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Analytical calculation of the ®rst-order spatial coherence for the Gaussian beam and the exact

numerical calculation for synchrotron radiation are compared in this paper. The approximation of

regarding synchrotron radiation as a Gaussian beam is often used to investigate the brightness, the

¯ux and some qualitative properties. Calculations show that synchrotron radiation does not have as

high coherence as the Gaussian beam because of the beam pro®le, the phases of the wave and the

polarization. If one can measure the beam size and the spatial coherence of synchrotron radiation, it

is possible to determine the total photon beam emittance without any knowledge of the Twiss

parameters of the ring.

Keywords: coherence; visibility; emittance; Gaussian beam.

1. Introduction

Coherence is one of the most important properties of wave

optics. There are two concepts for coherence. One is the

spatial coherence which represents how the ®elds at two

points in a plane perpendicular to the optical axis can

interfere. The other is the temporal coherence which is

equivalent to the length of the wave packet. We have

constructed a Young's interferometer to measure the ®rst-

order coherence of synchrotron radiation in the soft X-ray

region (Hatano et al., 1998). Some measurements have

been performed at BL-12A (a bending-magnet beamline)

and BL-28A (a helical-undulator beamline) of the Photon

Factory, KEK. We can see the great difference between the

visibilities in the vertical and horizontal directions which is

due to the difference between the electron beam emit-

tances in the storage ring. From the van Cittert±Zernike

theorem (Mandel & Wolf, 1995) one can gain knowledge of

the intensity distribution of the light source by measuring

the spatial coherence of the far ®eld for ordinary light

sources. In this theorem, light from each point source is

often treated as a spherical wave and has a ®nite size but no

directional dependence, which is not true for synchrotron

radiation. However, by approximating the synchrotron

radiation as a Gaussian beam one can obtain an analytical

representation of the visibility. For simple cases, some

calculations of the spatial coherence are performed in the

far-®eld approximation (Coisson, 1995). In this paper we

will present the analytical calculation of the coherence for

the Gaussian beam in the linear approximation and

compare the result with the numerical calculation for the

exact ®eld and the far ®eld.

2. First-order spatial coherence

Let us suppose that the emission of synchrotron radiation

from each electron in the storage ring is chaotic. Then the

correlation of two ®elds is written as

hE�i �x1; z�Ej�x2; z�i � R
dxe

R
d'e ��xe; 'e�

� E�i �x1; z; xe; 'e�Ej�x2; z; xe; 'e�;
�1�

where Ei�x; z; xe; 'e� is the electric ®eld at �x; z� which has i

polarization and is emitted by an electron whose phase

space coordinate is �xe; 'e�, where xe and 'e are the electron

coordinate and the divergence at the emitting point,

respectively.² We assume that the electric ®eld travels

towards the z direction and that the x direction is

perpendicular to the z direction and the phase spaces for x

and y directions are independent. For this reason we

consider only the x direction for the spatial coherence here.

We also assume that the electric ®eld should be well

monochromatic and we regard the coherent time to be

in®nity. ��xe; 'e� is the electron distribution function in the

storage ring and is given by

² In this paper we use the notation x, ~x and x to represent the three-
dimensional vector, the two-dimensional vector and just a coordinate,
respectively.



��xe; 'e� � �Ne=2�"e� exp�ÿ�
x2 � 2�x'� �'2�=2"e�: �2�
Ne is proportional to the total number of electrons and "e is

the electron beam emittance. �, � and 
 are Twiss para-

meters at the emitting point which satisfy �
 ÿ �2 � 1. "e is

the electron beam emittance in the storage ring. The

intensities at x1; x2, the correlation between the ®elds at x1

and x2, and the ®rst-order coherence of them are given by

I�x1; z� �P
i

hE�i �x1; z�Ei�x1; z�i; �3�

I�x2; z� �P
i

hE�i �x2; z�Ei�x2; z�i; �4�

M�x1; x2; z� �P
i

hE�i �x1; z�Ei�x2; z�i; �5�


�x1; x2; z� � M�x1; x2; z�=�I�x1; z�1=2
I�x2; z�1=2�; �6�

respectively (Born & Wolf, 1980). The visibility is de®ned as

V � 2�I�x1; z�I�x2; z��1=2

I�x1; z� � I�x2; z� j
�x1; x2; z�j: �7�

This means that the visibility is proportional to the absolute

value of the ®rst-order coherence and is equivalent to it if

the intensities at two points are equal. Hereafter, the ®rst-

order coherence and the visibility have the same meaning.

In the realistic cases, because of the ®nite width of the

double slit, the measured visibility by the Young's inter-

ferometer is

V � 2jM�x1; x2�j=�I�x1; z� � I�x2; z��; �8�
where

I�x1� �
Rd=2

ÿd=2

dx
Rd=2

ÿd=2

dx0M�x1 � x; x1 � x0�; �9�

I�x2� �
Rd=2

ÿd=2

dx
Rd=2

ÿd=2

dx0M�x2 � x; x2 � x0�; �10�

M�x1; x2; z� � Rd=2

ÿd=2

dx
Rd=2

ÿd=2

dx0M�x1 � x; x2 � x0�; �11�

and d is the width of the slit. In general, V and V are not

equal. However, we consider the ideal cases where d is

in®nitesimally narrow and V and V can be regarded as the

same.

The brightness is another important quantity which is

closely related to the ®rst-order coherence (Kim, 1986). It

has an analogy with the Wigner function and is written as

Bij�x; '; z� � C0

R
dy hE�i �x� y=2; z�Ej�xÿ y=2; z�i

� exp�ik'y� �12�
� R dxe

R
d'e ��xe; 'e�B�0�ij �x; '; z; xe; 'e�; �13�

where k is the wave number and C0 is a constant.

B
�0�
ij �x; '; z; xe; 'e� � C0

R
dy E�i �x� y=2; z; xe; 'e�

� Ej�xÿ y=2; z; xe; 'e� exp�ik'y�
�14�

is the brightness in the case where a single electron exists

only at �xe; 'e� in the phase space.

3. Gaussian beam

Gaussian optics are very useful because of their similarities

with the geometrical optics in the limiting case and because

they are easy to treat analytically. We de®ne the transfer

matrix from the light source �z � z0� to the observation

point �z � z1� in the linear approximation as

T�z0; z1� � a b

c d

� �
; �adÿ bc � 1�: �15�

Then the brightness transforms as

B�x; '; z1� � B�dxÿ b';ÿcx� a'; z0�; �16�
in the case of the Gaussian optics (Kim, 1986). Here we

neglected the indices of the polarization supposing that the

Gaussian beam has only one component of the polariza-

tion. At z � z0 we put

B�0��x; '; z0; xe; 'e� � �B0=2��p�
0
p� exp

��ÿ�xÿ xe�2=2�2
p�

ÿ ��'ÿ 'e�2=2�02p �
	
; �17�

for (14). In (17), B0 is a constant and �p and �0p are the beam

size and the beam divergence of a single photon, respec-

tively, which satisfy

�p�
0
p � �=4�: �18�

From (14), (16) and (17), the electric ®eld is determined by

E�x; z1; xe; 'e� � E0 exp ÿ�Ax2 � 2Bx� C�r��=4
� 	

; �19�
with

A�r� � 1= ��p
2; �20�

A�i� � ÿ2k�bd�02p � ac�2
p�= ��p

2; �21�

B�r� � ÿ�axe � b'e�= ��p
2; �22�

B�i� � 2k�b�02p xe ÿ a�2
p'e�= ��p

2; �23�

C�r� � �axe � b'e�2= ��p
2; �24�

jE0j2 � B0=�2��8��1=2 ��p�p�
0
p�; �25�

��p � �a2�2
p � b2�02p �1=2; �26�

where indices (r) and (i) denote the real and the imaginary

parts, respectively. The overall phase in (19), which is not

important for calculating (1) or (13), is omitted. In other

words, the expression for the brightness with (16) and (17)
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is equivalent to approximating the electric ®eld by (19)

which is the Gaussian beam.

From the Fourier inverse transformation of (12), (13)

and (17) we have

hE��x1; z1�E�x2; z1�i � �k=2�C0�
R

d'

� B��x1 � x2�=2; '; z1�
� exp�ÿik'�x1 ÿ x2��
� NejE0j2� ��p= ��� exp ÿ�g1�x2

1 � x2
2�

�
� 2g2x1x2 � ig3�x2

1 ÿ x2
2��g; �27�

where �� is the beam size at z � z1 given by

�� � �a2��2
p � �"e� � b2��02p � 
"e� ÿ 2ab�"e�1=2; �28�

and

g1 � �"2 � "2
p�=8 ��

2
"2

p; �29�

g2 � �"2 ÿ "2
p�=8 ��

2
"2

p; �30�

g3 � �k=2 ��2��bd��02p � 
"e� � ac��2
p � �"e� ÿ ��ad� bc�"e�:

�31�
From (7) and (27) we have a useful expression of the

visibility,

V � �1= cosh�Dxc=2 ��2�� exp�ÿD2=8�2
c �; �32�

where

xc � �x1 � x2�=2; �33�
D � jx1 ÿ x2j; �34�

and �c is the coherent size given by

�c � "p
��=�"2 ÿ "2

p�1=2: �35�
Here we used the de®nitions of a single photon beam

emittance, "p, and the total photon beam emittance, ",

"p � �p�
0
p � �=4�; �36�

and

" � �"2
e � 
"e�

2
p � �"e�

02
p � "2

p�1=2: �37�
Obviously the expression of the visibility in (32) is also

obtained directly from (1) and (19). It should be noted that

(35) contains the Twiss parameters and the transfer matrix

only through the beam size �� and the total photon emit-

tance ". Therefore, if the beam size �� and the coherent size

�c are measured, the total photon beam emittance " can be

known without any knowledge of the Twiss parameters, �, 

or the transfer matrix. Moreover, if one can measure " for

three different photon energies, one can know in principle

the Twiss parameters and the electron beam emittance "e.

In this section we have used the fact that a Gaussian

beam can be treated in the linear approximation. We

supposed that the synchrotron radiation beam also can be

treated in the linear approximation, which seems to be

reasonable as the synchrotron radiation beam has a sharp

directional property. We will derive a general condition for

the electric ®eld to be treated in the linear approximation.

To investigate the brightness which transforms linearly, we

consider a brightness function of a single electron,

B�~x; ~'; z�, where ~x and ~' are two-dimensional vectors

which are the position in the transverse plane and the

divergence. If we write the transfer matrix as

T�z; z� �� � 1 �
0 1

� �
; �38�

then T represents the transformation from z to z� � in free

space. From (16), the brightness transforms as

B�~x; ~'; z� �� � B�~xÿ �~'; ~'; z�: �39�
In the limit �! 0, (39) can be rewritten by a differential

equation

�@=@z� ~':@=@~x�B�~x; ~'; z� � 0: �40�
If we substitute the de®nition of the brightness of a single

electron,

B�~x; ~'; z� � C0

R
d~y E� ~x� ~y=2; z

ÿ �
E ~xÿ ~y=2; z
ÿ �

� exp�ik~':~y�; �41�
into (40), we obtain a differential equation,

E�� ~x2; z� � ~x1
� 2ik @=@z

ÿ �
E� ~x1; z�

� E� ~x1; z� � ~x2
ÿ 2ik @=@z

ÿ �
E�� ~x2; z� � 0; �42�

where

�~x � @=@~x:@=@~x: �43�
As ~x1 and ~x2 are independent variables, we have

�~x � 2ik @=@z� i�� �E�~x; z� � 0; �44�
where � is a real constant. For � � 0 in (44), we obtain the

paraxial equation

�~x � 2ik @=@z� �E�~x; z� � 0; �45�
which is also obtained from the Maxwell equation if the

dependence of the ®eld on z can be approximated by the

plane wave (Mandel & Wolf, 1995). It is noted that the

Gaussian beam is a solution of (45). As synchrotron

radiation can be regarded as a plane wave along the optical

axis owing to its directional property, it is reasonable to

treat synchrotron radiation in the linear approximation.

4. Basic theory of synchrotron radiation

To calculate the electric ®eld we use the following formula

(Jackson, 1962),

E�x� � �2��ÿ1=2�e=4�"0�
R

dt exp�i!t�
� �n=�R2� � �1=c���d=dt0��nÿ ��=�R�� �

t�t0�R=c
;

�46�
where e, c and "0 are the electron charge, the light velocity

and the dielectric constant, respectively. x � �~x; z� is the

observation point and ~x is a two-dimensional vector. n and

R are the unit vector and the distance between the observer
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and an electron, respectively. � is the electron velocity

normalized by c, and � is de®ned by �1ÿ �:n�. ! is the

angular frequency of the photon which we observe. In

general, the electric ®eld at z � z1, which was induced by

an electron whose phase space coordinate was � ~xe; ~'e�,
where ~xe and ~'e are two-dimensional vectors, and has

travelled through the free space from z � z0 � 0 to

z � z1 � L, is given by

E�~x;L; xe; 'e� � E ~xÿ � ~xe � L ~'e�;L
� �

exp�ik ~'e:~x�: �47�
We can numerically calculate the ®rst-order coherence

from (7), (46) and (47) by specifying the electron trajectory

in the storage ring. Before the calculation, we will investi-

gate a limiting case of the ®eld pattern in (46). The far-®eld

pattern of synchrotron radiation from the undulator is

approximately written as (Alferov et al., 1973, 1974;

Kincaid, 1977)

E�~x;L� ' sin�N� �~x��=N sin�� �~x��
� exp i�k~x2

=2L� � i�N ÿ 1�� �~x�
h i

fu�~x�; �48�

where

 �~x� � �!=!1� 1� 
2
e ~x

2
= L2�1� �K2

x � K2
y�=2�� 	� �h i

;

�49�

!1 � 2
2
e = 1� �K2

x � K2
y=2�� �� 	�2�c=�u�; �50�

and Kx, Ky, N, �u are the K value for the x direction, the K

value for the y direction, the number of the periods and the

length of a period of the undulator, respectively. ! and k

are the angular frequency and the wave number of the

photon to be observed, respectively, which satisfy ! � ck.


e is the electron energy normalized by the electron rest

mass. !1 is the angular frequency of the ®rst harmonic

observed on the axis. fu�~x� is a slowly varying function of ~x
compared with the other terms. We have neglected the

polarizations of the electric ®elds for the far-®eld case of

the undulator. The phase terms in (48) are due to the

spherical wave nature and the interference of each period.

The ®rst term changes much more rapidly than the second

term. Therefore, in the far-®eld approximation the

synchrotron radiation from the undulator is characterized

by a spherical wave and the beam pro®le which has a form

�sin�Nx�= sin�x��2 but not exp�ÿx2�.
The far-®eld pattern of the synchrotron radiation from a

bending magnet is written as (Jackson, 1962; Schwinger,

1949)

E��y;L� ' fb�!=!c� 1�W2�y�� �
K2=3 ��y�� � exp iky2=2L

ÿ �
;

�51�
and

E��y;L� ' fb�!=!c��1�W2�y�� iW�y�=�1�W2�y��� 	
� K1=3���y�� exp iky2=2L

ÿ �
; �52�

where

W�y� � 
ey=L; �53�

��y� � �!=2!c� 1�W2�y�� �3=2
; �54�

and

!c � 3
3
e c=2�: �55�

!c is the critical angular frequency and � is the bending

radius. K2=3�x� and K1=3�x� are modi®ed Bessel functions

whose orders are 2/3 and 1/3, respectively. fb is an unim-

portant constant. ! and k are the angular frequency and the

wave number of the photon, respectively. As the horizontal

distribution of the synchrotron radiation from the bending

magnet is regarded to be uniform, we have considered only

the vertical direction y. The beam pro®le of the � polar-

ization component is very similar to the Gaussian shape,

while the � component has the minimum value at the

centre.

5. Coherence of synchrotron radiation from the
undulator

We have derived a useful formula of the visibility in the

Gaussian approximation in x3. Strictly speaking, the elec-

tric ®eld of the synchrotron radiation cannot be regarded as

a Gaussian beam. Therefore we need to compare the visi-

bilities of the actual synchrotron radiation and the Gaus-

sian beam to approximate the actual synchrotron radiation.

First we consider the helical undulator case. In order to

use the Gaussian approximation we must know the electron

distribution function, "p, " and ��. We suppose that the

electron distribution function is already known. "p, which is

the intrinsic photon beam emittance, can be calculated

from (36) if we choose the photon energy. As the beam size

produced by a single electron at z � L is almost L�0p when

L is so large that the far-®eld approximation can be applied,

�0p can be obtained by ®tting the whole beam pro®le with

the Gaussian shape exp ÿx2=2L2�02p �
ÿ

. Here we use the

Marquardt±Levenberg algorithm for the ®tting. �p can be

calculated from (36). Then, " is calculated from (37). �� can

be calculated by ®tting the beam size produced by all

electrons with the Gaussian shape exp ÿx2=2 ��2
ÿ �

, where

the ®elds are calculated exactly using (46).

We calculated the visibility from (32) and compared this

result with the exact calculation of the visibility by (13) and

(46). We also calculated the visibility for the simple far-®eld

approximation using (48), i.e. using a non-Gaussian beam

with the form �sin�Nx�= sin�x��2. This calculation is easier

than the exact calculation because the analytic form is

known for the far ®eld. The far-®eld calculation and the

exact calculation should give the same results at the far

point. We de®ned �c�E�, �c�F� and �c�G�, which are the

coherent sizes given by the exact ®eld, the far ®eld and the

Gaussian ®eld, respectively. These values are calculated by

®tting the visibility curves with the Gaussian shape in (32).

We will summarize three methods mentioned above.
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5.1. Exact calculation

This is a procedure where the ®elds are exactly calculated

and the results are ®tted to (32) approximately as follows.

(i) Decide the Twiss parameters, the electron emittance

and the photon energy.

(ii) Calculate the ®elds using (46) for many electrons in

the phase space and take the ensemble average for the

correlation of the two ®elds in (1).

(iii) Calculate the beam size �� by ®tting the beam pro®le

with the Gaussian. This is not necessary for calculating the

coherent size in the exact calculation but in the Gaussian

approximation.

(iv) Fit the visibility curve with the Gaussian shape in

(32) and calculate the coherent size �c�E�.

5.2. Far-®eld approximation

This is a procedure where the ®elds are calculated using

the far-®eld approximation and the results are ®tted to (32)

exactly as follows.

(i) Decide the Twiss parameters, the electron emittance

and the photon energy.

(ii) Calculate the ®elds using (47) and (48) for many

electrons in the phase space and take the ensemble average

for the correlation of the two ®elds in (1).

(iii) Fit the visibility curve with the Gaussian shape in

(32) and calculate the coherent size �c�F�.

5.3. Gaussian approximation

This is a procedure where the ®elds are calculated using

the Gaussian approximation and the results are ®tted to

(32) exactly as follows.

(i) Decide the Twiss parameters, the electron emittance

and the photon energy.

(ii) Calculate �0p by ®tting the far-®eld pattern with the

Gaussian shape and calculate �p using (36).

(iii) Calculate the coherent size �c�G� using (35).

The parameters are N = 12, 
e � 4892, Kx � Ky � 1:28

and �u � 160 mm. The photon energy of the ®rst harmonic

is 140 eV. Although the beam pro®le of the undulator

depends on the photon energy, we simply restrict to the

®rst-harmonic energy. The photon divergence and the size

are calculated to be �0p � 0.044 mrad and �p � 0.016 mm,

respectively. We chose two distances L from the centre of

the undulator to the observation point as 2.04 m and

29.04 m. For the electron distribution function we set

�e�x; '; z� � �Ne=2��e�
0
e� exp ÿ x2=�2

e � '2=�02e
ÿ �

=2
� � �56�

in (2), where �e and �0e are the beam size and the beam

divergence at the entrance of the undulator. The electron

beam emittance and the Twiss parameters are given by

"e � �e�
0
e; �57�

�e � ��"e�1=2; �58�

�0e � �
"e�1=2: �59�
We simply put xc � 0 and plotted the visibility as a function

of �D= ��� which is the separation of two points. This plot is

useful because the visibility depends on the transfer matrix

only through �D= ��� for the Gaussian approximation as

shown in (32) and (35).

To see how the visibility depends on the electron beam

parameters, we separately set the electron beam size and

the divergence at non-zero values, which are much larger

Figure 1
Coherence of synchrotron radiation from the helical undulator
when �e � 0 mm, �0e � 0.2 mrad, L = 2.04 m with all polarizations
observed. [�c�E� � 0.060 mm, �c�F� � 0.044 mm, �c�G� �
0.13 mm.]

Figure 2
Coherence of synchrotron radiation from the helical undulator
when �e � 0 mm, �0e � 0.2 mrad, L = 29.04 m with all polarizations
observed. [�c�E� � 0.70 mm, �c�F� � 0.63 mm, �c�G� � 1.4 mm.]

Figure 3
Coherence of synchrotron radiation from the helical undulator
when �e � 0.1 mm, �0e � 0 mrad, L = 2.04 m with all polarizations
observed. [�c�E� � 0.020 mm, �c�F� � 0.016 mm, �c�G� �
0.020 mm.]
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than the beam size and the beam divergence of a single

photon. Finally we set both of them at non-zero values.

First we calculated for �e � 0 mm, �0e � 0.2 mrad (Figs. 1

and 2). It can be seen that the ®rst-order coherence of the

Gaussian approximation is higher than that of the exact

calculation and that the behaviours of the exact calculation

and the far-®eld approximation are very similar. This

implies that the ®rst-order coherence is very sensitive to the

beam shape. The small discrepancy for the exact calculation

and the far-®eld calculation at L = 29.04 m has occurred

because the distance L = 29.04 m is not very large. Another

reason is that an electron with a different angular diver-

gence experiences a different magnetic ®eld in the exact

calculation. This effect is not taken into account in the far-

®eld approximation and the Gaussian approximation.

Next we calculated for �e � 0.1 mm, �0e � 0 mrad (Figs. 3

and 4). The Gaussian approximation has good agreement

with the exact calculation and the far-®eld approximation.

Therefore, if the electron beam divergence can be almost

neglected, which means �0e � �0p, one can regard the

synchrotron radiation from the undulator as a Gaussian

beam in terms of the coherence.

The asymmetry of the effects on the coherence by the

electron beam divergence and the beam size can be

understood by using (32). We consider the special two cases

where the divergence of the electron beam can be

neglected compared with �0p and where the beam size of the

electron beam can be neglected compared with �p at the

emitting point. If we put the transfer matrix

T�z0; z0 � L� � 1 L

0 1

� �
; �60�

and �e 6� 0, �0e � 0; we have

V � exp ÿ�2
e D2=�8�2

p��2
p � �2

e � L2�02p ��
� 	

; �61�
for the visibility in (32). On the other hand, if we put �e � 0,

�0e 6� 0, then the visibility can be written as

V � exp ÿ�02e D2= 8�02p ��2
p � L2��02p � �02e ��

� 	ÿ �
: �62�

For L2 � ��2
p � �2

e �=��02p � �02e �; (61) and (62) are reduced

to

V � exp ÿ2�2�2
e D2=�2L2

ÿ �
; �63�

and

V � exp ÿ�02e D2=�8�02p ��02p � �02e �L2
� �

; �64�
respectively. Here we used (18) in (63). The visibility in (63)

does not depend on the beam pro®le of a single photon but

only on the wavelength. However, the visibility in (64)

explicitly depends on �0p, which means the visibility is

sensitive to the beam shape of a single photon in this case.

Figs. 5 and 6 are the cases for �e � 0.1 mm, �0e � 0.2 mrad,

both of which are much larger than those of a single

photon. We compared the Gaussian approximation and the

far-®eld approximation which should give almost the same

result as the exact calculation. The disagreement of the

calculated coherence is larger than that of the case for �e �
0.1 mm, �0e � 0 mrad, but smaller than that of the case for

�e � 0 mm, �0e � 0.2 mrad, as expected from the above

discussion.

Even if we take only one component of the polarization,

the results are almost the same with the cases taking all

polarizations for the helical undulator. This is because the

polarization of the helical undulator is almost uniform and

the coherence is high within the transverse plane where

Figure 4
Coherence of synchrotron radiation from the helical undulator
when �e � 0.1 mm, �0e � 0 mrad, L = 29.04 m with all polarizations
observed. [�c�E� � 0.21 mm, �c�F� � 0.20 mm, �c�G� � 0.20 mm.]

Figure 5
Coherence of synchrotron radiation from the helical undulator
when �e � 0.1 mm, �0e � 0.2 mrad, L � 2.04 m with all polariza-
tions observed. [�c�F� � 0.013 mm, �c�G� � 0.019 mm.]

Figure 6
Coherence of synchrotron radiation from the helical undulator
when �e � 0.1 mm, �0e � 0.2 mrad, L � 29.04 m with all
polarizations observed. [�c�F� � 0.18 mm, �c�G� � 0.24 mm].
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most of the total intensity is concentrated because of the

small K value.

6. Coherence of synchrotron radiation from the
bending magnet

For synchrotron radiation from the bending magnet, we

compared the ®rst-order coherence of the far-®eld

approximation equations (51) and (52) with that of the

Gaussian approximation (Fig. 7, Fig. 8 and Fig. 9). We

calculated �p; �
0
p and �� as we did in the previous section.

We chose L = 29.04 m for the following three cases: all

polarizations, � polarization and � polarization, where we

took the electron parameters as �e � 0 mm and �0e �
0.2 mrad. We set the parameters as 
e � 4892, � � 8.66 m

and a critical energy of 4 keV. The photon energy to be

observed is 140 eV. The ®rst-order coherence depends

strongly on the polarization because the polarization

changes from one to another on the transverse plane in this

case. The case for � polarization is almost similar to the

Gaussian beam as its beam shape looks Gaussian near the

optical axis.

Because the component for � polarization has two

maxima and the phases of them are opposite, the behaviour

of the ®rst-order coherence for � polarization is very

strange and decreases to zero for the ®nite separation

length. One can understand this situation by regarding the

far ®eld as a simple superposition of two Gaussian beams,

which is

E�x; z � L; 0; 0� � E0 exp ÿ�xÿ x0�2=4�2
� ��

ÿ exp ÿ�x� x0�2=4�2
� �	

� exp ikx2=2L
ÿ �

; �65�
where x0 and � are the absolute value of the position of the

maxima and the beam size of each Gaussian beam,

respectively. One can calculate the ®rst-order coherence

from (1), (7) and (65), and the result is

V � exp ÿ k2�2
e=2�2

a � 1=8�2
b

ÿ �
D2

� �jv�D�j; �66�
where

v�D� � exp x2
0=2�2

b

ÿ �
cos k�2

e Dx0= ��2L
ÿ ��

ÿ cosh Dx0=2�2
ÿ ��

� exp x2
0=2�2

b

ÿ �
cosh Dx0=2 ��2

ÿ �ÿ 1
� �ÿ1

: �67�
Here, we put

�� � ��2
e � �2 � L2�02e �1=2; �68�

1=�2
a � ��2 � L2�02e �=L2 ��2; �69�

1=�2
b � ��2

e � L2�02e �=�2 ��2: �70�
If x0 6� 0, one can verify

v�0� � 1; �71�

lim
D!1

v�D� � ÿ1; �72�

and v�D� is a smooth function for D � 0. As a result, v�D�
must take zero value for ®nite D, where V also has zero

value. The essential point is that the two maxima of the ®eld

are in opposite phases, which makes the correlation

average to zero at some ®nite D.

Figure 8
Coherence of synchrotron radiation from the bending magnet
when �e � 0 mm, �0e � 0.2 mrad, L � 29.04 m with � polarization
observed. [�c�F� � 21 mm, �c�G� � 33 mm.]

Figure 7
Coherence of synchrotron radiation from the bending magnet
when �e � 0 mm, �0e � 0.2 mrad, L � 29.04 m with all polariza-
tions observed. [�c�F� � 10 mm, �c�G� � 44 mm.]

Figure 9
Coherence of synchrotron radiation from the bending magnet
when �e � 0 mm, �0e � 0.2 mrad, L � 29.04 m with � polarization
observed. [�c�F� � 24 mm, �c�G� � 13 mm.]
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For any polarizations, the coherence for the exact ®eld is

smaller than that for the Gaussian beam.

7. Conclusions

We have obtained an analytic form of the ®rst-order

coherence for the Gaussian beam and compared this with

that of the actual synchrotron radiation beam. We have

shown that the total photon beam emittance can be

obtained by measuring the beam size and the coherent size

in the Gaussian approximation [equation (35)]. It seems

that the Gaussian approximation has some limitations

when calculating the coherence. The quantitative argument

is not so clear for the Gaussian approximation, while the

far-®eld approximations gives almost correct values for the

coherence even for the near-®eld cases. This means that it

might be possible to ®nd a simple representation of the

coherence by using the far-®eld approximation, which is not

so complicated. We have discussed only the free-®eld cases

but the generalization to other optical devices may not be

so dif®cult. The estimation of the electron beam emittance

from the calculation in this paper and the experiment will

be described elsewhere.
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