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A statistical model for estimating the error bars on the EXAFS signal is developed. The average can

be calculated at the beginning of the analysis, with the estimation of the error bars made directly on

the individual measurements; the error bars are then propagated across the EXAFS extraction.

Furthermore, this model also allows the estimation of the error bars on the Fourier transformation of

the EXAFS signal, and on the ®ltered EXAFS spectrum after the inverse Fourier transform.
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1. Introduction

A necessary step in EXAFS analysis is the estimation of the

experimental error bars for the considered spectrum, as

without these error bars it is impossible to estimate the

errors on the structural parameters ®tted by EXAFS. The

experimental errors may originate either from statistical

errors (`noise') or from systematic errors. In this paper we

only deal with the statistical errors.

In order to estimate these error bars, the most reliable

approach is the statistical approach, which requires the

same spectrum to be recorded many times. Nevertheless, if

only one spectrum is available, various methods have been

proposed to provide an estimation of an average error bar,

thus making the assumption that the error is constant with

energy (Newville et al., 1999); all these methods do not use

any statistical tool. In addition, if these methods are applied

to an averaged spectrum, obtained by many experiments,

they provide an estimation of the error bars of the

experimental averaged distribution and not of the experi-

mental individual distribution, these two values being

related by a factor N1/2, where N is the number of averaged

spectra. In the present paper we only deal with spectral

recorded many times.

If many spectra are available, the proposed method is to

extract the EXAFS signal for each spectrum and then to

calculate the averages. While this averaging is performed,

the error bars are estimated for each point and then aver-

aged to estimate a global error bar for the spectrum,

assumed to be constant with k (Vlaic et al., 1999).

In this paper we use standard statistical tools to improve

this error treatment; the model we develop allows us to

calculate the averages at the very ®rst step of the treatment

(which helps in the EXAFS extraction, as the signal is less

noisy) without losing any statistical information: we keep

the error bars on each point at any step of the treatment.

Furthermore, this model also allows us to estimate the error

bars for the Fourier transform itself, which is very inter-

esting for ®tting in R-space.

All the statistical tools presented in this paper have been

implemented in our new EXAFS analysis software, LASE

(Logiciel d'analyse des spectres EXAFS). It runs on any

Unix/X-Window computer and includes the classical tools

for EXAFS analysis, adapted to our model of the error

propagation.

2. Statistical model

We only consider spectra recorded for a ®nite number of

points, i.e. by a discrete method (for instance by a step-by-

step method). An experimental spectrum is then a set of n

points �Ei; �i�i� 1:::n, where Ei is the energy for the i th point

and �i is the corresponding absorption coef®cient.

We choose a very general model, the basic model used in

statistics: the i th experimental point is modelled by a

random variable Xi; we assume that the esperance E�Xi�
and the variance V�Xi� exist. In that case each experimental

measurement at energy Ei is a realization of the random

variable Xi. With these hypotheses, the great number law

shows that

m � ��1 � �2 � : : :� �n�=n

almost certainly converges towards E�Xi� and

�2 � ��1 ÿm�2 � ��2 ÿm�2 � : : :� ��n ÿm�2� �
=�nÿ 1�

almost certainly converges towards V�Xi�.
Furthermore, we can consider the set of random vari-

ables �Xi�i� 1:::n as an n-dimension real random vector X,

characterized by its mean vector E and its covariance

matrix �. Each experimental spectrum is then a realization

of this random vector; the estimated mean vector is
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equivalent to the usual experimental spectrum after aver-

aging, and all the statistical information is included in the

estimated covariance matrix. In that model the following

treatment of the experimental data to extract the EXAFS

signal is applied to the random vector X instead of applying

it only to the averaged experimental spectrum E, as is the

usual practice. The propagation of the statistical errors is

then accomplished by transforming the covariance matrix

� according to the applied transformation. Hence, we use

the information from all the individual measurements, not

just the average experiment.

In order to simplify our model we also suppose that the

experimental points are statistically uncorrelated, which

means that Cov�Xi;Xj� = 0 if i 6� j. In that case the covar-

iance matrix � is strictly diagonal. This hypothesis is not

required, since all that follows is still correct with a non-

diagonal covariance matrix, but it makes computations

quicker and it is physically meaningful.

3. Propagation across EXAFS extraction

Practically, the value of interest is not �i but the EXAFS

oscillations ��ki�. The relation between these two values is

��ki� � ���ki� ÿ �0�ki� ÿ �m�ki��=�0�ki�;
where �m�ki� is the absorption coef®cient of all atoms

except the absorbing atom and �0�ki� is the atomic

absorption of the isolated absorber. In our model all these

quantities are random variables; since �m�ki� and �0�ki� are

estimated from the experimental data, these random vari-

ables are a priori correlated with ��ki�. In addition, the

relation de®ning ��ki� is not linear for �0�ki�. Owing to

these two facts there is no simple relation between E���ki��
and E���ki��, nor between V���ki�� and V���ki��.

As a ®rst approximation we considered that the random

variables�m�ki� and�0�ki� are almost certainly constant. In

that case the relation becomes very simple,

E ��ki�
� � � E ��ki�

� �ÿ �0�ki� ÿ �m�ki�
� 	

=�0�ki�;

V ��ki�
� � � V ��ki�

� �
=�2

0�ki�:

To check this approximation we compared these results

with those obtained by averaging directly on the ��ki�
values. Fig. 1 shows that the values for ��ki� obtained by the

two methods cannot be distinguished. In Fig. 2 we compare

the error bars obtained by the two methods, and we notice

that they are very close, except at very low k. These results

con®rm the hypothesis that �m�ki� and �0�ki� are almost

certainly constant. We interpret the difference at low k as a

consequence of the uncertainties on the monochromator

displacements, which are functions of the Bragg angle � and

not of k nor E. This leads to important variations in the

measured intensities in the edge region, where � varies

quickly with E.

Except for this very low k region, we observed that the

error bars are generally almost constant with k, as is usually

assumed (Newville et al., 1999; Vlaic et al., 1999), but our

model still works when the error bars are not constant

with k.

We also observed that, by increasing the number of

averaged spectra, the error bars are not really modi®ed: the

average is better estimated (according to the central limit

theorem) and the constant behaviour of the error bars is

more visible.

4. Propagation across Fourier ®ltering

4.1. Error propagation across integration

A classical way of estimating I =
R b

a f �x� dx, if only n

points [xi; yi = f �xi�]i� 1:::n are known, is the trapeze method,

I � 1
2

Pnÿ1

i�1

�xi�1 ÿ xi��yi�1 � yi�

� �x1 ÿ x0�y0=2� 1
2

Pnÿ1

i�2

�xi�1 ÿ xiÿ1�yi � �xn ÿ xnÿ1�yn=2:

As we can see, I appears as a linear combination of yi,

whose coef®cients are functions of xi. Hence, it is possible

to write I = AY where Y � �yi�i is the column vector of the

values and A is a �1� n� matrix. Hence, the numerical

integration is seen as a linear transformation.

If we now consider a random vector X = �Xi�i with a

covariance matrix �, we can de®ne its `integral', which is a

Figure 1
Comparison of the EXAFS signal extracted by the two methods.
Continuous line: extractions, then average (method 1); squares:
average, then extraction (method 2). 14 spectra are averaged.

Figure 2
Comparison of the error bars on the EXAFS signal extracted by
the two methods. Dashed line: method 1; continuous line:
method 2.
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random variable I, by I � AX. The probability theory then

shows that E�I� � AE�X� and V�I� � A�tA; we can

propagate errors across integration.

With the help of the random function theory it may be

proved that, when the number of points increases (hence X

converges towards a random function f ), the `integral'

de®ned above converges towards the real integral of f

(Brard, 1966/1967).

4.2. Application to the Fourier transformation

By convention, in EXAFS the Fourier transform of the

signal is de®ned by

���R� � �2=��1=2
R�1
ÿ1

��k� exp�ÿ2ikR� dk:

Since we only know ��k� for a ®nite number of values, we

use the trapeze method to evaluate the Fourier transform

for the points �Rj�j� 1:::N. Use of the classical FFT algorithm

(which corresponds to an estimation of the Fourier trans-

form by the rectangle method) is not possible, since it

requires a smoothing of the data to obtain a constant

k-step, and such a smoothing is not compatible with a

statistical use of the data. According to the model we

developed above, if we model the experimental spectrum

by an n-dimensional vector �, for each point Rj we can

write <� ���Rj�� = A2j� and =� ���Rj�� = A2j�1 �, where

A2j � �2��ÿ1=2 �k1 ÿ k0� cos �2k0Rj�
�

: : : �ki�1 ÿ kiÿ1� cos �2kiRj�
: : : �kn ÿ knÿ1� cos �2knRj�

�
and

A2j�1 � �2��1=2 �k1 ÿ k0� sin�2k0Rj�
�

: : : �ki�1 ÿ kiÿ1� sin �2kiRj�
: : : �kn ÿ knÿ1� sin�2knRj�

�
are the matrices associated with the Fourier transforma-

tion.

If we now consider the estimated Fourier transform as a

vector �� = f<� ���Rj��;=� ���Rj��gj� 1:::N , we can de®ne a global

matrix A for the complete Fourier transformation, and we

have �� = A�.

In our model, � is a random vector with a covariance

matrix �. Hence, �� is also a random vector whose covar-

iance matrix is �0 � A�tA. The diagonal part of �0 gives

the error bars for each Fourier transform point (for their

real and imaginary parts).

It is possible to develop exactly the same model for the

inverse Fourier transformation: if we call B the associated

matrix, �f the ®ltered EXAFS spectrum and �f its covar-

iance matrix, then we obtain �f = B �� = BA� and �f =

B�0 tB = AB�t�AB�. We then obtain the error bars for each

point of the ®ltered spectrum, and all the correlation

information between its points.

4.3. Inclusion of window and ®lter effects

To limit the distortions of the Fourier transform, one

commonly multiplies the experimental EXAFS by a

window function w�k�. With our model, this window func-

tion is modelled by a diagonal matrix W with Wii = w�ki�.
We can also de®ne a ®lter matrix F, related to the ®lter

function used in R-space to isolate one or more peaks of the

Fourier transform; this matrix is also a diagonal matrix.

With these two effects included, the global transforma-

tion equations are �f = Wÿ1BFAW� for the average and

�f = Wÿ1BFAW�t�Wÿ1BFAW� for the covariance matrix.

4.4. Results

4.4.1. Direct Fourier transformation. We may note (Fig. 3)

that the error bars in R-space are almost constant (what-

ever k-weighting is used), with a residual oscillating part,

especially for low R values.

We may also note that the variation of the error bars for

different ®ltering methods follows the expected trend: if we

increase the k-weighting of the EXAFS signal, the error

bars on the Fourier transform are increased. The error bars

on the Fourier transform increase in two ways depending

on the choice of the window: they increase either with the

rectangular tendency of the window, or with its wideness.

The most important effect is the wideness of the window,

Figure 3
(a) The Fourier transform (FT) with its error bars on each point,
estimated directly from the error bars on the experimental EXAFS
signal. Only the error bars on the imaginary part of the FT are
shown; the modulus of FT is also drawn. (b) The error bars on the
real part of this FT.
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that is the k-range of the signal kept for the Fourier

transform. Hence, when the EXAFS signal becomes too

noisy (i.e. if one goes too far in k so, as the signal is atte-

nuated whereas the noise is constant, one just adds noise to

the Fourier transform), it leads to more noisy Fourier

transforms. The kind of window used for the analysis seems

to have a much lower effect on the noise of the Fourier

transform. For instance, if we compare a Hanning window

and a Kaiser±Bessel window over the same k-range, the

Hanning window gives some higher error bars, but the

Fourier transform intensity also increases, which gives a

similar signal-to-noise ratio for the two windows.

We may note that an estimation of the error based on the

high R values of the average Fourier transform (Newville et

al., 1999) gives a smaller value than the error bars in

R-space. This is not surprising, because the ®rst method

estimates the error bar on the `average' distribution and not

on the experimental individual distribution. As expected by

the theory, we ®nd a factor of approximately N1=2 between

the two values, where N is the number of averaged spectra.

4.4.2. Inverse Fourier transformation. To check the results

of our method for propagating errors across Fourier

®ltering, we compared the results obtained by this method

with those obtained by the other sequence: extracting the

EXAFS signal, Fourier ®ltering and then averaging. Fig. 4

provides graphical evidence that the ®ltered EXAFS

spectra obtained by the two methods are identical.

Fig. 5 shows that the error bars obtained by both

methods are roughly of the same magnitude, especially for

high k values. The differences between the two methods

may arise from inaccuracies in Fourier transformation

evaluation for each individual spectrum, leading to larger

error bars for that case. One may also note that, after

®ltering, the error bars are no longer constant with k,

although they were before ®ltering. On all the spectra that

we studied, we observed some error bars which varied with

k after ®ltering; this variation is not similar from one

spectrum to another and seems to be, for an important part,

related to the window used for the Fourier transformation.

In Fig. 6 we observe that the ®ltering operation really has

an effect on the uncertainties: the error bars after ®ltering

are much smaller than the error bars before ®ltering. One

notices the same results for the ®lter effect and for the

window effect in the direct transformation (which is not

surprising, since the mathematical functions are the same):

given a Fourier transform, the ®ltered spectrum is less noisy

if the R range is smaller. However, since the R range is

more or less imposed by the peaks one wants to keep, the

main effect arises from the Fourier transform itself: the

more noisy the Fourier transform, the more noisy the

®ltered spectrum. Hence, the choice of the k range for the

window of the Fourier transformation seems to be the most

important step to achieving good ®ltered spectra. It seems

that there is no simple relation between the error before

and after ®ltering; in any case, even if such an expression

exists, making use of it would mean losing important

information, since it would not give the covariance matrix

nor the k-evolution of the error bars after ®ltering.

We also noticed, by studying the covariance matrix after

®ltering, that there are no strictly independent points after

Figure 4
Comparison of the ®ltered EXAFS signal obtained by the two
methods. Continuous line: EXAFS obtained by extracting the
signal, Fourier ®ltering and then averaging (method 1). Squares:
EXAFS obtained by averaging, extracting the signal and then
Fourier ®ltering (method 2). The two spectra are similar. The
signal corresponds to the ®rst peak of the Fourier transform
shown in Fig. 3.

Figure 5
Comparison of the error bars on the ®ltered EXAFS signal
obtained by the two methods. Continuous line: method 1. Dashed
line: method 2. The error bars are similar; they are not constant
with k.

Figure 6
Comparison of the error bars on the EXAFS signal after and
before the Fourier ®ltration. Continuous line: method 1. Dashed
line: method 2. Thick line: error bars before ®ltration (as in Fig. 2).
The error bars are a lot smaller after ®ltration.
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®ltering (in the statistical meaning); nevertheless, the

correlation coef®cient is usually between 0.1 and 0.3, which

indicates a weak linear correlation. If we assume that this

can be neglected, this means it is possible to ®t it with all

`experimental' points even after ®ltering; if not, this means

a new statistical estimator needs to be developed which

accounts for the covariance matrix.

5. In the case of a Gaussian distribution

In all the previous sections we did not make any special

assumption about the experimental distribution function of

�i, except that it had an esperance and a variance.

If we assume now that this distribution is Gaussian, we

can go further: the initial experimental vector is a Gaussian

vector. This means that every linear transformation of this

vector leads to another Gaussian vector; in our model, all

the transformations applied to the experimental data are

linear, so at each step the result is a Gaussian vector. In

particular, the crude EXAFS signal, its Fourier transform

and the ®ltered EXAFS signal are Gaussian vectors. In

addition, with our model the crude EXAFS signal has a

diagonal covariance matrix, so the maximum-likelihood

estimator is the classical estimator used for ®tting,

�2 �P
i

�exp�ki� ÿ �th�ki�
� �

=�i

� 	2
:

For the Fourier transform and the ®ltered signal, this esti-

mator may still be used, but it is not the maximum-like-

lihood estimator, since the covariance matrix is not

diagonal for these quantities.

6. Conclusion

We have developed a simple statistical model for EXAFS

analysis that allows all statistical information extracted

from the experimental data to be kept, and propagated

across all steps of the EXAFS analysis. In particular, this

model allows the averages to be calculated at the very

beginning of the treatment ± which permits a better

EXAFS extraction since the less noisy average spectrum

eases the background removal and saves time in the case

where a great number of spectra are to be analysed ± and

keeps all the statistical information needed for the ®tting

step of the analysis procedure.

This model allowed us to con®rm the usual results used

in the analysis: there is no difference between `average,

then extraction' and `extraction, then average', except that,

previously, only the second method lead to statistical

information. It also con®rmed that, as far as we could see,

the error bars are constant with k before ®ltering.

Use of this model also provides answers to the problem

of the propagation of the error across Fourier ®ltering, and

especially the conservation of the distribution law and the

estimation of the error in R-space, which is necessary for

some statistical treatments when ®tting in R-space.

The next step of our work is to check the Gaussian

distribution of the experimental points ± is that model a

theoretically plausible model, knowing that the measured

quantities follow some Poissonian laws? ± and the use of

this model to estimate the distribution functions of the

parameters ®tted during the analysis: in which conditions is

it valid to use the classical results, proved only for the linear

case, knowing that the EXAFS equation is not linear?
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