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Counting detector systems are increasingly used in X-ray experiments because of their attractive

properties as regards linearity, large dynamic range and simple noise properties. In synchrotron

radiation source (SRS) applications of X-ray detectors, counting rates are generally high enough to

require dead-time correction. The time structure of an SRS beam interacts with the dead-time

characteristics of the detector in a way that the simple stochastic dead-time models cannot always

handle. This report generates analytical and Monte Carlo mathematical models which describe the

rate performance of any given detector system when used with the typical beam structures

encountered in an SRS.
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1. Introduction

Counting detector systems are attractive for X-ray

detection applications because of their inherent linearity,

large potential dynamic range and well de®ned (statis-

tical) noise characteristics. Their main limitation is the

inevitable dead-time losses which appear at data rates

comparable with the detector dead time. These dead-

time losses are well understood when (as in the case of

the detection of radioactive decay particles) the arrival

of events is random in time (Knoll, 1989). Experiments

on synchrotron radiation sources, on the other hand,

combine very high data rates with a highly time-struc-

tured beam which complicates the simple stochastic

model. The bunch structure of the electron beam in a

synchrotron radiation source (SRS) produces an X-ray

beam with the same time modulation. This time struc-

ture will (in general) interact with the intrinsic timing

properties of any counting system used to detect the

X-rays and can often limit the rate performance of the

system.

Aspects of the problem have been discussed by Arndt

(1978), Batterman (1980), Lee & Mills (1992), Cousins et

al. (1993) and Cousins (1994). Using mathematical models,

this report investigates more general formulations for

assessing the performance of any given type of detector

system when used with some typical SRS beam structures.

The modelling approach required to describe the inter-

action between the beam structure and the detector system

varies according to the relation between the counter dead

time and the beam structure. It is convenient to consider

the three distinct types of beam structure separately.

In the following the symbols Nin and Nout refer to the

time-averaged rate of events (i.e. over a period long

compared with any beam structure) which a detector

system would deliver if it had no dead time (Nin) and the

rate that it actually does deliver (Nout) in the context of a

given beam structure. The two distinct types of dead-time

model are denoted by the terms counting above a simple

discriminator in which a single dead-time period is opera-

tive for each event and is not re-triggerable during that

period, and pulse height analysis in which a clean spectrum

demands rejection of pile-up events.

2. SRS beam structures

For the purposes of developing the models, we use the time

structures used on the Daresbury Laboratory SRS. These

are:

(i) Flat ®ll. The ring is full of evenly spaced bunches of

electrons which give continuously an X-ray pulse of width

0.2 ns every 2 ns.

(ii) Single bunch. There is only one bunch in the ring

which produces an X-ray pulse of width 0.2 ns every circuit

of the ring, i.e. every 320 ns.

(iii) Gapped beam. In this case there is a gap in the bunch

structure so that X-rays are delivered as in the ¯at-®ll case

for 200 ns of each beam circuit and are absent for the

remaining 120 ns of the 320 ns period.

Different SRS machines will have a cycle time deter-

mined by the machine diameter (3 ms for the ESRF and

�1 ms for Diamond) with a similar ®ne structure and

various gap patterns.

307

# 2000 International Union of Crystallography Journal of Synchrotron Radiation

Printed in Great Britain ± all rights reserved ISSN 0909-0495 # 2000



308 Counting detector systems

3. Dead-time modelling with a ¯at-®ll beam

No counting detector in routine use can respond to the ®ne

structure of the beam. The fastest counter in general use is

probably a scintillator/PMT device which can operate with

a dead time of a few tens of nanoseconds. Recently,

avalanche photodiodes have become available with the

potential to yield a detector dead time of a few nano-

seconds, which is, however, still well beyond the single-

bunch width [see Kishimoto (1997) for a discussion of this

case]. The ¯at-®ll case therefore reduces, as far as the

counter system is concerned, to uniform delivery of X-rays

in time. For this we can use the standard dead-time models.

At any data capture rate accessible to the detector system

there will be very much less than one detectable event per

bunch so that the arrival of events will be effectively

random in time.

3.1. Counting above a simple discriminator

In this case the response of the counting system (as a

function of the input rate) is

Nout � Nin=�1� Nin��; �1�

where Nout is the data capture rate, Nin is the random X-ray

rate driving the system and � is the counting-system dead

time which is usually a combination of intrinsic detector

dead time and electronic dead time (Knoll, 1989).

In this case the data capture rate is 50% of Nin at Nin =

1=� and the data capture rate Nout asymptotes to 1/� as Nin

tends to in®nity. Fig. 1 illustrates the behaviour of equation

(1) in terms of the natural parameters Nin� and Nout�.

3.2. Pulse height analysis

In the case of pulse height analysis we require a clean

signal free of pile-up distortion. This requires that a dead-

time period must always be free of another event. Poisson

statistics show that in this case

Nout � Nin exp�ÿNin��:
This function peaks at a value of Nin/e at Nin = 1/� and

declines to zero as Nin increases further. It is important to

understand the signi®cance of � in this equation: it repre-

sents the sum of the occupancy times (the period in which

the analogue pulse of the detector is signi®cantly above

threshold) of the pulse under consideration and any

preceding pulse. If we wish to be consistent with the de®-

nition of � in (1), it is necessary to write this function as

Nout � Nin exp�ÿ2Nin��: �2�
This is the actual counting rate that will be observed if a

pile-up rejector is ®tted to the system. If one is not ®tted

then the detected rate will be given by (1), and (2) will give

the rate of `good' events in the PHA spectrum with

Nout(1) ÿ Nout(2) events in the `pile-up' spectrum. The

word `signi®cantly' in the above de®nition of the occupancy

time sets the limits to the acceptable distortion in the pulse-

height spectrum; usually the occupancy time is de®ned as

the period that the pulse is >1% of its amplitude above the

base line. Fig. 1 illustrates the form of equation (2)

graphically in terms of the natural parameters Nin� and

Nout�.

In conclusion we note that the rate performance of the

detector systems is entirely governed by their own dead

time and is not affected by the beam structure.

4. Dead-time modelling with a single-bunch beam

In this case the situation is dominated by the fact that all

the X-rays emitted during a bunch crossing are inseparable

(in time) by any normal detector system. The important

statistic is therefore the number of X-rays (M) incident on

the detector per beam pulse of width 0.2 ns. The following

two distinct cases must be considered.

4.1. Case 1: the detector dead time is shorter than the
circulation period (�B)

In this situation the detector registers one count only,

irrespective of the value of M, but is ready to trigger on the

arrival of the next beam pulse. In order to evaluate the

number (m) of counts recorded we must consider the

Poisson distribution of the number of X-ray counts (x)

actually produced for a mean number of M,

P�x;M� � exp�ÿM�Mx=x ! �3�
where P

x

P�x;M� � 1:

The number of events at each occurrence number (x) is

xP�x;M�, i.e. exp�ÿM�Mx=�xÿ 1�!, whereP
x

xP�x;M� � M:

Figure 1
The characteristic throughput curve predicted by formula (1) for
counting above a simple discriminator and by formula (2) for the
uncorrupted rate in a pulse-height spectrum. The natural
parameters Nin� and Nout� are used where Nin is the event rate
hitting the detector and Nout is the data capture rate. � represents
the detector/electronic dead time in the ®rst case and the event
occupancy time in the second case. This is the case of random
incidence with no detectable beam structure.
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Summing the valid events we see that we can count the

occurrences of single events, but double, treble etc. events

only count as one,

m � 1P�1;M� � 1P�2;M� � 1P�3;M� � : : ::
Using equation (3) we see that

m � P�1;M� �P
x2

P�2;M�

� P�1;M� � �1ÿ P�0;M� ÿ P�1;M��
� M exp�ÿM� � 1ÿ exp�ÿM� ÿM exp�ÿM�
� 1ÿ exp�ÿM�:

Since we obtain M X-ray counts, of which we detect m at

every beam pulse, our observed counting rate is

Nout � �1ÿ exp�ÿM��=�B: �4�
If Nin is the rate of events hitting the detector then

Nin � M=�B

and we can reformulate (4) as

Nout � �1ÿ exp�ÿNin�B��=�B: �5�
As shown in Fig. 2, the data capture rate asymptotes to 1/�B

as the beam intensity (Nin) is increased. This is the case in

which we are simply counting above a simple discriminator.

When uncorrupted data (i.e. no pile-ups) is required then

we are allowed to count only the term P(1, M) in the

Poisson distribution. This gives a detected rate of

Nout � M exp�ÿM�=�B;

� Nin�B exp�ÿNin�B�=�B

� Nin exp�ÿNin�B�: �5a�
This is the same expression as (2) above with the difference

that the dead time is the beam circulation period and,

because the beam is synchronous in its temporal pattern,

the factor of two is not present. This curve is also shown in

Fig. 2.

In conclusion we note that the system throughput curves

are very similar to the ¯at-®ll case except that the

governing time constant is now the beam circulation time.

Thus counting above a simple discriminator, the ultimate

rate of any counter is just the beam circulation frequency.

The `no pile-up' case is academic in this situation since it is

impossible to make a pile-up rejector which can function

within the 0.2 ns of the ®ne structure. However, the `pile

up' curve (Fig. 2) is of interest in that it shows the rate of

uncorrupted events with the difference between the two

curves showing the rate of `piled up' events.

4.2. Case 2: the detector dead time is longer than the beam
circulation period

In this case any bunches which follow one with a

detected event will not be seen by the detector until the

dead time of the detector has elapsed. We can apply the

models derived above as follows.

Counting above a simple discriminator, the counting

system sees a data capture rate governed by relation (1). In

this case the input rate is controlled by the statistics of the

countable events (m), i.e. relation (4). Thus,

Nout �
1ÿ exp�ÿM�� �=�B

1� 1ÿ exp�ÿM�� ��=�B

:

By substituting Nin = M/�B, this becomes

Nout �
�1ÿ exp�ÿNin�B��=�B

1� �1ÿ exp�ÿNin�B���=�B

:

To make this formula represent the true behaviour of the

counting system we must observe that in the single-bunch

mode the beam loss in the counter dead time is digitized to

the number of bunch crossings covered by �. Thus the ®nal

formula for this case becomes

Nout �
�1ÿ exp�ÿNin�B��=�B

1� �1ÿ exp�ÿNin�B��n
; �6�

where n is an integer de®ned by n = Int(�/�B).

Checking the limiting cases of (6) we see that if �/�B < 1

(n = 0) then (6) becomes (5) as required. If � >> �B and

rates are high, then (6) limits to 1/�, and if rates are low

then (6) limits to (1).

Fig. 3 shows the input/output curves given by (6) for a

few values of n. A rough rule of thumb emerges from Fig. 3

for very high rates (>1/�B), namely that Nout '
�ÿ1

B �n� 1�ÿ1. As noted above, at low rates Nout tends to the

standard formula (1) for n >> 1.

Similar reasoning can be applied to the pulse-height

analysis case (i.e. no pile-ups allowed). Pile-up in this case

arises in two distinct settings: pile-up within a bunch, the

fraction of non-piled up events being

Nout=Nin � exp�ÿNin�B�;
and pile-up in the detector system, where

Nout=Nin � exp�ÿ2Nin��:
Combining these two fractions the overall rate of `good'

events is

Figure 2
The corresponding curves generated by equations (5) and (5a) for
the case of a single-bunch beam combined with a detector dead
time which is less than the beam circulation period �B. It will be
noted that the detector dead time is irrelevant if it is less than �B.
In this ®gure, and in most of the subsequent ®gures, the natural
parameters Nin�B and Nout�B are used.
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Nout � Nin exp�ÿNin�B� exp�ÿ2Nout�Bn�
� Nin exp�ÿNin�B�2n� 1��; �7�

where, as usual, n = Int(�/�B). In the limiting case of n = 0

(no counter dead time) we see the formula for the bunch

pile-up as expected, and at large detector dead times

(2n >> 1) equation (7) reduces to the pile-up formula for

the detector system alone, as expected.

Fig. 4 shows the behaviour of equation (7) for a range of

values of n. In this ®gure the fraction Nout/Nin denotes the

fraction of `clean' pulses in a pulse-height spectrum. Pile-up

protection on the counter circuit can only remove the

fraction generated by the counter time constant and the

unresolvable pile-up within the bunch remains. This

contribution to the pile-up will only become small at rates

such that Nin�B << 1.

5. Dead-time modelling with a gapped beam

In the case of a gapped beam there are three interacting

parameters describing the situation: the detector dead time

(�), the basic beam cycle time (�B) and the length of the

`on' time of the beam (�on). This leads to a situation which

is analytically untractable, and to which the simplest

modelling approach is a Monte Carlo computer program.

The Monte Carlo model also provides the opportunity to

check the analytical formulae developed for the simpler

cases.

In order to compute the Nout versus Nin curves for the

case of counting above a simple discriminator, we focus our

attention on a large number of beam cycles (�1000) and

generate events randomly in this interval building in the

`on' period. We express � and �on as fractions of �B and

work in units of �B. In order to apply the dead time in the

analogous fashion to an electronic system the chosen

number of `input' pulses (a few thousand) are sorted into

ascending order and only counted into the `output' total if

they are more than one dead-time period from the

preceding event. The input and output rates are expressed

naturally as Nin�B and Nout�B.

Fig. 5 shows the plots obtained from the program when

�on is set to the value appropriate for the SRS (�on =

0.625�B) and the detector dead time is varied from � = 0.1�B

to 10�B (i.e. 32 nS to 3.2 ms corresponding to a scintillation

detector at one end to a germanium detector at the other,

for example). The input range of the counting rate is 0±

6.25 MHz and the output range is 0±4.7 MHz.

The program can be modi®ed in a simple manner to

generate the corresponding curves for the case in which we

require uncorrupted events (i.e. a clean pulse-height spec-

trum). The same logic is applied as above except that the

dead-time period is extended forwards and backwards in

time from the event under consideration.

Fig. 6 shows the Nout versus Nin curves generated in this

way with the same parameter ranges as in Fig. 5. As

expected, these curves do not asymptote to a maximum

rate but peak at values of Nin and Nout inversely related to

�, but clearly not in any simple way.

Computation of the system throughput curves in terms

of these generalized parameters means that the curves in

Figure 4
The equivalent predictions from equation (7) (pulse-height
analysis) when the event occupancy is greater than the beam
circulation time.

Figure 3
The predictions of equation (6) are plotted for various values of n
[= Int(�/�B)] for counting above a simple discriminator with dead
time longer than the beam circulation time in the case of a single-
bunch beam.

Figure 5
The throughput characteristics predicted by the Monte Carlo
model for a gapped beam with the `on' time (�on) set at the SRS
value (0.625�B) for counting above a simple discriminator with a
range of detector dead times � expressed as fractions of �B.
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Figs. 5 and 6 can be used for any detector used with the

given pattern of gapped beam. If a different �on is required

then the curves must be recalculated. Any pattern of beam

and gap can be modelled if it is required.

6. Comparison of the formulae with the Monte Carlo
model

6.1. Counting above a simple discriminator

The simplest case of a ¯at-®ll beam can be represented in

the model by setting �on = 1.0. If � = 1 (using units of �B)

then the plot of Nout�B (y) versus Nin�B (x) is just y =

1=�1� x� [equation (1)]. As Fig. 7 shows, the agreement

between the model and the function is perfect within the

statistical noise of the Monte Carlo model.

The model can represent a single-bunch beam by setting

�on = 0.001 (0.32 ns). Fig. 8 compares the output of the

model with formulae (5) and (6). Again the agreement is

perfect within the statistical error. Because the bunch is

very narrow, the dead-time curves switch abruptly with the

value of n. In reality, with detector time jitter the transitions

will be less precise.

6.2. Pulse-height analysis

Fig. 9 compares the rate of `clean' events in the case of a

¯at-®ll beam with � in the range 0.5±2, as predicted by

equation (2) and the Monte Carlo model.

Fig. 10 compares the predictions of formula (7) and the

model in the case of a single-bunch beam when the detector

Figure 6
The corresponding model predictions for the `clean' pulse-height
analysis rates with a range of occupancy times.

Figure 7
A comparison of the predictions of the Monte Carlo model in a
¯at-®ll beam with equation (1) for the case of counting above a
threshold. A range of dead times is shown.

Figure 8
A comparison of the predictions of the Monte Carlo model in a
single-bunch beam for the output rate (counting above a simple
discriminator) with equation (6). A range of dead times is shown.

Figure 9
A comparison of the Monte Carlo model in a ¯at-®ll beam (`clean'
pulse-height analysis rate) with equation (2). A range of
occupancy times is shown.
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occupancy time increases from less than �B to greater

than �B.

In all cases the agreement is perfect within the statistical

noise of the Monte Carlo process. Since the Monte Carlo

model simply mimics the corresponding electronic func-

tion, these results give con®dence in the mathematical

analysis (and vice versa in the case of the simplest

formulae).

7. Conclusions

The models developed in this report permit detailed

exploration of the performance of counting systems in any

of the beam time structures generally met. As expected,

counting above a simple discriminator leads to an asymp-

totic data capture rate and the rate of unpiled-up events

peaks and thereafter declines. The main point to emerge is

that in the ¯at-®ll case the detector dead time (�) is the

controlling parameter and in the single-bunch case the

beam circulation time (�B) is the controlling parameter.

The result of the latter effect is that a detector with a dead

time signi®cantly less than �B will be limited to a rate of

� 1=�B. For such a detector the ¯at-®ll case is more

advantageous. For very slow detectors (� >> �B) the

difference is small.

There is one fast detector system which can signi®cantly

reduce the losses associated with single-bunch operation.

Using a gas microstrip detector (GMD) with the electron

drift direction normal to the beam direction (Bateman et

al., 1998, 2000) one can use the drift time of the X-ray-

generated electron clouds to randomize the times of arrival

at the detector anodes. The 320 ns period of the SRS

corresponds to a drift distance of 15 mm, which is quite

comfortable. For longer periods of up to several micro-

seconds it is possible to choose slower drift conditions

without compromising the basic speed of the anode pulse.

Operating in this way the GMD can randomize the events

in the beam spike and detect them with a limit set by its

own dead time (�100 ns). On the SRS the gain in limiting

rate is of the order of �3 but, on the larger machines,

factors of >10 could be achieved in single-bunch mode.

The performance of any detector system in gapped-beam

mode is obviously intermediate between the single-bunch

and ¯at-®ll cases. The interaction between the parameters

is complex and the practical method of solving it is to use

the Monte Carlo model with the parameters of the situation

appropriately inserted. The simple model used is approx-

imate but adequate to elucidate the key features of the

situation.

The models show clearly the great dif®culty in obtaining

clean pulse-height spectra (and clean discrimination) at

high rates. As Figs. 6 and 10 show, if the occupancy time is

larger than �B in single-bunch or gapped beams, the occu-

pancy time of the detector must be less than �B to achieve a

useful fraction of `clean' data. Similarly, in a ¯at-®ll beam

(Fig. 9) the value of � is critical to achieving `clean' data at

high rates.
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