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The manufacture and properties of compound refractive lenses (CRLs) for hard X-rays with

parabolic pro®le are described. These novel lenses can be used up to �60 keV. A typical focal length

is 1 m. They have a geometrical aperture of 1 mm and are best adapted to undulator beams at

synchrotron radiation sources. The transmission ranges from a few % in aluminium CRLs up to about

30% expected in beryllium CRLs. The gain (ratio of the intensity in the focal spot relative to the

intensity behind a pinhole of equal size) is larger than 100 for aluminium and larger than 1000 for

beryllium CRLs. Due to their parabolic pro®le they are free of spherical aberration and are genuine

imaging devices. The theory for imaging an X-ray source and an object illuminated by it has been

developed, including the effects of attenuation (photoabsorption and Compton scattering) and of the

roughness at the lens surface. Excellent agreement between theory and experiment has been found.

With aluminium CRLs a lateral resolution in imaging of 0.3 mm has been achieved and a resolution

below 0.1 mm can be expected for beryllium CRLs. The main ®elds of application of the refractive

X-ray lenses are (i) microanalysis with a beam in the micrometre range for diffraction, ¯uorescence,

absorption, scattering; (ii) imaging in absorption and phase contrast of opaque objects which cannot

tolerate sample preparation; (iii) coherent X-ray scattering.
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1. Introduction

Microanalysis and imaging with X-rays have developed

rapidly over the last few years. They are a major part of the

activities at synchrotron radiation sources. Microdiffrac-

tion, micro¯uorescence, microabsorption spectroscopy and

X-ray microscopy in absorption and phase contrast have

many applications in basic science and technology. While

microanalysis requires devices which generate a small focal

spot, X-ray microscopy calls for high-quality imaging

components. Up to now, curved mirrors (Kirkpatrick &

Baez, 1948; Suzuki & Uchida, 1992) and multilayers

(Underwood et al., 1986, 1988), single and multiple capil-

laries (Bilderback et al., 1994; Hoffman et al., 1994) and

diffracting lenses (Aristov et al., 1986; Lai et al., 1992;

Snigirev, 1995; Snigireva et al., 1998) are the standard

means of generating a small focal spot. Some of these

devices are suited for imaging (Underwood, 1986; Tarazona

et al., 1994; Hartman et al., 1995; Snigirev et al., 1997; Yun et

al., 1998). Recently, we have shown that there are means of

manufacturing refractive X-ray lenses. Refractive lenses

were considered for a long time not to be feasible at all, or

at least dif®cult to fabricate and inferior in quality to

Fresnel lenses (Yang, 1993). The ®rst lenses of this type had

cylinder and crossed-cylinder symmetry with a focal length

in the metre range and a focal spot size in the micrometre

range (Snigirev et al., 1996; Snigirev, Filseth et al., 1998;

Elleaume, 1998). A large number of holes, 0.5±1 mm in

diameter, are drilled in aluminium or beryllium to form a

well aligned row of holes. The material between the holes

focuses the beam. Due to the assembly of a large number of

individual lenses these refractive X-ray lenses are called

compound refractive lenses (CRLs). The concept has also

been transferred to the focusing of neutron beams

(Eskildsen et al., 1998). However, these lenses show strong

spherical aberration and are not well suited for imaging

purposes due to imperfections in the lens shaping.

In the meantime, we have considerably improved the

concept and the manufacturing of the CRL. The new lenses

have a parabolic pro®le and rotational symmetry around

the optical axis. Hence, they focus in two directions and are

free of spherical aberration. They are genuine imaging

devices, like glass lenses for visible light. They can with-

stand the full radiation (white beam) of an undulator at

third-generation synchrotron radiation sources. The lenses

are mechanically robust and easy to align and to operate.

The paper is organized as follows. x2 gives details on the

design and on the manufacturing of parabolic CRLs. In x3
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we consider the imaging of an undulator source by a CRL.

x4 deals with the imaging of an object illuminated by an

undulator beam by means of a CRL. A comparison is made

between theory and experimental results. Finally, in x5 we

give a summary and an outlook on further developments

and on applications of the new parabolic CRL.

2. Refractive X-ray lenses

It has been textbook knowledge for many years that there

are no refractive lenses for X-rays (Lipson et al., 1998). The

lens-maker formula for a convex lens with equal radii of

curvature R on both sides reads as

1=f � 2�nÿ 1�=R; �1�
where n is the index of refraction. For visible light in glass,

absorption can be neglected and n is �1.5. In that case a

radius of curvature of 10 cm gives a focal length of 10 cm.

Hence, many optical designs can be implemented with a

single lens. On the other hand the index of refraction n for

X-rays in matter reads (James, 1967)

n � 1ÿ �ÿ i�; �2�
with

� � �NA=2��r0�
2��Z � f 0�=A; �3�

� � ��=4�: �4�
Here, NA is Avogadro's number, r0 is the classical electron

radius, � � 2�=k1 � 2�c=! is the photon wavelength,

Z � f 0 is the real part of the atomic scattering factor

including the dispersion correction f 0, A is the atomic mass,

� is the linear coef®cient of attenuation and � is the density

of the lens material. Firstly, the real part of n is smaller than

1. A focusing lens must have a concave form rather than a

convex one. Secondly, 1ÿ � is very close to 1, � being of the

order of 10ÿ6. Thirdly, although � is a number small

compared with 1, X-ray absorption in the lens material is

not negligible. This has led to the widespread view that

there is no chance of manufacturing refractive X-ray lenses.

However, the problems can be overcome by stacking many

individual lenses behind one another, by making the radius

of curvature small (e.g. 0.2 mm) and by choosing a low-Z

lens material (Lengeler et al., 1998; Snigirev, Filseth et al.,

1998; Snigirev, Kohn et al., 1998). If, in addition, the pro®le

of the lens is a paraboloid of rotation, spherical aberration

can be eliminated (Lengeler et al., 1998, 1999). Under these

conditions a focal length of 1 m and a transmission between

1 and 30% can be achieved as shown in this paper. Table 1

shows some typical values of � and � for materials which

are good candidates for refractive X-ray lenses. It turns out

that for all energies the � value is much smaller than the �
value.

In Appendix A it is shown that the focal length of a CRL

with parabolic pro®le s2 � 2Rw (Fig. 1) is

f � �R=2N���1�O����; �5�

as measured from the middle of the lens. R is the radius of

curvature at the apex of the parabolas, N is the number of

individual lenses in the stack. A lens with a thickness

2w0 � d has an aperture 2R0 � 2�2Rw0�1=2 (Fig. 1). For

typical values quoted below, in particular for f ' 1 m, the

correction term of order � in expression (5) is less than

1 mm and will be neglected. Let us consider a typical

example. With tabulated f 0 values (Henke et al., 1993),

� � 2:41� 10ÿ6 for aluminium at 15 keV. For a radius of

curvature R � 0:2 mm we obtain f � 0:99 m if N � 42.

With 2w0 � d � 1 mm the lens will have a length of 42 mm,

Figure 1
Parabolic compound refractive lens (CRL). The individual lenses
(a) are stacked behind one another to form a CRL (b).

Table 1
Typical values of � and � for beryllium and aluminium as
refractive lens material.

Values of X-ray attenuation (photoabsorption and Compton scattering)
and of Z � f 0 from Henke et al. (1993).

Be Al
E (keV) � (10ÿ6) � (10ÿ9) � (10ÿ6) � (10ÿ9)

8 5.334 2.419 8.579 158.20
10 3.412 1.095 5.468 66.61
15 1.515 0.341 2.414 13.50
20 0.852 0.195 1.355 4.40
30 0.379 0.113 0.601 0.95
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which is short compared with the focal length. The lenses

described in this paper are made from polycrystalline

aluminium by a pressing technique and have been designed

and manufactured at the University of Technology in

Aachen. The pressing tools consist of two convex para-

boloids with rotational symmetry facing each other and

guided in a centring ring. The aluminium blank in which the

paraboloids are to be pressed from both sides is held and

centred by a ring, 12 mm in diameter, that ®ts tightly into

the centring ring. The parabolic lens pro®le is simulta-

neously pressed into the aluminium from both sides, in a

similar way as metallic money pieces are coined. Modern

computer-controlled tooling machines allow the pressing

tool to be manufactured with a micrometre precision.

Fig. 2 shows a height pro®le through one side of a

paraboloid as measured by white-beam interferometry. The

radius of curvature at the apex of the parabola is

196� 1 mm, close to the design parameter R � 200 mm.

The surface roughness is about 0:1 mm r.m.s. This will be

shown to have a negligible in¯uence on the lens perfor-

mance. The individual lenses are stacked behind each other

by means of two high-precision shafts so that the optical

axes are aligned with a precision of �1 mm. An assembled

CRL has the size of a matchbox.

It is very easy to align the lenses in the beam. The lens

holder, shown in Fig. 3, has an alignment hole which allows

the optical axis at the CRL to be orientated parallel to the

synchrotron radiation beam. Once this alignment is

performed, the whole lens holder is translated down by

10 mm, so that the beam hits the centre of the lenses. A ®ne

adjustment is performed by means of an Si-PIN diode. The

whole alignment takes about 15 min.

In order to test the stability of an aluminium CRL in the

white beam of an undulator at the ESRF (50 W) we have

measured the temperature as a function of time in the ®rst

lens of the stack (N � 25) by means of a thermocouple. The

CRL was in still air. Fig. 4 shows that the temperature

stabilizes below 423 K after 15 min. We conclude that

CRLs are able to cope without problems with the heat load

from undulators in third-generation synchrotron radiation

sources. An additional cooling can easily be applied when

the CRLs are intended to be applied in more powerful

X-ray beams.

In the following we shall calculate the imaging properties

of CRLs, including absorption and surface roughness.

Figure 2
Height pro®le of an aluminium lens measured by white-light
interferometry; contour plot (a) and linear scan through the lens
(b). The parabolic ®t gives R = 196 � 1 mm and a surface
roughness of 0.1 � 0.1 mm r.m.s.

Figure 3
Schematic view of a compound refractive lens.

Figure 4
Temperature increase in an aluminium CRL when exposed to the
white beam of an ESRF undulator (50 W). Different aluminium
absorbers in front of the CRL reduce the power load.
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3. Imaging of an undulator source by a CRL

First, we would like to summarize a few properties of

undulator sources installed at third-generation storage

rings. An undulator source has a ®nite size described by

Gaussians in the vertical and in the horizontal direction,

W�x� � �2��2
v�ÿ1=2 exp ÿx2=2�2

v

ÿ �
; �6�

where �v is the r.m.s. width in the vertical direction. There is

a similar expression, W�y�, for the horizontal direction. At

the ESRF a high-� undulator (considered here) has a size

�v � 14:9 mm and �h � 297 mm which corresponds to a

FWHM of dv � 35 mm in the vertical and dh � 700 mm in

the horizontal. The values quoted here have an uncertainty

of at least 10%.

All X-ray sources available at present, including undu-

lators at third-generation synchrotron radiation sources,

are chaotic sources because the emission is spontaneous in

any mode, rather than stimulated in a well de®ned ®xed

mode (Loudon, 1983). An undulator harmonic has a typical

bandwidth of 1% at 10 keV. This corresponds to a long-

itudinal coherence time �0 of 4 � 10ÿ17 s. This is the time

scale over which the phase of the electric ®eld emitted by

one source point undergoes random ¯uctuations. Even if

the beam is monochromated by Bragg re¯ection to within

�E=E � 10ÿ4, �0 is still only 4 � 10ÿ15 s. This is much

shorter than the detector response time of any detector

presently available. In other words the intensity measured

by any detector is an average over a time much longer than

the characteristic time �0. The second characteristic feature

of the chaotic source is that the phases of the electric ®eld

emitted by different source points are uncorrelated. These

properties will be used extensively in the following argu-

ments.

Let us consider a CRL with focal length f at a distance L1

from an undulator. In general the beam passes through a

double-crystal monochromator. The monochromatic

X-rays should have energy E � h- ! with a bandwidth

�! � 2��� much smaller than !. The X-rays are assumed

to be linearly polarized in the horizontal plane. A typical

high-� undulator at the ESRF, e.g. ID22, has a beam

divergence of 25 mrad FWHM. At a distance of 40 m it

illuminates homogeneously an object (like a lens) of 1 mm

diameter. We ask for the ®eld amplitude E�t� at a given

time t at a point P behind the lens (Fig. 5). If we place a

detector at P, the number of photons detected during a

data-collection time T will be proportional to

I � �c=4��hjE�t�j2i � �c=4�T� RT=2

ÿT=2

dt jE�t�j2: �7�

The second equality de®nes the detector average. As

mentioned above, the detector collection time is always

much longer than the characteristic ¯uctuation time �0 in

the phase of the electric ®eld E�t�. The ®eld at P is the

superposition of the amplitudes emitted by the individual

source points and propagating via all possible trajectories

which pass through the lens. One of these trajectories with

an optical path � is shown in Fig. 6.

The ®eld amplitudes in the source which contribute to

the amplitude at P at time t have to be taken at the retarded

time t ÿ�=c. Therefore, each amplitude will contain a

factor

exp ÿi!�t ÿ�=c�� � � exp�ÿi!t� exp�ik1��; �8�
with ! � k1c. Part of the time the photons will propagate in

free space (or in air) and part of the time they propagate

through the lens material. We denote by t12 the amplitude

for transmission at an air±lens interface and by t21that at a

lens±air interface. So, the amplitude at P at time t for one

trajectory is proportional to (Fig. 6)

�PS � exp�ÿi!t� exp�ik1UiS���L�N exp�ik1PU0�: �9�
The amplitude �L for propagation through one lens is

given by

�L � exp
�

2ik1�w0 � �nÿ 1�w�	t12t21: �10�
The layer of thickness d (Fig. 1) generates a phase shift

which is independent of u, v and is therefore discarded

here. However, it is taken into account in the transmission

of the lens. In Appendix B it is shown that the transmission

amplitude �t12t21�N for N lenses is given by

�t12t21�N � � exp ÿNQ2
0�

2s2=R2
� �

; �11�

Figure 5
Imaging an undulator source S by a CRL (top) and system of
coordinates used in the text (bottom).

Figure 6
Trajectory for a photon emitted in S and propagating to P via the
lens.
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Q0 � k1�; �12�

� � exp ÿNQ2
0�

2
� �

; �13�
where � is the r.m.s. roughness of a lens surface and Q0 is

the momentum transfer for transmission through an air±

lens interface at normal incidence. Since the roughnesses of

individual lenses are not correlated, the effective roughness

for N lenses with 2N surfaces is �2N�1=2�. Since refraction is

very small and since

2R0; 2Nw0 � L1; L2; �14�
we have assumed that the trajectory in the lens is parallel to

the optical axis. Hence,

�PS � exp�ÿi!t� exp ik1

�
UiS� PU0

ÿ �ÿ
� 2N w0 � nÿ 1� �w� �	��t12t21�N: �15�

Expansion of UiS to quadratic terms in xj, yk, u, v gives

UiS � ��uÿ xj�2 � �vÿ yk�2 � �L1 ÿ Nw0�2�1=2

� L1 ÿ Nw0

� ��x2
j � y2

k� � �u2 � v2� ÿ 2�uxj � vyk��=2L1: �16�
The next term in the expansion of the root gives a contri-

bution to the phase

k1 �uÿ xj�2 � �vÿ yk�2
� �2

=
�
8�L1 ÿ Nw0�3

�
: �17�

Now, u, v, xj, yk are not larger than 500 mm and L1 is at least

1 m (often 40 m). For 1 AÊ photons the phase corresponding

to expression (17) is smaller than 2�� 10ÿ4 rad. For this

reason higher-order terms in (16) have been neglected.

Inserting (17) and the corresponding one for PU0 in (15)

we obtain

�PS � Kj exp ÿ�s2 ÿ ik1Gs cos�'ÿ '1�
� �

; �18�

Kj �� exp ÿi!t � ik1 L1 � L2

��
� �x2

j � y2
k�=2L1 � �p2 � q2�=2L2

�	
; �19�

with

2�R2 � �NR� 2NQ2
0�

2 ÿ ik1FR2 � aÿ ibF; �20�

a � �NR� 2NQ2
0�

2; b � k1R2;

u � s cos '; v � s sin '; �21�

xj=L1 � p=L2 � G cos '1; yk=L1 � q=L2 � G sin '1;

�22�

F � 1=L1 � 1=L2 ÿ 1=f ; �23�

G2 � �xj=L1 � p=L2�2 � �yk=L1 � q=L2�2: �24�
Summing over all trajectories through the lens results in an

integral over ' from 0 to 2� and over s from 0 to R0, giving

�PS � Kjÿ; �25�

ÿ � RR0

0

ds 2�s exp�ÿ�s2�J0�k1Gs�: �26�

Before solving the integral we will consider a few inter-

esting special cases.

3.1. Case 1: large transparent CRL

If absorption and roughness are zero (� � 0 and � � 0),

the integral equation (26) reads

ÿ � 2�
RR0

0

ds s exp�ik1Fs2=2�J0�k1Gs�; �27�

and can be solved by the method of stationary phase

(Jackson, 1975). The stationary points of the phase are at

s � 0 and F � 0. The point s � 0 does not contribute to the

integral because sJ0�k1Gs� � 0. Therefore F � 0 is the

relevant solution. In other words we expect everywhere

destructive interference, except for F � 0,

ÿ � 2�
RR0

0

ds s J0�k1Gs� � 2�R0J1�k1GR0�: �28�

The Bessel function J1 of order 1 ¯uctuates strongly if R0 is

large. When averaged over a ®nite detector size the

amplitude vanishes, unless G � 0, in which case ÿ � �R0
2.

We conclude that if R0 is large, if absorption and roughness

are zero, we expect a point to point imaging by the lens,

given by the intersection of the plane F � 0 at a distance L2

equal to

L20 � fL1=�L1 ÿ f �; �29�
and the ray G � 0, i.e.

xj=L1 � p=L2 � 0; yk=L1 � q=L2 � 0: �30�
This is a result well known from optics textbooks.

3.2. Case 2: very small aperture 2R0 (pinhole)

When R0 is very small, the effect of absorption and

roughness is negligible and the phase factor in (26) can be

expanded to terms linear in s2 giving

ÿ � 2�
RR0

0

ds s�1� ik1Fs2=2�J0�k1Gs�: �31�

The oscillating Bessel function in combination with a ®nite

detector size makes the integral vanish, unless G � 0. In

other words a pinhole generates intensity everywhere on

the ray G � 0 (point-to-line imaging), resulting in a very

large depth of ®eld. The expansion of the phase factor is

justi®ed if R0 is much smaller than the radius of the ®rst

Fresnel zone. The same point-to-line imaging is produced if

the absorption in the lens is so large that the effective

aperture becomes small. We will now show that real CRLs

have a behaviour between the two extreme cases of point-

to-point and point-to-line imaging. It turns out that a large

depth of ®eld is a characteristic feature of refractive X-ray

lenses. We have found no way to solve equation (26)

analytically. However, for most practical cases, R0 is chosen

so large that
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ap � aR2
0=2R2 � 1: �32�

Then, the upper limit of the integral can be replaced by

in®nity and the integral can be solved analytically (Abra-

mowitz & Stegun, 1972),

�PS � Kj�2�=2�� exp ÿk2
1G2=4�

ÿ �
: �33�

This is (apart from an irrelevant proportionality constant)

the ®eld amplitude in P at time t generated by a mono-

chromatic point source in �xj; yk� and transmitted through

all possible trajectories through the CRL.

We now have to consider the effect of the ®nite band-

width of the quasi-monochromatic light. According to

expression (8), the ®eld amplitude in P at time t is now

proportional toR
d! g�!� exp ÿi!�t ÿ�=c�� �; �34�

where g�!� is the frequency distribution of width �! for

the quasi-monochromatic light. The intensity I measured

by a detector at P [see equation (7)] is proportional to

hjHj2i � R d! d!0
�

g�!�g��!0� exp i�!ÿ !0��=c� �

� �1=T� RT=2

ÿT=2

dt exp ÿi�!ÿ !0�t� �
�
: �35�

The complex conjugate of a quantity is marked by an

asterix. As mentioned above, even for a beam mono-

chromated to within �E=E � 10ÿ4 the characteristic ¯uc-

tuation time �0 is 4� 10ÿ15 s, which is much shorter than

the fastest detector response. So, the phase �!ÿ !0�T is

approximately 2�T=�0 which is much larger than 1 and the

time integral in equation (35) can be replaced by

2���!ÿ !0�, giving

hjHj2i � �2�=T� R d!jg�!�j2j�PSj2: �36�

In other words, when the detector collection time is much

longer than the characteristic ¯uctuation time �0 then it is

the intensities (and not amplitudes) for different frequen-

cies which have to be added. Therefore, for the time being,

we consider a monochromatic ®eld E�t� and include the

effect of the ®nite frequency bandwidth later, if needed.

Finally, we have to include the effect of the extended

chaotic source with the dimensions quoted in equation (6).

This feature is taken into account by including in equation

(33) a phase factor exp�i	v�xjt� � i	h�ykt�� and summing

over the different emitters �j; k� in the source. The phases

	v�xjt� and 	h�ykt� ¯uctuate statistically from source point

to source point since the individual emitters in a chaotic

source are independent of each other. The ®eld amplitude

at the observation point P at time t reads

�P�p; q� � �2�=2�� exp�ÿi!t�� exp�ik1�L1 � L2��
� exp ik1�p2 � q2�=2L2

� �
ÿvÿh; �37�

ÿv �
P

j

exp ik1x2
j =2L1

ÿ �
exp�i	v�xjt��

� exp
ÿÿ k2

1�
�=4j�j2� xj=L1 � p=L2

ÿ �2
h i

; �38�

and similarly for ÿh. The intensity measured by the detector

is again proportional to the modulus squared of ÿv and ÿh,

averaged over the detector collection time T,

hjÿvj2i �
P
jj0

h�xj�h��xj0 �

�hexpfi�	v�xjt� ÿ	v�xj0 t��gi; �39�
where h�xj� denotes the remaining factors in the integrand

of (38). For a given pair j; j0 of emitter coordinates the

phase difference in the exponent of (39) ¯uctuates within

the range 0±2� in the time scale �0. If the detector collec-

tion time T is much longer than �0 the contribution

averages to zero, unless j � j0,

hexpfi�	v�xjt� ÿ	v�xj0 t��gi � �jj0 : �40�
In other words, for a chaotic X-ray source, and for T � �0,

the contribution of the individual source points have to be

added incoherently,

hjÿvj2i �
P

j

exp �ÿk2
1<���=2j�j2� xj=L1 � p=L2

ÿ �2
n o

� R dx W�x� exp

�
�ÿk2

1<���=2j�j2�

� xj=L1 � p=L2

ÿ �2

�
: �41�

In the last line we have replaced the sum over the indivi-

dual emitters by an integral with the Gaussian distribution

W�x� given by equation (6). The integral can be solved

analytically. Including the similar contribution for hjÿhj2i
we obtain for the intensity at P,

I�p; q� � hj�Pj2i
� �2�2=��aav � b2F2��aah � b2F2��1=2

� exp �ÿak2
1R2=L2

2� p2=�aav � b2F2���
� q2=�aah � b2F2��	; �42�

av � a� 2k2
1R2�2

v=L2
1; ah � a� 2k2

1R2�2
h=L2

1: �43�
A word should be said about the loss of observability of

interference for the ®eld amplitudes emitted by different

source points in a chaotic source. It is not exclusively a

property of the source, but also a consequence of the slow

speed of the detectors (presently) available and of the long

detector collection time chosen (long compared with �0). In

a similar way it was the ®nite detector spatial resolution

which was responsible for the non-observability of intensity

outside the ray G � 0 in (28) and (31).

Equation (42) is the central expression for the imaging of

an undulator source by a CRL. We will now discuss the

intensity distribution at the point P with coordinates

�p; q;L2�.
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3.2.1. Intensity in the focal plane F = 0. The focal plane F =

0 �1=L1 � 1=L20 � 1=f � is at a distance L20 � L1f=�L1 ÿ f �
from the middle of the lens. In this plane the intensity is

distributed according to a Gaussian with width (FWHM)

Bv � 2:355 L20��2
v=L2

1 � a=2k2
1R2�1=2; �44�

and a similar expression Bh for the horizontal, with �v being

replaced by �h. There are two contributions to Bv. The ®rst

one is due to the demagni®cation of the source according to

geometrical optics and is given by (44) for a � 0 (i.e. for

� � 0 and � � 0). It has the value 2:355 �vL20=L1. The

other term including a [equation (20)] describes the in¯u-

ence of diffraction by the effective aperture of the lens.

3.2.2. Effective lens aperture Deff and in¯uence of lens

surface roughness. The effective lens aperture can be

deduced from the integral equation (26). For F � 0 and

G � 0, the integral has the meaning of an effective lens

area. When � and � are zero �a � 0� the integral has the

value �R2
0. With non-vanishing values of � and � the

integral is equal to

��=4�D2
eff � �R2

0�1ÿ exp�ÿap��=ap; �45�
giving, for the effective aperture Deff,

Deff � 2R0f�1ÿ exp�ÿap��=apg1=2; �46�

ap � aR2
0=2R2: �47�

For visible light and glass lenses in which absorption and

roughness are negligible (ap � 0), the effective aperture

Deff is identical to the geometric aperture 2R0. Not so for

refractive X-ray lenses: here attenuation of the X-rays in

the lens material is the limiting factor for the effective

aperture. Another comment is appropriate about the

in¯uence of roughness on the performance of X-ray

mirrors as opposed to X-ray lenses. Roughness reduces the

re¯ectivity and the transmission according to an exponen-

tial factor exp(ÿ2Q2�2). For a mirror, the momentum

transfer Q is 2k1� with a typical value of 0:1� for the angle

of re¯ection �. For � = 1 AÊ , Q = 2.2 � 10ÿ2 AÊ ÿ1. For an

aluminium CRL at 12.4 keV with � = 3:54� 10ÿ6, f = 1 m,

N = 28, the momentum transfer is �2N�1=2
k1� =

1:7� 10ÿ4 AÊ ÿ1. The low value of Q0 for a CRL allows for

much larger values of �. If a mirror for hard X-rays needs a

surface ®nish of 1 nm r.m.s., a CRL needs a ®nish of 1 mm.

This is a dramatic difference which simpli®es drastically the

requirements for manufacturing refractive X-ray lenses.

3.2.3. Transmission and gain of a CRL. The transmission

of a CRL with N individual lenses and a thickness d

between the apices of the parabolas (Fig. 1) is

Tp � exp�ÿ�Nd��1=R2
0�
RR0

0

ds 2s exp�ÿas2=R2�

� exp�ÿ�Nd��1=2ap��1ÿ exp�ÿ2ap��: �48�
For good quality lenses the in¯uence of surface roughness

is a minor contribution to a (see below). Then ap can be

expressed in terms of the mass absorption coef®cient �=�
and of the focal length f as

2ap � ��=����R2
0=f �fA=�Nar0�

2�Z � f 0��g: �49�
For a given focal length f and a given photon wavelength �
the transmission of the lens increases with decreasing mass

absorption coef®cient, i.e. low-Z elements as lens material,

like Li, Be, B, C and even Al are favourable. In Fig. 7 are

shown the mass absorption coef®cients of these elements

and of Ni. The values �=� ®rst drop with photon energy, as

Eÿn with n close to 3. However, at �0.2 cm2 gÿ1 the strong

decrease merges into a much slower decrease when

Compton scattering exceeds photoabsorption. Compton-

scattered photons do not contribute to the image forma-

tion. Those which are scattered under a large angle are

ultimately destroyed by absorption whereas those which

are scattered in the forward direction will contribute to a

blur of the focal spot. It turns out that Compton scattering

ultimately limits the transmission and the resolution of a

CRL. The gain of a CRL is de®ned as the ratio of the

intensity in the focal spot and the intensity behind a pinhole

of size equal to the spot of the lens. It is (Lengeler et al.,

1998)

gp � Tp�4R2
0=BvBh�; �50�

where Bv and Bh are the FWHM size of the focal spot in the

vertical and horizontal directions.

3.2.4. Comparison with experimental data. We have

imaged the ID22 source at ESRF with an aluminium CRL

and 15 keV (0.83 AÊ ) photons. The lens parameters are N =

33, R = 200 mm, 2R0 = 0.87 mm, � = 0.1 � 0.1 mm, � =

2:41� 10ÿ6, � = 20.52 cmÿ1, L1 = 63.00 � 0.05 m. The

values for R and 2R0 are the same throughout the whole

article. For this set of parameters, �NR + 2Nk1
2�2�2 = a =

13.54 � 0.47 + 0.02 � 0.03 = 13.58 � 0.50, ap = 32.12 � 5.74,

f = 1.26 � 0.04 m, L20 = 1.29 � 0.04 m, Deff = 154 � 10 mm.

It is obvious that the roughness of 0.1 mm in the lens surface

gives a minor contribution to ap and hence to the effective

Figure 7
Mass attenuation coef®cient �=� for Li, Be, B, C, Al and Ni. For
Be and Al the photoabsorption coef®cent �=� is also shown (thin
lines) (Henke et al., 1993).
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lens aperture. With 2k2
1R2 � �4:58� 0:23� � 1014, �v =

14.9 mm and �h = 297 mm we calculate a spot size

Bv � 0:9� 0:1 mm in the vertical and Bh � 14:2� 1:4 mm

in the horizontal. The intensity was measured with a

detector which had a point spread function of 1:2� 0:1 mm

FWHM (Koch et al., 1998). So, the expected overall spot

size is 1:5� 0:1 mm in the vertical and 14:3� 1:4 mm in the

horizontal. Fig. 8 shows the experimental result with a

horizontal and a vertical scan. The measured spot size is

1:6� 0:3 mm � 14:1� 0:3 mm, in good agreement with the

expected result. Note that the rugged structure in the

horizontal line scan is not noise but re¯ects structure in the

incoming intensity, which we believe is due to the effect of

windows, absorbers and the monochromator crystals.

The transmission of the lens considered here

(d � 16� 2 mm) is Tp � 0:53� 0:16%. The theoretical

gain of the lens is 200� 40 compared with an experimental

value of 177� 35. The great advantage of beryllium over

aluminium becomes visible in the transmission, e.g. a

beryllium lens with N � 52 has f � 1:28 m at 15 keV. When

all geometrical parameters are kept the same, then

� � 0:52 cmÿ1, a � 0:64 and ap � 1:60. The effective

aperture now becomes 633 mm and the transmission is 30%,

an increase by a factor of 60 compared with aluminium. The

gain compared with a pinhole of equal size would be 11800.

3.2.5. Intensity on the optical axis G = 0. On the optical

axis the intensity is distributed over a much larger range in

space. The longitudinal distribution on the ray G � 0 has,

according to equation (42), a FWHM Bl given by

Bl � �L2
20�2a�1=2=k1R2�
� ��a2

v � a2
h � 14avah�1=2 ÿ �av � ah��1=2; �51�

with av and ah given in equation (43).

In the case of the aluminium lens described in the

previous section, Bl = 44.8 mm. This is a very large depth of

®eld, which is typical for refractive X-ray lenses and which

is mainly due to the small effective aperture of the lens.

3.2.6. Laterally coherent secondary source. Coherent

X-ray scattering is a new spectroscopy for studying dyna-

mical processes, which extends speckle spectroscopy with

laser light from the mm length scale to the nm range

(Brauer et al., 1995; Thurn-Albrecht et al., 1996; Mochrie et

al., 1997). The spectroscopy needs a laterally coherent

X-ray beam. The CRLs are excellently suited to generate a

secondary source with this property if they are installed at

an undulator at third-generation synchrotron radiation

sources. According to Fig. 9 the CRL generates an image of

the source which illuminates an area of dimension dill on

the sample,

dill � Deff L3=L2: �52�
On the other hand, the lateral coherence length of the

secondary source at the position of the sample is

ltr � �L3=Bdem
v ; �53�

where Bdem
v � dv L2=L1 is the size of the secondary source

given by the demagni®cation by the lens. The sample is

coherently illuminated if dill � ltr, i.e. if

Bdem
v � ��=Deff�L2 � Bv

diff: �54�
In other words, when diffraction limits the size of the

secondary source, then this source can be considered as a

point source which illuminates the sample coherently in the

lateral direction. Equation (54) may also be written as

Deff � �L1=dv: �55�
For � = 1 AÊ , L1 = 63 m and dv = 2.355�v = 35 mm, this gives

Deff � 180 mm. In the vertical direction this condition is

ful®lled for the aluminium CRL described in this paper. In

the horizontal plane, however, the secondary source is not

diffraction limited. Additional means have to be found to

Figure 9
Set-up for generating a laterally coherent secondary X-ray source,
which illuminates an object coherently.

Figure 8
ID22 undulator source of the ESRF imaged by an aluminium CRL
with 15 keV photon energy (a) and linear scans in the horizontal
and vertical directions resulting in a 14.1 � 1.6 mm2 spot size
(FWHM) (b).
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reduce the effective source in the horizontal in order to

illuminate the sample coherently in both directions.

3.2.7. Highly parallel X-ray beam generated by CRL. The

beam emitted by an undulator has already a small diver-

gence of typically 25 mrad and generates a spot size of

�1 mm at 40 m from the source. By means of a refractive

lens the beam can be made even less divergent, when the

source is in the focal spot of the lens. For a single alumi-

nium lens (N � 1) at 15 keV with � � 2:41� 10ÿ6 the focal

length is 41.43 m. This is a typical value for the distance

between the undulator and the ®rst experimental hutch at

ESRF beamlines. For a single beryllium lens (N � 1) with

� � 2:37� 10ÿ6 at 12 keV the focal length is 42.24 m. In

both cases R was assumed to be 0.2 mm. When N � 1, the

absorption parameter ap � aR2
0=2R2 is small (e.g. it is 1.03

for aluminium at 15 keV), and it is no longer appropriate to

replace the upper integration boundary in equation (26) by

in®nity. It is somewhat tedious to solve the integrals for

calculating the intensity distribution. However, the main

results on the beam divergence are evident in the light of

the results from the previous sections. When the source is in

the focal spot of a single lens, the beam divergence is

��v � ��dv=L1�2 � �1:029�=Deff�2�1=2; �56�
and a corresponding expression exists for ��h. The ®rst

term is due to the ®nite source size and the second is due to

diffraction at the effective aperture Deff given by equation

(46). A single aluminium lens at 15 keV with a = 0.41, f = L1

= 41.43 m, Deff = 708 mm, has a divergence ��v = 0.85 mrad

which is at least a factor of 20 smaller than the divergence

of the undulator without lens. In the horizontal the

reduction in divergence is less dramatic with ��h =

16.8 mrad. In both cases it is the source size which deter-

mines the beam divergence behind the lens.

3.2.8. Imaging of an X-ray free-electron laser source by a

CRL. There are plans to build an X-ray free-electron laser

(XFEL) based on the self-ampli®ed-spontaneous-emission

(SASE) principle (Ingelman & Jonsson, 1997). It is hoped

that the laser will emit a laterally coherent X-ray beam in

the TEM00 mode, which is a Gaussian delimited spherical

wave. The divergence is expected to be 1 mrad. At a

distance of 1000 m an object of 1 mm in diameter is later-

ally coherently illuminated. A typical wavelength of this

source will be 1 AÊ (Schneider, 1997). Under these condi-

tions the source can be considered as a point source

��v � �h � 0�, although the geometrical source is 50 mm in

diameter. According to equation (44) the image of the

source will have a transverse FWHM Btr of

Btr � 0:75��L20=2R��a=2�1=2 � 0:75��L20=Deff�; �57�
given by the diffraction at the effective aperture of the lens.

For a beryllium CRL with N = 45 individual lenses at

12.4 keV (� = 2.22 � 10ÿ6, � = 0.70 cmÿ1, � = 0.2 mm, d =

20 mm) we obtain a focal length of f = 1 m. The parameter

ap is 1.75. This results in a transmission of 26%, an effective

aperture of Deff = 614 mm, a focal spot size of Btr = 0.12 mm

and a gain of �107.

4. Imaging of an object illuminated by an undulator
beam by means of a CRL

4.1. Theory of imaging

In this section we consider the concept of a microscope

working in the hard X-ray regime between �5 and 60 keV.

Fig. 10 shows a schematic set-up. The object, illuminated by

the undulator, is characterized by a transmission function

T�x; y�. For a thin slab of thickness D in the beam direction

with index of refraction n�x; y; z�, T�x; y� reads

T�x; y� � exp ik
RD
0

dz n�x; y; z� ÿ 1

� �
: �58�

The object is located slightly outside of the focal length f of

the CRL �L1>f �. Then the lens images the object in the

image plane at a distance L20 � f L1=�L1 ÿ f � on a high-

resolution detector. The magni®cation of the image is

1=m � L20=L1: �59�
At the beamline ID22, L20 may be chosen as large as 25 m.

For a focal length of 1 m this results in a magni®cation of at

least 20. The main advantage of this magni®cation is in the

relaxed requirements on the detector. We will see that the

resolving power of the microscope may be as good as

0.1 mm. However, there is no detector available with this

resolution. Our high-resolution detector (Koch et al., 1998)

has a point spread function of �1 mm FWHM and is, owing

to the magni®cation, able to resolve details in the object

below 0.1 mm in size.

We now calculate the intensity distribution in the

detector, in a similar way as performed in x3. The diver-

gence of the X-ray beam emitted by the undulator is about

25 mrad. The distance L to the object is typically 42 m at the

ESRF. As a consequence, every source point illuminates

every object point when the object is below 1 mm in

diameter. The ®eld amplitude at the exit of the illuminated

object in the point (x, y) is

��x; y� � exp�ÿi�!t ÿ k1L��T�x; y�
�P

jk

exp i��Xj ÿ x�2=2L� � i	v�Xjt�
�

� i��Yk ÿ y�2=2L� � i	h�Ykt�	: �60�

This amplitude has to be transferred through the lens to the

observation point P in the detector plane, in a similar way

as performed in x3. The amplitude at the point P at time t is

Figure 10
Set-up for a hard X-ray microscope with coordinate system used
in the text.
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��p; q; t� � ���=�� exp ÿi!t � ik1�L� L1 � L2

�
��p2 � q2�=2L2�

	P
jk

Njk; �61�

Njk �
R

dx dy Kv�Xj; x; t�Kh�Yk; y; t�T�x; y�;
with

Kv � exp i	v�Xj; t� � ik1 �Xj ÿ x�2=2L� x2=2L1

� ��
ÿ �k2

1�
�=4j�j2� x=L1 � p=L2� �2	; �62�

and similarly for Kh.

The intensity measured in the detector is proportional to

hj�p�pqt�j2i with the detector average given by equation

(7). This expression contains the integral

�1=T� RT=2

ÿT=2

dt exp�ÿi	v�Xjt� ÿ i	v�Xj0 t�� � �2�=T��jj0 :

�63�
As in x3, the Kronecker delta is a consequence of the long

detection time T � �0. A similar Kronecker delta is

obtained for the summation over k and k0. The summation

over the source points j (and k) is replaced by integration

over a Gaussian distribution, givingP
j

exp ÿik1��xÿ x0�=L�Xj

� 	
� �2��2

v�ÿ1=2
R1
ÿ1

dX exp ÿX2=2�2
v� �

� exp ÿik1�X�xÿ x0�=L�� 	
� exp ÿ�xÿ x0�2=2l2

v

� �
; �64�

where

lv � �L=2��v � �L= �= �2 ln 2�1=2
� �

dv

� 	 �65�
is the transverse coherence length in the x-direction. A

similar value is de®ned for the y-direction. Two points x and

x0 in the object are illuminated coherently by the source if

jxÿ x0j � lv. In that case the ®eld amplitudes emitted by

these two points have a ®xed phase relation. We thus obtain

for the intensity,

�j�j2=�2�2�hj�P�p; q�j2i �R
dx dx0 dy dy0K̂v�x; x0�K̂h�y; y0�T�x; y�T��x0; y0�; �66�

with

K̂v�x; x0� � exp ÿ�xÿ x0�2=2l2
v

� �
� exp i�k1=2� 1=L� 1=L1� ��x2 ÿ x02�� �
� exp

�
�ÿk2

1=4j�j2���� x=L1 � p=L2� �2

� � x0=L1 � p=L2� �2��; �67�

and the corresponding expression for K̂h.

We now have to consider the object more in detail. If the

object is of unknown structure, we may determine its

structure by imaging it by means of our hard X-ray

microscope and by reconstructing the three-dimensional

distribution n�x; y; z� in equation (58) via a tomographic

approach. Techniques have been developed for how this

may be performed (Gilboy, 1995; Grodzins, 1983; Snigirev

et al., 1995; Raven et al., 1996, 1997; Spanne et al., 1999;

Momose, 1995; Beckmann et al., 1997). Here, we would like

to consider the transversal and longitudinal resolving

power of our microscope. For that purpose we assume that

the object is a non-transparent screen with two pinholes at

the positions �x0; 0� and �ÿx0; 0� along the x-axis,

T�x; y� � ���xÿ x0� � ��x� x0����y�: �68�
The integrals in equation (66) can now be solved analyti-

cally, giving

hj�P�p; q�j2i � �2�R2�2�2

a2 � b2F2
exp ÿk2

1R2=a2 � b2F2a
q2

L2
2

� �
� 2 exp ÿ k2

1R2

a2 � b2F2
a

x2
0

L2
1

� p2

L2
2

� �� �
� cosh

k2
1R2

a2 � b2F2
� 2x0a

L1L2

p

� ��
� exp ÿ �2x0�2

2l2
v

� �
� cos

k2
1R2

a2 � b2F2

2x0bF

L1L2

p

� ��
: �69�

We will ®rst consider two extreme regimes, that of inco-

herent and that of coherent illumination of the object.

4.1.1. Incoherent illumination: 2x0 � lv. If the lateral

coherence length is very small �2x0 � lv�, then the second

term in the wavy brackets [equation (69)] is negligible and

the intensity in the focal plane F = 0 is proportional to

hj�P�p�j2i ' exp �ÿk2
1R2=a� p=L20� x0=L1� �2� �

� exp �ÿk2
1R2=a� p=L20 ÿ x0=L1� �2� �

: �70�
The intensity is given by two Gaussians (Fig. 11) at a

distance 2x0L20=L1. We de®ne as transverse resolving

Figure 11
Intensity distribution for two object points at distance 2x0

illuminated incoherently (a) and coherently (b).
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power dt that distance 2x0 in the object for which the image

points are separated by the FWHM of each image. This

gives

dinc
t � �2�2 ln 2�1=2=����L1=Deff�
� 0:75��L1=Deff� � 0:75��=2NA�; �71�

where NA is the numerical aperture,

NA � Deff=2L1: �72�
In the present calculation we have assumed R0 to be very

large, then Deff � 2R�2=a�1=2. When ap is not large, then

Deff is given by equation (46). The intensity at p � 0 is

93.7% of the value at the maxima (Fig. 11). For the case of

the aluminium CRL at 15 keV mentioned in x3.2.4 (N = 33,

f = 1.26 m, ap = 32.12 and Deff = 154 mm) and an object-to-

lens distance of L1 = 1.36 m, the resolving power is

0:55� 0:01 mm and the numerical aperture is NA =

95:66� 0:08� 10ÿ5. It is the low NA (`slender' X-ray

optics) which is responsible for the resolution being much

larger than the photon wavelength. Nevertheless, a value of

dt = 0.14 mm can be achieved with an aluminium CRL at

40 keV when the transmission in aluminium is improved

compared with the value at 15 keV.

The low value of the NA results in a very poor long-

itudinal resolving power dl of the hard X-ray microscope.

Indeed, for p = q = 0 and x0 = 0,

hj�P�L2�j2i � �2�R2�2�2=�a2 � b2F2�: �73�
The longitudinal resolving power dl is de®ned as the

distance of two object points along the optical axis whose

image distance is as large as the spread of one image point

along the optical axis.

dl � 2�a=b�L2
1 � �8=����L2

1=D2
eff� � �2=����1=�NA�2:

�74�
In the case of the aluminium CRL with N � 33 at 15 keV,

dl � 16:5� 0:1 mm. Note that dt is proportional to the

inverse NA whereas dl is proportional to the square of the

inverse NA as is well known in optics (Lipson et al., 1998).

4.1.2. Coherent illumination: 2x0 � lv. If the lateral

coherence length is large �2x0 � lv�, then the second term

in the wavy brackets [equation (69)] is 1 for F � 0 and the

intensity in the focal plane is proportional to

hj�P�p�j2i � exp ÿ k2
1R2

2a

p

L20

ÿ x0

L1

� �2
" #(

� exp ÿ k2
1R2

2a

p

L20

� x0

L1

� �2
" #)2

: �75�

Fig. 11 shows the intensity distribution for coherent and

incoherent illumination. If the resolving power is de®ned

again by the separation of the amplitude peaks being equal

to the FWHM of an amplitude peak we ®nd

dcoh
t � 21=2dinc

t � 1:06�L1=Deff � 1:06��=2NA�: �76�

In that case the indentation at p � 0 is 14.0%. It is well

known from optics that incoherent illumination improves

the lateral resolution (Lipson et al., 1998).

4.2. Comparison with the experiment

We have imaged a few objects with the new CRL. The

object is illuminated from behind by the X-ray source and

imaged through the lens onto a position-sensitive detector.

Due to the low absorption of hard X-rays in air there is no

need for a sample chamber nor for evacuated beam pipes.

However, the latter might be useful in order to reduce the

background due to Compton scattering in air. In Fig. 12(a)

is shown the X-ray microscopical image of a double gold

mesh. It consists of a square mesh with a period of 15 mm, a

bar width of 3 mm and a thickness of 2 mm. Attached from

behind in one part of this mesh is a second linear mesh with

a period of 1 mm, a width of 0.5 mm and a thickness of

0.5 mm.

The mesh was imaged with 23.5 keV (0.53 AÊ ) photons

from ID22. The aluminium lens and imaging parameters

were N = 62, f = 1:65� 0:04 m, L1 = 1:79� 0:01 m, L20 =

21:40� 0:04 m, � = 5.81 cmÿ1, Deff = 211� 9 mm. An area

of 300 mm in diameter was imaged with a magni®cation of

12� 0:1 and a theoretical lateral resolving power of dt =

0.34 � 0.02 mm. Note that the image shows almost no

distortion over the ®eld of view. Fig. 12(b) shows an

enlargement of the region inside the rectangle of Fig. 12(a).

For comparison, part of the mesh has been imaged with a

scanning electron microscope. Note that the wires behind

the bars of the coarse grid are visible in the X-ray micro-

scope but not in the electron microscope. This illustrates

the imaging possibilities of opaque objects by the new hard

X-ray microscope.

For testing the resolution of the new microscope we have

imaged a Fresnel zone plate (Lai et al., 1992) with 169 zones

made of gold (1:15 mm thick on a Si3N4 substrate of 0.1 mm

thickness). The outermost zones had a width of 0.3 mm.

Fig. 13 shows an enlarged region which includes the border

of the Fresnel lens. The parameters of the lens and the

photon energy were the same as those from Fig. 12. The

outermost zones of the Fresnel lens are clearly resolved and

the experimentally achieved resolution is in good agree-

ment with the expected resolution of 0.34 mm resulting

from diffraction at the ®nite aperture of the lens. Figs. 12

and 13 were recorded on Kodak high-resolution X-ray ®lm

which had a resolution of 1 mm. The smallest image struc-

tures were about 3 mm (which correspond to object struc-

tures of 0.25 mm at a magni®cation of 12). Thus the

resolution of the whole set-up was not limited by that of the

®lm.

4.3. Limits of the lateral resolving power

As outlined in equations (71) and (72) the lateral reso-

lution dt is limited by the small value of the numerical

aperture NA, which is ultimately limited by the attenuation

of the X-rays in the lens material. Fig. 14 shows the varia-

tion of dt with photon energy E for aluminium and beryl-
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lium CRL under the following assumptions: f = 1 m, R =

0.2 mm, 2R0 = 0.87 mm. Also shown are the number N of

individual lenses in the stack and the transmission of the

lens (with d = 10 mm for aluminium and d = 20 mm for

beryllium).

We expect a resolution better than 0.1 mm in the case of

beryllium above 15 keV. As shown in Fig. 7 it is Compton

scattering which ultimately limits the resolution and the

transmission in beryllium. Without Compton scattering we

would expect a lateral resolution of 0.05 mm for a beryllium

CRL with f = 1 m at 20 keV and a transmission above 50%.

Since Compton scattering cannot be avoided, the question

arises if there are other ways to increase the effective

Figure 13
X-ray micrograph (23.5 keV) of a Fresnel zone plate with 169 gold
zones on a Si3N4 substrate. The outermost zone of width 0.3 mm is
clearly resolved.

Figure 14
Lateral resolution dt, number N of individual lenses and
transmission Tp of aluminium (full line) and beryllium (dashed
line) CRL with 1 m focal length versus photon energy E.

Figure 12
X-ray image of a square gold mesh with a period of 15 mm in both
directions. The photon energy was 23.5 keV. (a) Full ®eld of view;
(b) enlargement of (a) with the lower squares having attached to
them a second linear gold mesh with period 1 mm; (c) scanning
electron micrograph of one square from (a) and (b). Note that the
electron micrograph in contrast to the X-ray micrograph is not
able to show the linear gold grid behind the bars of the coarse gold
lattice.
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aperture and thus the resolution. A possibility is shown in

Fig. 15. It is a parabolic refractive lens with kinoform

pro®le,

w � �s2=2R� ÿMW; �77�
where M is an integer. For W = 0, equation (77) is just the

parabolic pro®le discussed up to now. The discontinuity W

in the pro®le reduces the geometrical path in the lens

material. Hence, it also reduces attenuation. There is no

necessity, as in a usual Fresnel construction, to choose W in

such a way that the path difference between neighbouring

sections is �. It can just as well be m� where m is a large

integer, so that 2s1 ' Deff . A typical value for m is 100. The

pro®t from this choice is a low number of steps M,

combined with an increase in the effective aperture by

�M � 1�1=2. However, there is a price to be paid. First, once

W is ®xed, the photon wavelength is ®xed, which is a very

serious handicap. Secondly, the requirements on the

precision in the shape of the lens increase with m. At the

present time it is not yet clear if this approach for

increasing the effective apperture is technically feasible.

5. Conclusions

The results of this paper may be summarized as follows.

(i) Compound refractive X-ray lenses (CRLs) with

parabolic pro®le have been constructed and successfully

tested.

(ii) They can be used for hard X-rays up to �60 keV.

(iii) They have a geometric aperture of 1 mm and are

best suited for undulator beams at synchrotron radiation

storage rings.

(iv) They are stable in the white beam of an undulator.

(v) Due to their parabolic pro®le, CRLs are genuine

imaging devices, similar to glass lenses for visible light.

(vi) We have developed the theory for imaging a source

and an object illuminated by an X-ray source, including the

effects of attenuation (photoabsorption and Compton

scattering) and of surface roughness. The central expres-

sions are equations (42) and (66).

(vii) The parabolic CRLs have been tested for imaging

up to 41 keV. There is excellent agreement between theory

and experiment. The surface ®nish of the lenses is good

enough, so that surface roughness can be neglected.

(viii) A characteristic feature of CRLs for X-rays is their

small aperture (below �500 mm) and their small numerical

aperture (NA). Nevertheless a lateral resolution of 0.3 mm

has been achieved and a resolution below 0.1 mm can be

expected. Compton scattering in the lens material limits the

resolution.

(ix) The transmission ranges from a few % in aluminium

CRLs up to �30% in beryllium CRLs.

(x) The main ®elds of application of refractive X-ray

lenses with parabolic pro®le are as follows.

(a) Microanalysis with a beam in the mm range for

diffraction, ¯uorescence, absorption, re¯ectometry. The

small NA of the lens guarantees a good beam collimation of

0.3 mrad. Nevertheless, the gain of the lens is at least 100

for an aluminium CRL and is expected to be a few 1000 for

a beryllium CRL. The `pink' beam of an undulator

harmonic (�E=E ' 1%) is transmitted through a CRL

without loss of focusing.

(b) Imaging in absorption and phase contrast. Refractive

X-ray lenses are complementary to other microscopical

techniques. It is possible to image opaque objects which

cannot tolerate sample preparation without changing the

state of the sample. Examples are biological cells or soil

samples which change structure and functionality when the

water is removed. A hard X-ray microscope, on the other

hand, allows for in situ investigation in the natural envir-

onment.

(c) Coherent X-ray scattering. In connection with a high-

brilliance X-ray source a CRL can generate a secondary

X-ray source which is diffraction limited (at least in the

vertical direction at ESRF undulators). The sample area

illuminated by the secondary source is then smaller than

the coherence area (Fig. 9). In other words, the lens works

like an aperture, without, however, reducing the intensity

as does a pinhole. We expect CRLs to be helpful optical

devices for speckle spectroscopy with hard X-rays.

APPENDIX A
Focal length of a CRL

The focal length of a CRL is calculated by means of Snell's

law, as usual for refractive lenses. The curvature of the

beam in the stack can be taken into account. However, it

turns out that this effect is small as long as the length of the

lens is short compared with the focal length. Within

corrections of order �, the focal length of a parabolic CRL

with N individual lenses in the stack is found to be (Fig. 16)

f � �R=2N���1ÿ N� 1ÿ u2
1=2R2

ÿ ��
; �78�

as measured from the middle of the CRL. u1 is the height

where the incoming beam hits the ®rst lens. The correction

term (spherical aberration) is typically below 10ÿ4 or

0.1 mm for a CRL with 1 m focal length. Due to the large

depth of ®eld of refractive X-ray lenses and due to the large

distances L1, L2 and f , the correction can be neglected for

all practical purposes and a parabolic CRL can be consid-

ered as free of spherical aberration.

Figure 15
Parabolic refractive X-ray lens with kinoform pro®le as a
possibility to increase the effective aperture of a CRL.
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APPENDIX B
Transmission amplitude t12 for a vacuum±lens
interface

We consider the transmission of an X-ray through a

vacuum±lens interface, as illustrated in Fig. 16. In the right-

handed coordinate system (u0, v0, w0) the incoming and

transmitted wave vectors k1 and k2 have the components

k1 � k1�ÿ cos �1; 0; sin �1� �79�
and

k2 � n2k1�ÿ cos �2; 0; sin �2�: �80�
Due to Snell's law,

cos �1 � n2 cos �2; �81�
the momentum transfer Q for transmission has only a w0

component,

Q � k1�n2 sin �2 ÿ sin �1�: �82�
For the low-Z materials of interest in X-ray lenses and for

hard X-rays, the absorptive correction � of the index of

refraction is about three orders of magnitude smaller than

the dispersive correction � (see Table 1). Hence, we neglect

the absorption in the transmission amplitude t12 and obtain

n2 sin �2 � sin �1 ÿ �= sin �1; �83�

Q � ÿk1�= sin �1; �84�
with � typically 10ÿ6. Note the very low value of the

momentum transfer. We saw in the main body of this paper

that this low value is at the origin of the insensitivity of

refractive X-ray lenses to surface roughness, a feature in

which X-ray lenses and mirrors differ drastically. The angle

�1 varies with the height u from the optical axis in the

parabolic lens u2 � 2Rw according to

1= sin2 �1 � 1� u2=R2; �85�
so that

Q � ÿk1��1� u2=R2�1=2 � ÿQ0�1� u2=R2�1=2; �86�

Q0 � k1�:

Let us consider the transmission of s-polarized X-rays

through the interface. The tangential components of the E

and H ®elds have to be continuous. This results in the

following condition for the amplitudes A2 and A1 of the

transmitted and incoming waves,

A2=A1 � t12 � �2 sin �1=�sin �1 � n2 sin �2��hexp�iQ��i:
�87�

The ®rst factor is the usual Fresnel transmission amplitude,

as explained in optics books (Lipson et al., 1998). In the

present case it is 1 with an accuracy of �=2 sin2 �1, which is

�10ÿ6, as can be seen from equation (83). The second

factor is due to interface roughness. In the Rayleigh model

of roughness (Stanglmeier et al., 1992) the interface is

described by a set of parallel surfaces displaced by � from

the average surface and distributed around the average

surface according to a Gaussian distribution

w��� � �2��2�ÿ1=2 exp�ÿ�2=2�2�: �88�
Q� is the phase shift of the wave transmitted through the

surface at � compared with a wave transmitted at � � 0.

Averaging over the distribution gives

hexp�iQ��i � exp�ÿQ2�2=2�
� exp�ÿQ2

0�
2�1� u2=R2�=2�: �89�

Hence,

t12 � exp ÿQ2
0�

2=2
ÿ �

exp ÿQ2
0�

2u2=2R2
ÿ �

: �90�
The transmission amplitude t21 for the beam leaving the

lens has the same value. Since the roughnesses on both

sides of a lens are uncorrelated, as are the roughnesses for

different lenses, the amplitude for the transmission through

2N interfaces of N lenses in a stack is

�t12t21�N � exp�ÿNQ2
0�

2� exp ÿNQ2
0�

2u2=R2
ÿ �

: �91�
Within the accuracy O��� ' 10ÿ6 the same result is

obtained for p-polarized X-rays.
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