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We have studied the multiple recording method to estimate if it 
possible to obtain by this way reliable EXAFS data standard 
deviations. The examination of more than 10 different samples, 
each of them recorded at least 8 times, gave us the possibility to 
show that the partial standard deviations follow the expected 
probability laws. Even when the number of samples is small, it is 
possible to give a reasonable upper limit of e wich could be used 
as the statistical contribution of the experimental error bars. In 
some cases we have found that a uniform weighting by 1/e 2 may 
fail to give a good fit, especially in the high part of k space. We 
present a simple method of weighting which lead to more 
satisfying fits without loosing the correct normalisation of the 
fitted AX 2 necessary to obtain correct fitted parameters error bars. 
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1. Introduction 
In order to provide standard methods for fitting and extractiong 
quantitative structural parameters from EXAFS data and 
modelling, the Standard and Criteria In X.AS Comitee (Lytle, 

S&C report, 1988 and present XAFS conference, 1998) has 
proposed to use the statistics laws already applied in other 
structural methods, as crystallography. This short paper will not 
discuss these laws, but will focuss on the key parameter that 
should be evaluated if one want to use them : the standard 
deviation of the data, noted e, wich appears in the statistical 
function to minimize in the fitting procedure as : 

zxx 2 = fN,,d/Np~) E,  (X,~.-X,oxp)%, 2 
It has been underligned that e should be the quadratic sum 
of several terms, including non statistical, or systematic errors. 
This work deals only with the statistical error term. In the 
published EXAFS codes many different methods for evaluating 
this standard deviation are proposed. We will discuss one of them 
: statistics on multiple recordings, named also the sampling 
method. Altough excitation spectra (fluorescence, electrons 
emission) should be studied in the same manner, we have 
restrained the present study only on transmission data. 

2. The principles 
We study a multiple recorded data set lq., xj(ki.) with i= 1,Npt (Npt 
= number of data points) and j=l ,n  (n= number of samples). 

The degree of freedom of this sampled spectrum is v = n-1. 
For each data point we calculate the mean signal <x(lq). >, and its 
standard deviation ai, 

<x(ki). >. = [Zjxj(ki). ]/n (1) 
o-i, = sqrt [Ej(zj(lq).-<Z(lq). >.)2/(n-I)] (2) 

For fitting purpose it may be more convenient to use averaged 
values than point by point ones. Since it is a sine wave, the 
average EXAFS signal should bc cvaluated as the quadratic mean 
Sn=sqrt [Ei(<Z(]q)>n)2/Npt] (3). 
The average standard deviation can be calculated in three 
manners : 
simple mean •sn = Zi  O'in/Npt (4), 
quadratic mean eq, = sqrt[Z i oi. 2/Npt] (5) 
or, as recommanded by Bevington (Bevington, 1992), inverse 
quadratic mean eqi.= 1/sqrt[E i (1/oi,) 2/Npt] (6). 
The signal/noise ratio is defined as S/B = S . /e . .  
In our previous work we have systematically used liqi n (equation 
6), but after having remarked that this formula often 
underestimates the error bars, we prefere to calculate the three e, 
and choose the greatest one. One may remark that e. still depend 
on the number of samples n and is certainly not equal to the 
standard deviation of the parent distribution e. In principle 
e= lim(e,) (n->). If n is small the use of e, as a value of e may be 
questionable. Of course, for economical reasons, it is impossible 
record infinity sets of data. Fortunately the statistics laws allows 
us to evaluate a confidence interval in which e should lie with a 
given probability. In other words, it is possible to calculate an 
upper limit go = e.*Bo under which the parent value e, should lie 
with the probability P. We suggest that this upper limit should be 
used as the value of e instead of e.. 
The values of B U (P,v) and BL(P,v ) (for the lower limit) are 
tabulated (Taylor, 1990). However, it is quite easy to calculate 
them. The main idea is that the quantity v*[e. /e]  2 obeys to the Z 2 
probability law p(:>~2, v) for v degree of freedom (Mandel, 
1964). The confidence interval for a probability P should be set 
symetrically between the two limits PL = (l-P)/2 (7) and Po = 
(1+P)/2 (8). 
Thus, o% < v*[ g./e]2 < o~ u (9). 
The numerical values of ct L and o% are the solutions of the 
equations P(CtL, V) = PL (10) and P(otu, v) = Pu (11). Finally we 
obtain the limits ofe  in the confidence interval : 
BL*gn<g<Bu*gn, with BL=Sqrt(v/tXu) and B u =sqrt(v/(ZL) (12) 

We have already written the corresponding Fortran code. A free 
access in given on the web of LURE : 
http://www.lure.u-psud, fr 
Some examples of the numbers obtained by this program are 
displayed in table 1 

n BL BU 
3 0.52 6.28 
4 0.57 3.70 
5 0.60 3.07 
6 0.62 2.45 
7 0.64 2.20 
8 0.66 2.03 

Table 1 Value of BL and BU for n sampled spectraand a confidence 
interval ofprobabily P = 95% 

3. Results : the standard deviation statistics 
We have applied the preceeding principles to a set of  more than 
10 spectra of different kind of samples, each recorded at least 8 
times, in transmission mode. The complete study of these spectra 
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will be published elsewhere (Andreatta). In this short paper we 
will just  summarize the results. The behavior of c, versus n, the 
number of  sample for one of the cases is displayed in figure 1. In 
all the studied examples we have found a similar behaviour : o,  is 
a monotonic increasing function of  n which saturates for n 8. In 
all these examples we can assume that es/E~ ~ E/E,. In figure 2 we 
have plotted =zs/c . versus n for all the studied examples. The 
corresponding values of  BL and B u for P = 95% are displayed as 
plain lines. It is clear that, except for n=3 in one spectrum, all the 
partial standard deviations plotted in this figure are largely inside 
the confidence interval defined in §III. 
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(s'  = srqrt(k")*s (14)) the new weight will cancel in the 
calculation of  AZ 2 and will have only a cosmetic use in the 
displayed graphics. On the other hand, if  we do not apply the k* 
weighting to s 2 the resulting normalisation will be incorrect and 
the estimation of  the parameters error bars will be unrelevant. We 
have tried a very simple idea : the experimental weighting w = 
1/s 2 is replaced by w'(k)=k"/A. 
Thus s '(k) = sqrt(1/w) = sqrt(A/k") (15). The value of  A is 
estimated in order to get <g'>=<e>. This calculation is also 
provided in the cited Fortran code. 
In the example displayed in figures 3 and 4 we have obtained A = 
0.25 for s = 0.015 and n = 3. The resulting k"/A weighted two 
shell fit is shown on figure 4. The improvement of this fit at the 
end of  the spectrum is clear. Fitting results are displayed in table 
2. One may remark that these results are closer to the known 
crystal structure than the <~ bad >> fit of  figure 3, and that the 
corresponding normalization of  AX 2 lead to similar fitted 
parameters error bars. 
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Figure 3 Fit with an uniform weighting 
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Figure 2 plot of e8/en for 7 selected spectra 

In other words, this experimental study allows us to say that 
e < BU(P,n-1) * e, (13) with a probability at least equal to P. We 
think that this upper limit value of  the standard deviation can be 

- . 2 0  I I I I 

used as the maximum value that should be used in the estimation 
of  the error bars in parameters fittings. 

4. S t a n d a r d  dev ia t ion  and fit w e i g h t i n g  4.00000 6.00000 8.00000 lO.OOOO 12.oooo 1~.oooo ) 
In most cases fitting with a uniform weight w=l /c  2 leads to Figure 4 Fit with w(k)= k3/A 
correct fitting results and to a reasonable evaluation of the 
statistical contribution of the error bars. However, we have 
encourted some cases where uniform weight leads to significantly 
bad fits (by eyes) at the end of  the spectrum (figure 3). N o (A) R (/~) A E o  ( c V )  A~2v 
Obviously, such a << bad >> fit implies that the the errors bars are w(k) = lie 2 3.7(2)  0.06(1) 1.81(1) -0.3(1.0) 
dominated by systematic errors. A way to improve such a fit is to 2.3(2) 0.06(I) 2.08((2) -0.3(1.0) 1.6 
apply a k* weight, w(k) = k3/A 3.9(2) 0.06(1) 1.79(1) -2.9(1) 

2.1(2) 0.06(1) 2.07(2) -2.9(1) 0.98 
Of  course, if  the standard deviation is modified accordingly Table 2 
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One may remark that, even normalized to the experimental 
standard deviation, k" weighting violates the principles of 
statistical treatment. However, it is possible to justify this 
method, when standard statistical treatment fails to give 
satisfying fits. In figure 3 the fit is dominated by non statistical 
errors because the deviation between the experimental and then 
theoretical spectra is not randomly distributed from the beginning 
to the end of the spectrum. This fit is satisfying at low k and not 
at the end. This means that the assumed standard deviation is too 
small at low k, and too big after 10 A 1, In other words, the fitting 
weight is too big before 6 A ~ and too small after 10 A ~. 
Normalized k" weighting preserves the average standard 
deviation and compensates the systematic errors observed at the 
end. During the last meeting of the Standard and Criteria 
comitee, it was stressed that if statistical treatment of EXAFS 
data was already well established, non statistical, systematic, 
errors were much difficult to handle. While the comitee works to 
try to overcome this difficulty, it was proposed to treat systematic 
errors the same way as statistical ones by adding a scaling factor 
to the standard deviation. The present normalized weighting 
procedure can be seen as an alternative method for the treatment 
of systematic errors. Its use should be limited to the cases where 
the systematic errors are small, increasing with k and cannot be 
treated by an improvement of the structural model. 
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5. Conclusion 

In this work we have shown that experimental standard 
deviations obtained by multiple recording of EXAFS data are 
reliable even if the number of samples is small. Of course we 
cannot assume that we have found a general parent statistical 
distribution of the EXAFS data. However, we have shown that in 
all the studied cases, the experimental standard deviations are 
under the limits given by the statistical laws for a normal 
distribution of data. The upper limits can be used as a maximum 
practical value in fitting procedures and error bars estimations. 
Finally a way to use k" weighting when uniform weight is less 
efficient is shown to be useful and applicable. 


