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Self-Assembled Monolayers (SAMs) of 4-Aminothiophenol on 
copper surfaces have been investigated, using Grazing Incidence 
X-Ray Absorption Spectroscopy (GIXAS). The surface sensitivity 
of this technique allows us to characterize the chemisorption pro- 
cess by XANES and EXAFS measurements in fluorescence mode 
at the sulfur- and copper-K-edge. Our results are consistent with 
4-Aminothiophenol (4-ATP) bound to the surface through the sul- 
fur headgroup. From EXAFS analysis two different interatomic dis- 
tances between sulfur and next neighbour copper atoms ds-c~,l = 
2.26/~ and ds-c~,2 = 3.1/~, could be determined. Data indicates 
occupation of deep three-fold hollow positions of sulfur with sig- 
nificant reconstruction of first layer copper atoms on preferably tex- 
tured (11 l)-surfaces. Adsorption of 4-ATP as disulfide, described 
in a "sulfur-pairing model", is not supported by absorption data 
in the XANES region. EXAFS analysis on the other hand gives 
some evidence for the presence of a sulfur dimer moiety, with a 
sulfur-sulfur spacing of d s - s  = 2.1 /~,. Depefiding on the prepa- 
ration procedure, oxidation of thiol-molecules occurs, leading to a 
coexistence of sulfate-ions and intact 4-ATP on metal surfaces due 
to partial cleavage of the S-C bond. 

Keywords: self-assembled monolayers (SAMs), grazing 
incidence X-ray absorption spectroscopy, EXAFS. 

2. Experimental 

Freshly evaporated metal films on Si(111)-wafers were immersed 
:n a 1 mMol 4-ATP/ethanol solution for 24 h. After removing 
physisorbed layers of 4-ATP by washing in pure ethanol, sam- 
pies were transferred to the experiment and investigated immedi- 
ately. Measurements were carried out at the storage ring ELSA, 
Bonn university, running at 2.3 GeV with an average current of 
35 mA (Althoff, 1978). The grazing incidence experiment is lo- 
cated at beamline BN2. Synchrotron radiation is monochromized 
by a double-crystal monochromator of Lemonnier-type using InSb 
( l 1 l) or Ge (422) crystals with an energy resolution of about 1 eV 
(Chauvistr6, 1987). The synchrotron beam is collimated vertically 
to 150 #m by a slit-system before hitting the sample at an angle of 
incidence below the critical angle of total external reflection. The 
critical angle was determined by measuring the specular reflectiv- 
ity of the incoming X-ray beam as a function of incidence angle 
as shown in fig. 1. Since the critical angle 0c,. depends linearly on 
the photon wavelength (Born, 1978), we selected a photon energy 
of E = 9000 eV for reflectivity measurements, which is above the 
Cu-K-edge, to determine a lower limit for 0cr. The half-maximum 
value of the reflectivity curve leads to an estimated critical angle 
O~,. = 0.4 °. 
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1. Introduction 
In 1983, R.G. Nuzzo and D.L. Allara proved the formation of sta- 
ble, ordered and densely-packed monolayer films of alkanethiols 
(HS(CH2)nX ,  X = CH3, CH2OH, COOH...)  on gold sur- 
faces. Modification of the substrate is realised by the strong affinity 
of the thiol-headgroup to gold. The organosulfur species formed 
from the chemisorption of the thiol-molecule is a gold(I)-thiolate 
(Nuzzo, 1983). On copper and silver surfaces high-quality films 
can be prepared as well. Variation of the chain-terminating func- 
tional group X of the thiol-molecules offers the possibility to con- 
trol surface properties in a wide range. 
In X-ray deep etch lithography metal surfaces were modified with 
4-Aminothiophenol (4-ATP, H2NC~H4SH)  to enhance the adhe- 
sion of polymer-resists, e.g. polymethylmetacrylate (PMMA), on 
metal substrates. 4-ATP was found to be an effective adhesion pro- 
moter on gold. However, modification of copper substrates did not  

lead to a significant improvement (Schrnidt, 1996). 
In this paper first results of the application of Grazing Incidence X- 
Ray Absorption Spectroscopy (GIXAS) on 4-ATP-modified metal 
surfaces are reported. EXAFS and XANES measurements in fluo- 
rescence mode were carded out to characterize the bonding mech- 
anism of 4-ATP on copper surfaces. Additionally, the influence of 
oxidation effects of metal surfaces on the functionality of modified 
surfaces is a point of major interest in this paper. 
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Figure 1 
Reflectivity of a copper surface: Determination of the critical angle of 
external total reflexion Oc,. 

Typically an angle of incidence of 0 = 0.2 ° was chosen in our 
investigations to ensure the surface sensitivity. This results in a pen- 
etration depth of the X-ray beam of 5nm on copper surfaces at the 
Cu-K-edge, as depicted in fig. 2. Increasing the angle of incidence 
up to a value close to the critical angle leads to increase of penetra- 
tion depth and so to lost of surface sensitivity. Since the penetration 
depth is nearly independent of the energy of the radiation for inci- 
dence angles below the critical angle, we can assume a constant 
information depth for all measurements at the Cu-K and S-K-edge. 
Spectra were obtained by measuring the induced fluorescence in- 
tensity above the sample using an EG&G Si-Li semiconductor de- 
tector (energy resolution AE = 200 eV). Data acquisition time was 
3 h for EXAFS-spectra of moderate quality (8 s per step, step width 
for EXAFS A E  = 0.75 eV, for XANES A E  = 0.3 eV). Refer- 
ence spectra of 4-Aminothiophenol, copper and coppersulfate were 
measured in transmission mode. As an energy standard at the S-K- 
edge we used ZnSO4, with its whiteline at E = 2481.7 eV. 
For data reduction and analysis the EXAFS program package of 
Ertl/Bertagnolli (including FEFF 6) was used (Ertl, 1991). The en- 
ergy position Eo of the absorption edge was determined using the 
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derivative-method. EXAFS functions were derived using a spline 
fit for approximation of the atomic absorption coefficient/Zo. The 
k-range in the analysis was limited to 3 ,lk -1 < k < 10/~,- ~. 
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Figure 2 
Calculated penetration depth of radiation on a copper surface: 
below the critical angle the penetration depth has a small constant value 
of about 50/~ 

3. Results and Discussion 

Fig. 3 shows S-K-XANES spectra of 4-ATP and of a self- 
assembled monolayer of 4-ATP on a copper surface. In the ref- 
erence spectrum two resonances (features a,b) at energies E1 = 
2471.3 eV and E2 = 2473.2 eV are visible. These absorption fea- 
tures can be attributed to the conjugated 7r-electron-system of the 
aromatic 4-ATP molecule, leading to double and single bond char- 
acter of the sulfur-carbon bond (Smith, 1994). Feature a corre- 
sponds to ls --+ 7r* and feature b to ls --+ or* transitions. Sul- 
fur is in the oxidation state +II. There are hardly any significant 
differences between the spectra of the reference and the SAM in 
the XANES region. Cleavage of the S-H bond and formation of a 
copper(I)-thiolate species on the surface, as predicted in the liter- 
ature (Nuzzo, 1983), seems not to influence the 7r-character of the 
sulfur-carbon bond. The same result was found in the case of a gold 
surface. In contrast, absorption spectra of SAM on silver surfaces 
clearly reflect incorporation of pTr*-orbitals in the silver-sulfur in- 
teraction, leading to the absence of the low-energy resonance in the 
XANES region (Schlieben, 1998). These differences give evidence 
for different bonding schemes of the self-assembling process on 
various metal substrates. Indeed, as discussed by Ulman (1996), 
alkanethiols are bound differently to Au(111) and Ag(l l  I) sur- 
faces due to the effects of lateral discrimination of chemisorption 
potentials and electrostatic charge-charge repulsion. The Au(111) 
surface is energetically more heterogeneous indicated by a energy 
difference of 6 kcal mol- 1 between on-top and hollow adsorption 
sites of thiolate molecules (on Ag(111) the energy difference is 3.3 
kcal mol-x). Adsorption on on-top sites may therefore compete 
more with that on hollow-sites for Ag(111) surfaces leading to a 
higher net charge on sulfur atoms, e.g. -0.7e for on-top sites com- 
pared to -0.4e for hollow sites. Charge-Charge repulsion among 
both S and Au atoms on the other hand is a second effect distin- 
guishing between the different bonding schemes. In conclusion, 
sulfur headgroups of SAMs on Au(l 11) are believed to occupy 
hollow sites resulting in a commensurate x/3 * v~R30 ° overlayer, 
while on Ag(111) a V~* v ~ R  10.9 ° structure is assumed with every 

seventh metal atom in an on-top position (Ulman, 1996). 
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Figure 3 
S-K XANES spectra of 4-ATP-SAM on a copper surface: features a,b 
and c refer to oxidation states +II and +VI respectively 

Our data agrees with the assumption of a larger amount of 
charge transfer from metal substrate atoms to the sulfur headgroup 
in the case of a silver surface compared to gold and copper surfaces 
suppressing ls --+ 7r" transitions. This gives evidence for sulfur oc- 
cupying hollow and on-top sites on Ag(111). Additionally, EXAFS 
analysis (see below) leads to a S-Cu next neighbour bond distance 
of ds-c,, = 2.26/~, which is a typical value for hollow site bond- 
ing (Fernandez, 1995), while the corresponding S-Ag distance is 
much larger: ds-Ag = 2.44 ,~ (Schlieben, 1998). 
Adsorption of 4-ATP as a disulfide in a "sulfur-pairing model" pro- 
posed_by Fenter (1998) is not supported by our XANES data. The 
presence of a dimer S-S moiety should be detected by a corre- 
sponding resonance in the XANES region. This modification is not 
present in the absorption spectra. 
In fig. 3 an additional spectrum is shown from a 4-ATP/Cu sam- 
ple, which was exposed to air and light for several hours before 
investigating. The occurence of a new resonance at E = 2481 eV 
in the absorption spectrum is evident (feature c). This new feature 
has to be attributed to an oxidized sulfur-species on the surface in 
the oxidation state +VI (Chauvistr6, 1987). As discussed by Rieley 
(1995) during investigations on the photooxidation of alkylthiol 
monolayers self-assembled on gold surfaces, exposure of SAMs 
to air and light results in the oxidation of the monolayer leading to 
sulfonate-species bound to the surface through oxygen. In contrast 
to this conclusion, we believe our data indicate a partial conversion 
of copper(I)-thiolate to coppersulfate due to cleavage of the S-C 
bond in the 4-ATP molecule, in agreement with Lewis (1995). In- 
tact 4-ATP and CuSO4 coexist on the surface, resulting in a reduced 
functionality, due to desorption of cleaved carbon-rings and forma- 
tion of S02- ions in the presence of oxygen. This surface oxidation 
is responsible for the lack of adhesion promoting effects of 4-ATP 
modified copper substrates, as described by Schmidt (1996). The 
presence of coppersulfate on the surface was verified by measure- 
ments at the Cu-K-edge. In fig. 4 absorption spectra of oxidized 
and non-oxidized SAM on Cu are compared with CuSO4 and Cu 
as references at the Cu-K-edge. Characteristic resonances at 8979 
eV for Cu (feature d) and at 8993 eV for CuSO4 (feature e) are 
emphasized. The spectrum of the non-oxidized SAM looks much 
zerovalent copper-like due to a penetration depth of the radiation 
of around 50/~,, which is a much larger value than the assumed 
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monolayer thickness of 7 /~  for a perpendicular geometry of 4- 
ATP molecules with respect to the surface (Kim, 1992). In the case 
of the oxidized sample the spectrum contains a superposition of 
zerovalent copper and copper in the oxidation state +II. The simi- 
larity to the spectrum of the CuS04 reference supports strongly the 
assumption of the oxidized surface species being CuS04. 3,{ 
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Figure 4 
Cu-K XANES spectra of oxidized and non-oxidized SAM compared 
with Cu and CuSO4 references 

In order to determine the bonding geometry of thiol-molecules 
on the Cu surface, EXAFS investigations at the S-K-edge were per- 
formed. In fig. 5 the EXAFS-function of the SAM on copper is 
depicted for a k-range between 3/~,- 1 < k < 10/~- 1. 
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Figure 5 
EXAFS-function at the S-K edge of 4-ATP-SAM on copper for a k- 
range 3/~ < k < 10/~ 

Fourier transformation to R-space gives interatomic distances 
between sulfur and neighbour atoms in different coordination 
shells, shown in fig. 6. Analysis of the EXAFS-data with a 3 shell 
fit, including the next neighbour carbon atom and copper atoms of 
the first and second substrate-layer leads to bond distances d s - c , , ,  
= 2.26/~, and ds -c , , 2  = 3.1/~ for first layer and second layer cop- 
per atoms respectively and a S-C interatomic distance of d s - c  = 
1.86/~,. Assuming a dominantly crystalline (111)-surface structure 
with a copper-copper nearest neighbour spacing in the (111)-plane 
of dc , , - c , ,  = 2.56 ,~, we can conclude that the S atoms occupy 
deep three-fold hollow sites. Reconstruction of the top Cu layer 
occurs. Following the argumentation of Imanishi et. al. (1998) we 
found a lateral displacement of Cu atoms of 0.8/~, and a polar an- 
gle of the S-Cu bond with respect to the surface normal of o; = 63 °. 
The calculated S-C bond length is larger than the corresponding 
value of the 4-ATP molecule ( d s - c  = 1.80/~), which is a result of 

charge transfer from copper surface atoms to the sulfur headgroup 
reducing the 7r-character of the S-C bond. 
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Figure 6 
Fourier-transform of EXAFS function: the contributions of different 
backscatterer-shells are emphasized 

The best results in the fitting procedure could be achieved as- 
suming an additional sulfur backscatterer, as predicted by Fen- 
ter (t998). We could determine a S-S spacing of d s - s  = 2.1 A, 
which is close to the predicted value of 2.2 A .  The derived S- 
Cu distance of d s - c , , ,  = 2.26 A is similar to values estimated 
for the sulfur headgroup at the on-top site of a Au(111) surface in 
this model. Even the larger S-Cu distance of 3.1 A seen in the 
Fourier-transform is explained by the "sulfur-pairing model" as a 
non-bonding distance between the second sulfur atom and the sur- 
face (Fenter, 1998). This gives evidence of sulfur adsorption as a 
dimer with one sulfur atom bound to the surface at an on-top po- 
sition and the other sulfur atom located vertically higher above the 
surface. However, as stated above, there is no verification of this 
model by the XANES spectra at the S-K-edge. 
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