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3. Input test radial distribution function and apply the 
kernel to this distribution function to construct x(k)  EX- 
AFS data. 

4. Treat the synthetic x(k)  as an experimental data, add 
synthetic noice using random number generator and recon- 
struct RDF by regularization method. The latter is a mathe- 
matical problem of solving the following "ill-posed" integral 
equation: 

The method of Tikhonovs regularization was introduced to 
EXAFS analysis nearly two decades ago, but it has not 
gained widespread use despite its appeal from a formal point 
of view. We find that  our implementation of the method, 
which automatically selects regularization parameters, shows 
promise for analysis of broad, complex distributions with 
closely spaced shells in presence of experimental noise. 

1. Introduction 

The extended x-ray absorption fine structure (EXAFS) 
technique is a very important tool for structure determi- 
nation in a wide range of materials (Sayers, Stern and Ly- 
tle, (1971). In general, for simple systems, Fourier methods, 
ratio-cumulant methods, and nonlinear least-square fitting 
have proven to be reliable. In the case of disordered systems 
with a dense distribution of scattering centers, the above 
mentioned methods may not resolve the structure correctly. 

The regularization method of numerical solution of Fred- 
holm integral equation of first kind has been shown to be 
an attractive method of solving a variety of so-called "ill- 
posed problems" (Tikhonov and Arsenin, 1977). Nearly two 
decades ago it was suggested that  it might be useful to ap- 
ply this method to EXAFS analysis (Babanov, Vasin, Ageev 
and Ershov, 1981). This technique has seldom been applied 
to real da ta  for reasons that  remain obscure, with several 
exceptions (Yang and Bunker. 1996, Babanov et al 1995). 
The theory and implementation details of the regularization 
method will appear in a future publication (Khelashvili and 
Bunker, to be published). The aim of our use of regulariza- 
tion methods is to extend the practical utility and assess 
the limitations of this technique. 

2. Results 

The calculations described below used the "Mathematica 
3.0" programming environment. 

1. Run FEFF7 program (Mustre de Leon, J.J. Rehr and 
S.I. Zabinsky, 1991) to calculate EXAFS effective scatter- 
ing amplitude Amp(k,  r) and phase Phase(k ,r)  for Silver 
as a central absorbing atom and six Oxygen atoms octa- 
hedrally around it for single scattering and for different r 
distances [1.5, 3.5])i from the central absorbing atom. This 
simple method is adequate for testing purposes but more 
sophisticated potentials should be used for data  analysis. 

2. Construct the kernel of EXAFS integral equation us- 
ing effective scattering amplitude and phase calculated by 
FEFFT. 

K ( k , r ) -  A m p ( k , r ) s i n P h a s e ( k , r )  (1) 
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jfa b 
x(k)  = K(k , r )g ( r )dr  (2) 

where g(r) is the RDF. 

The following constraints must be sutisfied: 

1) g(r) is a smooth function. 

2) g(r) = 0 if 0 ~ r _~ a, and g(r) = gM for r > b. gM -- 0 
for amorphous materials and gM -- 1 for crystal materials. 

3) g ( r ) > _ 0 f o r 0 < r < o o  

The iterational procedure implemented in the program as 
follows (Babanov at al 1995): 

g k + l  P+(A: , ,A , ,p  + ar6,~p + ~hB,~p) -1 

(A,,pX,, + azg~ + j3hBpqg~) (3) 

Here k = 0, 1 , . . . ,  P+ is the projection operator to the 
initial information set, A,,,, is the discretized approximation 
of the kernel (1), (~ and/3 are regularization parameters, 6,~p 
is the identity matrix, Bpq is the derivative approximation 
matrix. 

The program we have developed selects regularization pa- 
rameters and number of iterations automatically, by com- 
paring each iterational step with the previous one. The only 
external parameter input to the algorithm is the experimen- 
tal error in measuring EXAFS x(k) ,  which can be estimated 
from experiment by comparing repeated scans. 

If the regularization method and program are functioning 
correctly, the reconstructed RDF should closely resemble 
the initial test distribution function. These calculations were 
performed on a restricted region of k space - [3, 12],~ -1 , with 
the sum of several Gaussian functions with very close spac- 
ing of peaks as a test distribution function. Usually, in this 
kind of situation the Fourier transformation method does 
not resolve closely spaced peaks and because of parameter 
correlation nonlinear least squares fitting becomes problem- 
atic. For comparison, we have performed phase corrected k s 
weighted Fourier transformation of x(k)  da ta  over the same 
data  range. 
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Figure 1 
kSx(k) and RDF. Solid line - Test RDF, Thick line - Regulariza- 
tion RDF, Dashed line - Fourier Transform 

As we see from Fig.1,  the regularization method is in very 
good agreement with the test RDF. On the other hand the 
Fourier t ransform was unable to resolve any of the peaks. 

W'e have also considered the cases of two and three differ- 
ent types of atoms around the central silver a tom absorber 
and achieved good agreement with test RDFs. In the next 
example we considered two different types of atoms around 
central  absorber Silver atom. We used FEFF7  again for this 
purpose and incorporated Sulfur atoms along with Oxygen 
atoms in the same coordination shells. Then we constructed 
the new kernel and the new x(k) (Fig. 2) for this case analo- 
gously to the case with one type backscattering atom. After 
performing the regularization we arrive at the results shown 
on the figures 3 and 4. As we see, the regularization method 
gives an almost identical match with the test RDF. 

:y ?" v V 
Figure 2 
EXAFS x(k) for two different types of backscattering atoms, 
weighted by k 3 

Figure 3 
Test and Reconstructed RDFs for atom type A 
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Figure 4 
Test and Reconstructed RDFs for atom type B 

In contrast  with previous work, in the numerical exper- 
iments we have performed the scattering centers were lo- 
cated very close to each other. This scenario has not been 
considered before. In early publications (Babanov at all, 
1981,1995) the structures under consideration could be ana- 
lyzed successfully by conventional methods as well, the rea- 
son being tha t  the distance between scattering centers were 
of the order of 1.5 - 2~i. The cases considered here have 
five distinct peaks distr ibuted within an interval of 2~I. Vv'e 
find the resolution of the peak improves considerably by in- 
creasing the regularization parameters and the  number  of 
iterations. Correspondingly, the regularization parameters  
a and /3 turned out to be (in the range of 10 -3 - 10 -4 ) 
larger than  reported in previous (10 - s  - 10 - l ° )  a t t empts  to 
use the regularization method (Babanov at all, 1981,1995). 

3. Conclusion 

Using the ra ther  "old" idea of applying regularization meth- 
ods to EXAFS we evaluated its performance on difficult sys- 
tems and with noise. From our point of view, this  work is the 
first a t t empt  to apply the regularization method to the sit- 
uations where it is really needed and for which conventional 
methods axe of limited utility.It  was shown tha t  the method 
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outperforms traditional methods of EXAFS data analysis in 
situations where multiple scattering can be neglected. We 
developed a program that  authomatically selects regulariza- 
tion parameters and the number of iterations. The work to 
generalize this method for the case of multiple scattering 
and Fourier filtering to resolve "windowing effects" during 
separation of different shells is in progress. 
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