mirror

under equal forces is a cylinder with a radius of curvature of

71.1 m. Although the effective force was not measured, such a

radius was probably achieved with the actuators close to their

maximum capacity. This prototype bender was analysed by ®nite-

element modelling (FEM) with the model shown in Fig. 1. Two

equal forces of F1 = F2 = 1.854 N per mm were applied to the two-

dimensional model; the equivalent force delivered by the actua-

tors is 92.7 N, considering the width of 50 mm of the system. The

curvature calculated by the FEM (Fig. 2) has a constant value in

the central region of the mirror (|x| < 65 mm) corresponding to a

bending radius of R = 71.1 m. The excellent agreement between

the results of the FEM and of the test in the ESRF optics

metrology laboratory validates the FEM. The results of the FEM

clearly show edge effects at the two ends of the mirror within a

length equivalent to the mirror thickness, 10 mm in this case. In

practice, the mirror length, L, should be at least 20 mm longer

than the X-ray footprint length.

The radius of curvature, R � EI=hF = 53.74 m from (1), for the

above case is 24.4% smaller than the experimental and the FEM

results. This means that there is some bending-capacity loss in this

mirror bender assembly.

From a more detailed mechanical analysis, we deduce that the

effective bending moments Mei (i = 1, 2) should be

Mei � Mi ÿMfi ÿ haN; i � 1; 2 �2�
where Mf 1 and Mf 2 are the total reaction bending moments of the

four left and the four right ¯exural hinges, ha is the distance

between the neutral plane of the mirror and the rotating axes, and

N is the reactive force applied to the bender by the mirror. The

reactive bending moment, Mf, of a ¯exural hinge can be calculated

from the rotation angle, ', of the ¯exural hinge by (Paros &

Weisbord, 1965)

Mf � k'; k � 2Ef t
5=2
f W=9�R

1=2
f : �3�

Let us introduce the notation '1 and '2, which are the sum of the

rotation angles of all the ¯exural hinges on the left-half part and

on the right-half part of the bender, respectively, and the corre-

sponding bending moments Mf 1 and Mf 2. As the rotation angles

'1 and '2 of the ¯exural hinges are associated with the defor-

mation of the bender and the mirror, these rotation angles of the

¯exural hinges can be assumed to be proportional to the curva-

tures of the mirror at the left end and right end, respectively,

' / 1=Ri � Mi=EI; i � 1; 2

and then

Mf 1 � �C0 � Cx�kM1=EI; Mf 2 � �C0 ÿ Cx�kM2=EI; �4�
where C0 and Cx are constants depending only on the bender

design. When the neutral plane of the mirror is below the two

rotating axes, the mirror is under tensile stress. The tensile force N

is proportional to the average force (F1 + F2)/2 and approximately

proportional to the thickness of the mirror, N � CNt�F1 � F2�.
Substituting M1 and M2 by Me1 and Me2 into (1), we obtain the

following bender driving equation,

d2z

dx2
� h

EI

� � �F1 � F2�
2

�1ÿ �� � �F2 ÿ F1�
x

L
�1ÿ �x�

� �
; �5�

with

� � C0�k=EI� � CN�hat=h�; �x � Cx�k=EI�: �6�
These two constants represent bending-loss factors of the mirror

bender assembly. The ®nite-element model of the prototype

bender has been slightly modi®ed to ensure that the neutral plane

of the mirror coincides with the two rotating axes of the bender.

The modi®cation was made just on the height of the base to

support the mirror. This height was 15 ÿ t/2 mm instead of the

®xed value of 5 mm. Various parameters of the mirror (thickness t,

material property E) and of the ¯exure bender (hinge thickness tf,

material property Ef) have been studied for both the bender

shown in Fig. 1 and for the modi®ed version. The results of

bending-loss factors � and �x are given in Table 1, and the

constants C0, Cx and CN are also calculated by (6). Values of E of

70 and 110 GPa correspond to silica and silicon, respectively.

Values of Ef of 200 and 66 GPa correspond to stainless steel and

aluminium, respectively.

Figure 2
Curvature distribution from the FEM for a 10 mm-thick silicon mirror,
under equal forces F1 = F2 = 1.854 N per mm width.

Table 1
Bending-loss factors � and �x of the mirror bender assembly for both the prototype bender shown in Fig. 2 (ha = 10ÿ t) and for the modi®ed bender (ha = 0).

Flexure bender Mirror ha = 10 ÿ t ha = 0
Ef (GPa) yf (mm) E (GPa) y (mm) � �x � �x C0 (mmÿ1) Cx (mmÿ1) CN (mmÿ1)

200 0.14 70 6 0.7687 0.0102 0.0289 0.0101 609 212 58.3
200 0.14 70 8 0.5301 0.0045 0.0126 0.0045 626 225 63.5
200 0.14 70 10 0.3099 0.0027 0.0065 0.0023 636 226 55.8
200 0.14 70 20 0.0009 0.0020 0.0009 0.0020 693 1582 ±
200 0.14 110 10 0.2442 0.0016 0.0042 0.0016 647 252 44.2
200 0.14 110 20 0.0006 0.0024 0.0006 0.0024 708 2992 ±
200 0.1 70 10 0.2924 0.0009 0.0028 0.0009 636 197 53.3
200 0.21 70 10 0.3323 0.0070 0.0179 0.0067 631 236 57.9
200 0.28 70 10 0.3513 0.0139 0.0360 0.0143 620 246 58.0

66 0.14 70 10 0.1708 0.0005 0.0022 0.0005 660 151 31.0
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The bending-loss factor, �, of the prototype bender is mainly

due to the non-coincidence between the neutral plane of the

mirror and the rotating axes of the bender (ha 6� 0). This loss

factor reaches 0.768 for a 6 mm-thick silica mirror. For the mirror

(silicon, t = 10 mm) and ¯exural hinge (steel, tf = 0.14 mm) used in

the prototype, � = 0.2443, which can be reduced to 0.0042 if the

mirror is placed on the rotating axis of the bender.

2.3. Ideal elliptical-bending approximation

If a mirror is placed at a distance p from the X-ray sources with

an incidence angle �, and an image is expected at a distance q

downstream of the mirror, the ideal shape of the mirror should be

an ellipse, and can be represented by a series of x, z coordinates in

the mirror reference as (Susini, 1992; Padmore et al., 1996)

z � �x2�1� �x� x2 � : : : �; �7�
of which the radius of curvature, R(x), is

1=R�x� ' d2z=dx2 � 2��1� 3�x� 6x2 � : : : �; �8�
where

� � sin ��1� p=q�=4p;

� � cos ��p=qÿ 1�=2p; �9�
 � 1=4pq� 5�2=4:

For a mirror with constant cross section, a cubic approximation

can be made to the elliptical shape by the ¯exure bender

presented here. However, by comparing (5) with the ®rst two

terms in (8), the value of the forces F1 and F2 can be determined

by

F1 � �EI=h� � �2=�1ÿ �� ÿ 3�L=�1ÿ �x��; �10�

F2 � �EI=h�� �2=�1ÿ �� � 3�L=�1ÿ �x��: �11�
The cubic approximation is sometimes not suf®cient. The variable

cross section of the mirror is then necessary to produce an exact

ellipse shape. In order to do that, the thickness t and the width W

of the mirror should be

t3W � �1� 3�x�t3
0W0=�1� 3�x� 6x2 � : : : �; �12�

where t0 and W0 are the initial thickness and initial width of the

mirror used to calculate the bending forces by (10) and (11). In

practice, only one parameter of the mirror is variable, t or W.

Considering the tolerance limit when manufacturing and polishing

the mirror, a variable width is preferable for a variable cross

section of the mirror as discussed by Padmore et al. (1996).

However, a mirror with a variable cross section allows a perfect

ellipse to be approached for single optical con®guration, therefore

precluding the energy tunability.

2.4. Sensitivity to the actuator accuracy

Note that � > �x, and it can be demonstrated that the maximum

slope sensitivity, "�=F , to the forces is at the end of the mirror, x =

L/2 or x = ÿL/2, and

"�=F �
@�

@F1

���� ����
max

� @�

@F2

���� ����
max

� hL

8EI
�3ÿ 2�ÿ �x�: �13�

For the tested prototype bender with a silicon mirror of W = 40²

and t = 10 mm, the sensitivity is "�=F = 11.8 mrad Nÿ1 from (13).

The displacement of the bender at the forces application points is

klever = 1.37 mm Nÿ1 from the results of the FEM. The accuracy in

force and in displacement of the actuators should be better than

1/"�=F = 0.085 N mradÿ1 and 1="�=D = klever/"�=F = 0.117 mm mradÿ1,

respectively.

3. Comparison with test results

Now let us study a test case in the ESRF BM5 beamline (Hignette

et al., 1997). A silicon mirror (t = 10 mm, W = 40 mm, L = 150 mm)

with the ¯exure bender is placed at p = 40 m from the X-ray

source. An X-ray beam of 0.65 mm height with an incidence angle

of � = 5 mrad illuminates the mirror surface over 130 mm, and has

to be focused at a distance of q = 0.45 m. A bending radius of R =

178.0 m is expected at the centre of the mirror. Two picomotors

(New Focus, model #8321, Santa Clara, CA 95051±0905, USA)

have been used to drive the ¯exure bender. Test results show a

photon ¯ux gain of 500, thanks to the mirror focusing. The

sensitivity in slope is 0.1 mrad, and the r.m.s. residual slope error of

the mirror is 0.8 mrad.

This case has been studied both by the FEM and by using the

bender driving equation (5) with the associated equations. The

bending-loss factors from Table 1 are � = 0.24425, �x = 0.00165; the

two forces calculated by (10) and (11) are F1 = 24.083 N, F2 =

35.171 N. The mirror is moved down a distance of z0 = 15.80 mm at

the centre, and inclined by an angle of �0 = 17.37 mrad. These two

effects are not negligible, and should be corrected. The defor-

mation of the bender and mirror from the FEM are plotted in Fig.

3. It shows that the rotating axes of the mirror bender assembly

are located in the expected region. The ¯exural hinges are

deformed with essentially angular motion. The maximum Von

Mizes stress in the assembly is 38.8 MPa, which is much smaller

than the elastic limit of the material (�0.2% = 790 MPa). The

maximum Von Mizes stress in the mirror is 5.9 MPa, compared

with the yield stress of the silicon crystal of about 40 MPa.

The residual slope errors, �slope, and differential curvatures,

�z0/z0(0), between the ideal ellipse (7) and the bender driving

equation (5), and between the results of the FEM and (5) are

plotted in Fig. 4. Excellent agreements have been observed

between the results from the FEM and (5) in a range of 130 mm

(|x| < 65): �slope � 0.05 mrad and �z0/z0(0) � 0.5%. The end

effects (in the area of 65 < |x| < 75) are predicted by the FEM. The

Figure 3
Deformation of the bender and mirror by the FEM. Total forces applied by
the two picomotors to the bender are F1 = 24.083 N, F2 = 35.171 N.² This mirror is narrower than the bender.

806 Design optimization of a ¯exural hinge-based bender for X-ray optics



residual slope errors and normalized differential curvatures

between the bender equation and the ideal ellipse (Fig. 4) are

clearly due to the quadratic term which is not generated by the

¯exure bender with the constant cross section of the mirror. The

differences between the bender equation and the ideal ellipse in

the range ÿ65 < x < 65 mm can be minimized by applying addi-

tional bending forces �F1 = �F2 = 0.238 N: �slope is reduced to

1.86 mrad (r.m.s. �slope to 0.76 mrad) and �z0/z0(0) to 3.0%. The

minimized r.m.s. residual slope error is consistent with the test

results (0.8 mrad r.m.s.). These residual slope errors and differ-

ential curvature can theoretically be reduced to zero by using a

variable cross section of the mirror.

The sensitivity of the slope to the displacement of the actuator

was discussed in x2.4. Analysed results show that a displacement

of 12 nm of the actuator generates a slope of 0.1 mrad on the

mirror. This agrees with the test results: 0.1 mrad slope increment

of the mirror while the two picomotors have an average step size

of about 2 and 12 nm.

4. Short-bending-radius applications

For the short-bending-radius applications, it is necessary to opti-

mize the bending lever h, the mirror geometry (thickness t and

width W) and the material for the substrate. In general, the system

should have (i) the neutral plane of the mirror placed on the

rotating axes of the bender to minimize the bending-loss factors,

(ii) a longer bending lever h for the bender, (iii) smaller thickness t

and width W for the mirror, (iv) a lower Young's modulus E for

the substrate.

The ¯exure bender was redesigned by integrating the above

considerations. In particular, the bending lever h was increased

from 92 to 200 mm, and the bender width W reduced from 50 to

30 mm. The expected minimum bending radius is R0 = 46 m for a

10 mm-thick and 30 mm-wide silicon mirror; R0 = 30 m for a silica

mirror of the same dimensions. The bending lever h can be easily

made longer to increase the bending capacity. The stiffness of the

bending lever klever is adjustable to adapt different actuators by

using, for instance, a spring between the picomotors and the

bending levers.

5. Conclusions

A ¯exure bender driven by two actuators has been studied by use

of the FEM and the analytical formulation. The relationship

between the mirror shape and the driving forces, the so-called

bender driving equation, is established. For any requested mirror

shape, the bender driving equation can be used to determine the

values of the bending forces, to optimize the geometry and the

material of the mirror, and to evaluate the residual slope error due

to the bender. Parameter study and design optimization lead to

the conclusion that the neutral plane of the mirror or multilayers

had to be placed on the rotating axes of the ¯exure bender in

order to reduce the bending capacity loss. Comparison of results

for a prototype bender with a silicon mirror shows good agree-

ment between FEM, the bender driving equation and the test

results on an ESRF beamline. Analysis and test results con®rm the

microradian accuracy of the bent mirror
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Figure 4
Residual slope error and differential curvature of a silicon mirror in an
ellipse con®guration: p = 40 m, q = 0.45 m, � = 5 mrad. Additional force
�F1 = �F2 = 0.238 N.
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