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The path-integral effective-potential (EP) method was applied to the 
calculations of EXAFS cumulants. The EXAFS cumulants up to 
the fourth order for diatomic Br2 were evaluated and compared to 
the results by the first- and second-order perturbation theory and 
also the experiments. The second-order perturbation formulas for 
the even-order cumulants (C2 and Ca) are newly presented. The 
advantages and disadvantages of the EP method are discussed. 
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1. Introduction 

Recently great attention has been paid to the temperature depen- 
dence of EXAFS, which provides information on thermal vibra- 
tions including anharmonicity. The theory concerning the relation- 
ship between the EXAFS cumulants and vibrational potentials has 
been developed, which is based on the quantum-statistical pertur- 
bation theory (Rabus 1991; Frenkel & Rehr, 1993; Fujikawa & 
Miyanaga, 1993; Yokoyama et al., 1996a, 1996b). The perturbation 
method, however, includes several intrinsic difficulties for practical 
use: complicated formulation and computation of many-atom sys- 
tems and less reliability in large anharmonic systems. For instance, 
the fourth-order cumulant by the first-order perturbation is negative 
in the case of a positive fourth-order force constant and needs the 
second-order perturbation to yield meaningful results. 

Another quantum-statistical approach is to solve the Feynman's 
path integral. This method can handle greater anharmonicity. The 
path-integral effective-potential (EP) method has been developed 
by means of the variational concept (Cuccoli et al., 1995). Very 
recently, the EP theory was for the first time applied to EXAFS of 
two-body systems (Fujikawa et al., 1997) and subsequently the re- 
sults of multi-dimensional real systems such as solid fcc Kr and Ni 
were reported (Yokoyama, 1998), which are in excellent agreement 
with the experimental data. 

In this proceeding, becasue of a limited length of the article, let 
us confine ourselves in a diatomic system of Br2. The EXAFS cu- 
mulants up to the fourth order are evaluated for diatomic Br2 by 
means of the EP and the second-order perturbation (P2) theories. 
Analytical forms of the cumulants using the P2 theory are newly 
reported. The results are compared also with the experiments. Ad- 
vantages and disadvantages of the EP method are discussed. 

2. Experimental and Data Analysis 

K-edge EXAFS spectra of gaseous Br2 were taken by means of 
the conventional transmission mode at Beamline 10B in Photon 
Factory using a Si(311) channel-cut crystal as a monochromator. 
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Gaseous Br2 with a saturated evaporation pressure at room temper- 
ature was stored in a quartz-and-Pyrex cell with thin quartz win- 
dows for the x-ray transmission. The measurement temperatures 
were 300-543 K. 

The Br K-edge EXAFS oscillation function k Z x ( k )  of gaseous 
Brz was extracted according to a common procedures: pre and 
post-edge background subtraction and subsequent normalization. 
The obtained k 3 x ( k )  function was once Fourier transformed, and 
after Fourier filtering of the intramolecular Br-Br shell of inter- 
est, the curve-fitting analysis was performed in k space using the 
fourth-order cumulant-expansion formula, although the fourth or- 
der contains large errors. Details of the analysis and the data qual- 
ity can be seen in the previous works (Yokoyama et al., 1996a; 
Yokoyama, 1998). 

3. Theory 
Let us first derive the second-order perturbation formulas of the 
EXAFS cumulants up to the fourth order (Cz, C2, C3 and C4). 
The second-order perturbation is important for even-order cumu- 
lants since the the first- and second-order perturbation provides the 
same order of magnitude. On the other hand, odd-order cumulants 
may be described within the first order. 

The thermal average of some physical quantity < ,4 > is ex- 
pressed using a trace as 

1 ,~e_~(~o+h, ) (1) <A>= ~Tr 

where Z = Tr e -a (B°+a ' )  is the partition function, [Io a n d / t '  the 
non-perturbed and perturbed Hamiltonian operators, respectively, 
and/~ = ( k B T ) - 1  (kB the Boltzmann constant and T the temper- 
ature). In the second-order perturbation, the trace is given as the 
following integral form 

( / :  TrAe  -~(~°+h ' )  ~ Tr~,e -~-0° 1 - f f I ' ( t l )d t l  

r7 ) ~ /  
+ [ t ' ( t , ) n  ( tg)dt2dt ,  , (2) 

J O J O  

where H'(/3) = e~fl°/:/ 'e -~'0°. The partition function is obtained 
in a similar equation [fi, = 1 in F_x]. (2)]. When the non-perturbed 
Hamiltonian is exactly solved, the second-order thermal average 
can analytically be evaluated. 

A two-body system whose interatomic potential V(r) is written 
as a polynomial form of 

1 ro) 2 ~;3(r ro) 3 + tca(r ro) a -t- (3) w(r) = ~,¢o(r . . . . . . .  

(/~0, t~3, /~4 are, respectively, the harmonic, third-order and fourth- 
order force constants) is investigated here. The third- and fourth- 
order potential terms are regarded as a perturbed Hamiltonian, 
while the harmonic term can be used as a non-perturbed Hamil- 
tonian. Using the eigenvalues and eigenfunctions of the non- 
perturbed harmonic oscillator, the integral of Eq. (2) is analytically 
evaluated. The second-order partition function is consequently be 
obtained as 

Z =  Z (°) + Z 0) + Z (2) + . . .  (4) 

z(O) _ 1 (5) 
1 - - z '  

Z ( 1 )  _ g 4  0"4 3(1 + z) 2 (6) 
k B T  (1 - z) 3 ' 

2 6 
Z ( 2 )  _ ~30"0 1 1 2  + 38z + 11 

- ( h w ) ( k B T )  ( 1 -  z) 3 ' (7) 
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where w = X / ~ / #  (U the reduced mass), a~ = h/(2p, w) (h the 

Planck constant divided by 2rr), and z = e -on''. The consequent 
formulas up to the fourth-order cumulant (the first order for C~ and 
C3, and the second order for C2 and Ca) are given as follows: 

6n3a~ 1 + 
C ~ = < r - r o > ~ C [  x)" - 

2: 

hw 1 - z '  
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is the average path, and w 2 and w are the variational parameters. 
An explicit form of the density matrix p(:~) for a harmonic os- 

cillator is known, and the trial density matrix po(5:) for the present 
two-body (one-dimensional) case is consequently described in a 
integral form of 

(8) 
po(~:) ~- 2~~e-V~lr(~) l f ~  d x e - ~  (20) 

(9) 
where 

(10) o~(:~) = h ( co th  f(S:) f - ~ ) )  /3hw(5:) 
2#w(e) - , f ( e ) =  2 (21) 

, ( l l )  and 

1 sinh f(5:) (22) 
Veff(2 ) = w(5:) + ~ In f(:-------~ 

Here, a(5:) is the pure quantum fluctuation (difference between 
(12) the quantum-mechanical and classical Debye-Waller factors) and 

Veff(Sc ) is the effective potential. The variational parameters w(:~) 

and w 2 (50 are optimized using the Jensen-Feynman inequality as 

1 2 1 f ~  (13) w + -~w a = ~ j _ ~  dxV(,yc + x )e -  ~,~ (23) 

c 2  = < - - c , )  2 + c i "  + , 

c2(O) = °'° 21 + z 
1 z '  

C2(1) _ tcatr 6 12(1 + z) 2 ~:4ao 6 24z(1 + z) 
( l - z )  2 kBT  ( l - z )  3 

2 8 
/'~3 O'0 C2(2) 4(13z 2 + 58z + 13) 
(r )2 

~9crSa o 24z(1 + z) 

( /kv)(ksT) ( 1 -  z) 3 ' 

C3 = <  ( r -  r o -  C1) 3 > 

- 4(2:2 + lo2: + 1) 

ha; (1 - z) 2 

and 

C4 = <: (r - ro - C1) 4 > -36"  2 ~ C 0)  + C (2) , (14) 

C4(a) = _ n4o'~) 12(z 3 + 9z 2 + 9z + 1) 
(hw) 2 ( l - z )  3 

~4G0 8 144z 2 
- -  k s - - - T  (1 - z )  -------------~ ' (15)  

= x2al°  12(5z 3 + 109z 2 + 109z + 5) ~ ( 2 )  3 o 
"-'4 (hw)2 ( 1 -  z) 3 

2 ao 720z 2 /~3 (7"0 
+ (hw)(kBT) (1 - z) 4" (16) 

Note that the first-order perturbation terms of the even-order cumu- 

lants, 6"I 1) and 6"4 (2) are negative, while 6"I 2) and C 0)  are positive. 
The theory of the path-integral EP method was already estab- 

lished (Cuccoli et al., 1995). In the Feynman's path-integral the- 
try, the density matrix p(x) (x the real-space coordinate) in the 
one-dimensional system is given in a functional integral form of 

1 
p(x) = ~ < z l e - ~ l  z > 

1 f p[x(u)]e -A[x(u)]/rt (17) 
= "Z J(z,o)=:,(x,h~) 

where A[x(u)] is the Euclidean action. The EP method assumes a 
trial Euclidean action Ao[z(u)]. In the present case, since we will 
treat thermal vibration, the harmonic action is a good candidate for 
the trial function: 

Ao[x(u)] = du -~Ux + -~pw (:~)x 2 + w(5:) , 

where 

• , = ~ dux(u) 

(18) 

(19) 

and 
2 _ 1 f ~  d2V(5: + x) _ ~  

w l z ~  dx dx 2 e . (24) 

Using po(5:) in Eq. (20), the EXAFS cumulants of any order can 
be calculated numerically. 

4. Results and Discussion 

Employing the literature values of t~o=2.459 (mdyn/A), t¢3=1.756 
(mdyn/A 2) and e~4=1.058 (mdyn/A 3) from the vibrational spectra 
for Br2 (Huber & Herzberg, 1979), the EXAFS cumulants (?2, C3 
and C4 for the intramolecular Br-Br shell were calculated numer- 
ically. Figure 1 shows the EP results, together with the first- and 
second-order perturbation (P1 and P2, respectively; the harmonic 
results are also given as HA for C2) ones. The classical and exper- 
imental EXAFS data are also plotted. 

In the C2 plot, the P1 results are slightly underestimated espe- 
cially at high temperature compared to the EP ones because of a 
negative value for the first-order perturbed term, while the P2 ones 
agree very well with the EP ones. Although C4 is negative in the 
first-order perturbation, the second order (P2) approaches the EP 
results. There seems, however, still some underestimation for C4 
in the P2 results compared to the EP ones and this indicates that 
higher-order perturbation would be required. 

In the case of Ca, similar trends are observed. The Pl method 
estimates a little smaller value than the EP ones, again indicating 
a requirement of higher-order perturbation. The classical method 
shows essentially the same results as the EP one at T > 200 K. As 
temperature goes down from ,-~200 K, the classical value converges 
to zero monotonically as a function of T 2 and gradually deviates 
from the two quantum-statistical methods. This is caused by the 
zero-point anharmonicity. At T < 100 K, the EP value begins to 
deviate from the P1 result and converges to zero at T =  0 K. In the 
present pair potential, there should be some finite (positive) (73 at 
T = 0 K, implying that the Pl method predicts more appropriate 
6'a at a very low temperature region. 
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Figure 1 
Temperature dependence of 02, O3 and 04 of Br2 evaluated by the EP 
(solid lines), the classical (classic; long-dashed lines), and the P1 (dot- 
ted lines for 02, C3 and C4) and P2 (short-dashed lines for C'2 and 
C,t) methods, together with the experimental data (diamonds with error 
bars). For C'2, the results of the harmonic approximation are also given 
(HA; dot-dashed line). 

In order to discuss advantages and disadvantages of the EP 
method by comparing the perturbation theory, a previous work for 
many-atom systems by Yokoyama (1998) is also referred to here. 
In the case of solids, the perturbation calculation is extremely com- 
plicated even within the first order and the second-order perturba- 
tion would be almost inaccessible. In the perturbation calculations 
of solid Kr (Yokoyama et aL, 1997), a finite-size cluster was as- 
sumed to reduce the computational load, and thus only the EXAFS 
cumulants for the first-nearest neighbor Kr-Kr shell were phys- 

ically meaningful. On the contrary, in the EP method the three- 
dimensional periodicity and higher-neighbor interactions are more 
easily included using the low-coupling approximation (Cuccoli et 
al., 1995) and the results were found to agree excellently with the 
experimental data of solid Kr not only for the first-neighbor but 
for higher-neighbor shells. Moreover, many-body interactions can 
be treated in the EP method. To describe metallic bonds appropri- 
ately, the pair-potential approximation seems to be insufficient, and 
the potentials given by, for instance, the embedded-atom method 
(EAM) should be employed. In the previous study (Yokoyama, 
1998), the EP calculation was successfully performed by combin- 
ing the EAM potential of fcc Ni, and the results were found to 
be in exceelent agreement with the experiments. Conclusively, in 
the EP calculations of solids, one can include many degrees of vi- 
brational freedom, three-dimensional periodicity, higher-NN inter- 
actions, many-body interactions such as metalic bonds and larger 
anharmonicity in a straightforwrd manner, and reliable EXAFS cu- 
mulants can be obtained not only for the first-nearest shell but for 
higher-neighbor ones. In this point, one can recognize that the EP 
method is superior to the perturbation. 

In the present calculations for a one-dimensional system of Br2, 
some disadvantage of the EP method was seen in the estimation of 
(73 at low temperature. In Fig. 1 (b), a strange decrease in (73(EP) 
was found at the temperature less than ,~ 100 K. This is because 
in the EP method the vibrational properties tends to be harmonic at 
the 0 K limit. This should also be true for (74, although (74 is essen- 
tially zero and less important at low temperature. The perturbation 
theory can predict more accurate (73 at low temperature. The EP 
method is not reliable for strong quantum systems. At higher tem- 
peratures, however, the first- or second-order perturbation theory 
is insufficient to describe appropriate anharmonicity and higher- 
order expansion would be required. It can be conlcuded that the EP 
method is more practical and reliable for common systems with 
one degree of vibrational freedom as well as many degrees of free- 
doms. 
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