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This paper presents a novel approach for intensity calculation of X-ray diffraction spots based on a

two-stage radial basis function (RBF) network. The ®rst stage uses pre-determined reference pro®les

from a database as basis functions in order to locate the diffraction spots and identify any overlapping

regions. The second-stage RBF network employs narrow basis functions capable of local

modi®cations of the reference pro®les leading to a more accurate observed diffraction spot

approximation and therefore accurate determination of spot positions and integrated intensities.
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1. Introduction

X-ray diffraction data processing proceeds through several

stages, namely indexing, pre-re®nement of camera para-

meters and crystal orientation, intensity integration, post-

re®nement and scaling. This paper addresses issues

regarding intensity integration, the process of obtaining

estimates of intensities for each diffraction spot. Two

different methods can be used to estimate the integrated

intensities: summation integration and pro®le ®tting

(Rossmann, 1979; Leslie, 1999). The summation integration

involves adding the pixel values within the peak area and

subtracting the estimated underlying background. In the

pro®le-®tting procedure, known spot pro®les are ®tted to

the observed diffraction spots in order to determine the

integrated intensity. The summation integration method is

computationally inexpensive, but it fails in situations where

two or more diffraction spots overlap. The pro®le-®tting

method improves the accuracy for weak intensities and is

generally more robust for overlapping spots. However, the

critical stage of devising standard pro®les greatly in¯uences

the results. A more detailed discussion of this method and

possible improvements are given below.

2. Pro®le ®tting

There are two general approaches for deriving the refer-

ence pro®les that can be used for the approximation of

observed diffraction spots. The ®rst approach is to use

analytical functions that are suf®ciently ¯exible in model-

ling diffraction spots over wide variations in spot shape.

Many different functions have been proposed, such as the

pseudo-Voigt (Thompson et al., 1987), Pearson VII (Hall

et al., 1977) and Gaussian±Hermite polynomials (Sanchez-

Bajo & Cumbrera, 1999). However, many of these

approaches require the use of non-linear optimization that

is computationally extensive for the large number of

necessary parameters. The second approach is to build a

library of reference pro®les by averaging a large number of

Bragg spots located near to the re¯ection under evaluation

(Rossmann, 1979; Bourgeois, 1999; Leslie, 1999). The

averaging can be performed in two-dimensional or three-

dimensional space (i.e. thick or thin slicing) (P¯ugrath,

1999). The intensities of the re¯ections are then estimated

by ®tting the corresponding reference pro®le to the spot

data by calculating the position and scale factor that

minimizes the mean square error (Durbin & Gog, 1989;

Messerschmidt & P¯ugrath, 1987; Kabsch, 1988).

Improvements in the pro®le-®tting process have also been

achieved using the pro®le-interpolation method (Bour-

geois, 1999).

Regardless of what method is used, it is very dif®cult to

devise the reference pro®les that are consistently the best

representations of the observed Bragg spots. The spots can

overlap, especially when the Laue diffraction method is

used (Cruickshank et al., 1991), or their pro®les can change

from frame to frame (in thin slicing) and experiment to

experiment leading to inaccurate determinations of the

integrated intensities. This can occur due to variation in

parameters such as diffraction power of the crystal (e.g. due

to crystal degradation), detector-to-sample distance, posi-

tion-dependent point-spread functions (Bourgeois, 1999)

and X-ray beam divergence (Bourgeois, 1999; Leslie, 1999).

The intensity of the diffraction spots is a most important

parameter which, in order to re®ne a crystal structure,

needs to be determined with a mean uncertainty better
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than 10% (Westbrook, 1988). Furthermore, in order to

determine a new structure using multiple-energy anom-

alous dispersion (MAD) methods, the measurement

uncertainty must be better than 2% (Ross et al., 1998).

Therefore, a more robust approach is suggested, based

on radial basis function (RBF) neural networks, a well

established technique that has been applied to a wide

variety of problems such as image processing (Saha et al.,

1990), speech recognition (Ng & Lippmann, 1990), adap-

tive equalization (Chen et al., 1992) and medical diagnosis

(Lowe & Webb, 1990). The technique for diffraction data

processing presented in this paper extends the conventional

reference pro®le-®tting method by using a concentrated

RBF network design (PokricÂ et al., 1999) in order to

compensate for possible changes in the observed spot

pro®les.

3. Overview of modi®ed pro®le-®tting approach

Fig. 1 shows the main stages in the overall diffraction data

processing procedure. An X-ray detector acquires diffrac-

tion data images which are ®rst corrected for static

instrument distortions, namely non-uniformity intensity

response, non-linearity and spatial distortion. The

corrected image is processed in blocks of pre-de®ned size in

order to reduce computational effort. The following stage is

based on the reference pro®le-®tting technique. The

incremental RBF network, with reference pro®les used as

basis functions, is employed for estimation of the initial

positions of diffraction spots together with the background

signal. The initial positions of spots are used to identify the

possible overlapping regions between spots. The next stage

estimates the noise probability density function (PDF)

from the background intensity levels in the spot neigh-

bourhood. The noise PDF is used to design a concentrated

RBF network by determining the minimum contribution

boundary that the basis functions need to satisfy inclusion

in the network. The ®nal stage calculates the Bragg spot

integrated intensities and positions. A more detailed

description of these stages is given in the following sections.

4. Reference pro®le ®tting using incremental RBF
network

This stage estimates initial positions and amplitudes of the

diffraction spots together with the background signal plane

in the image region under consideration. Prior to this phase

it is possible to remove strong outliers in the data so that

further data processing is not affected. This can be

performed using a technique based on Wilson statistics

(Read, 1999). The successive placement of the reference

pro®les is performed using RBF network methodology

Figure 1
Block diagram of proposed diffraction data processing.
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where the reference pro®les are used as basis functions.

RBF networks are capable of non-linear processing if their

basis function placements or spreads are modi®able (or if

they contain more than one hidden layer). For least-mean-

square (LMS) supervised training, the need is to determine

the minimum of the cost function (Haykin, 1994),

C �Pp
i�1

ẑi ÿ f xi; yi� � ÿ axi ÿ byi ÿ c
� �2

; �1�

where

f xi; yi� � �Pm
j�1

ŵjhj xi; yi� �;

a, b and c are background plane constants, fwjgmj�1 are

second layer weights, fhjgmj�1 are basis functions (i.e. refer-

ence pro®les) and f�xi; yi; ẑi�gpi�1 is a paired training set.

The minimization of C leads to a set of (m + 3) simul-

taneous linear equations, for which the optimum set of

weights, ŵ, and the background plane constants in the LMS

error sense can be expressed as
Figure 2
Laue diffraction pattern of concanavalin crystal with speci®ed
processed image segments marked.

Figure 3
Reference pro®le ®tting using incremental RBF network.

Figure 4
Selected pixels used for noise PDF estimation.

Figure 5
Estimated noise PDF with the following parameters: Pn = 0.73,
�n = 1 and �n = �6.98.

Figure 6
Minimum contribution boundary and individual basis function
contribution to the ®nal approximation.
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ŵ1

ŵ2
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The approximated output, ẑi, for the i th component, is

given by

ẑi � fi � f xi; yi� � � axi � byi � c�Pm
j�1

ŵihj xi; yi� �

� axi � byi � c� �h
T

i ŵ; �3�
where

�hi �
h1 xi; yi� �
h2 xi; yi� �

..

.

hm xi; yi� �

26664
37775:

The entire approximated output, r, for all p training pairs

can be expressed as

r �

r1

r2

..

.

rp

26664
37775 �

�h
T

1 ŵ
�h

T

2 ŵ

..

.

�h
T

p ŵ

266664
377775� axi � byi � c � Hŵ; �4�

where H is the design matrix.

In developing an RBF network, one common strategy is

to use the method of forward selection (Orr, 1996), which

starts with an empty subset of potential basis functions to

which one function is added at a time until some criterion is

satis®ed. The complete set of potential basis functions can

be expressed as

F � f1 f2 . . . fM

� �
; �5�

where basis functions in this case are reference pro®les at

corresponding positions within the image region under

consideration. After the full design matrix is determined,

the forward selection process of the basis functions can

proceed. The basis function that most reduces the cost

function is selected ®rst and the next function will be that

which most reduces the residual cost function, and so on.

Using this approach it is important to note that each

selected basis function in¯uences the contribution of other

basis functions in the neighbourhood. Therefore, the

contribution of each basis function towards the cost func-

tion is calculated using the contribution matrix, K. This

matrix is initially identical to the full design matrix, F, and it

is modi®ed every time a new basis function, fs, is selected.

The update rule for the contribution matrix at each itera-

tion i is as follows,

K�i� � K�iÿ1� ÿ fs g; �6�

where

g � fT
s K�iÿ1�= fT

s fs

ÿ �
:

The contribution, e, of all basis functions towards the cost

function is calculated as follows,

e � KT ẑ� ax� by� c: �7�
The basis function, which maximizes this contribution, is

selected from the full design matrix, F, and placed in the

design matrix, H. This process is repeated until one of the

following criteria is satis®ed:

(i) The generalized cross-validation (GCV) stops

decreasing (PokricÂ et al., 1999; Golub et al., 1979; Craven &

Wahba, 1979);

(ii) The weight of the last selected basis function is below

a pre-de®ned minimum value (typically equal to the esti-

mated noise RMS value);

(iii) The approximation error RMS value is below the

estimated noise RMS value;

(iv) The number of basis functions m exceeds a pre-

de®ned maximum value.

Fig. 2 shows a region of a Laue diffraction pattern of

concanavalin crystal obtained using the back-illuminated

CCD direct detection detector system (Allinson et al., 1994;

Allinson, 1994). The region under consideration is marked

by a small rectangular box. Fig. 3 shows the result of

reference pro®le ®tting using an incremental RBF network.

As can be seen, two main diffraction spots have been

detected and approximated using scaled reference pro®les.

5. Fitting re®nement using a concentrated RBF
network

Fitting re®nement is performed using a `local approxima-

tion' RBF network that is de®ned by its full design matrix

Flocal and design matrix Hlocal containing typically narrow

Gaussian basis functions. This RBF network is used to

estimate the residual signal after reference pro®le ®tting.

Once the initial positions and amplitudes of diffraction

spots are estimated (i.e. ®tted reference pro®le positions

and their amplitudes), it is possible to determine regions in

the image region where approximation re®nement is

necessary. This `local approximation' is based on the best

estimate of the noise in the neighbourhood of the identi®ed

spots. Fig. 4 shows the initial pixel positions whose inten-

sities are used in the noise PDF estimation procedure using

the expectation±maximization algorithm (Vaseghi, 1996;
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ŵm

a

b

c

26666666664

37777777775
�

P
h2

1

P
h1h2 � � � P

h1hm

P
h1x

P
h1y

P
h1P

h1h2

P
h2

2 � � � P
h2hm

P
h2x

P
h2y

P
h2

..

. ..
. ..

. ..
. ..

. ..
. ..

.P
hmh2

P
hmh2 � � �

P
h2

m

P
hmx

P
hmy

P
hmP

h1x
P

h2x � � � P
hmx

P
x2

P
xy

P
xP

h1y
P

h2y . . .
P

hmy
P

xy
P

y2
P

yP
h1

P
h2 � � � P

hm

P
x

P
y m � p

26666666664

37777777775

ÿ1 P
h1ẑP
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Proakis et al., 1992; Dempster et al., 1977). The pixel

intensities that deviate for more than three standard

deviations, �n, are rejected and the noise PDF is re-eval-

uated. This process is repeated until all pixel intensities fall

within the �3�n region. The ®nal PDF of a random signal n

can be represented as

fnj��nj�̂� � �1=2��2
n� exp ÿ xÿ �n� �2=2�2

n

� �
; �8�

where �̂ are parameters of the Gaussian mixture repre-

senting prior probability (Pn), mean (�n) and standard

deviation (�n) of each function.

The ®nal estimated noise PDF is shown in Fig. 5. There is

only a need to consider those basis functions (and their

positions) which can materially contribute to the ®nal

approximating function, za. This requires that the in¯uence

of a basis function must exceed the system noise level.

Hence, the design matrix employs only those basis func-

tions that satisfy the relationship

�
Pp
i�1

bji < ẑÿ r� �T�� �� bj; �9�

where � is calculated from a pre-de®ned con®dence limit �
using R�

ÿ�
f �n� dn � �=100;

where 0% � � � 100%, r is the full approximated output

of the reference pro®le RBF network and b are the basis

functions in the full design matrix Flocal.

The left-hand side of (9) for the image region under

consideration is graphically represented in Fig. 6 as a ¯at

plane. Basis function contributions [right-hand side of (9)]

are shown on the same plot. Only basis functions, which

exceed the minimum contribution boundary plane, are

incorporated in the design matrix Hlocal. The positions of

selected basis functions are marked in Fig. 7 as crosses. As

can be seen, there are four distinct regions where local

approximation basis functions are placed (marked 1, 2, 3

and 4). Regions marked with numbers 1 and 2 are the main

peak regions where reference peaks could not provide a

suf®ciently accurate model of the observed spots. Regions

marked with numbers 3 and 4 result from an inaccurate

background model in the reference peak pro®ling.

However, this does not in¯uence the ®nal result as the local

approximation basis functions correct for these irregula-

rities. Final approximation of the residual signal using the

concentrated RBF network and the approximation error

are shown in Figs. 8 and 9, respectively. The standard

deviation of the approximation error is�6.11, which is very

similar to the estimated noise standard deviation of �6.98.

Figure 7
Selected basis function (marked by crosses) used in concentrated
RBF network (local approximation). Main peak regions are
marked by numbers 1 and 2. Regions marked by numbers 3 and 4
result from the inaccurate background model within the reference
pro®le.

Figure 8
Concentrated RBF network approximation of residual signal (i.e.
original data subtracted from reference pro®le approximation
signal).

Figure 9
Approximation error with � = �6.11.
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This, of course, is the objective of the RBF approximation,

namely to approximate the `true' signal without over-

®tting. The ®nal approximation using a two-stage RBF

network (i.e. reference pro®le plus local approximation

stages) is shown in Fig. 10.

6. Calculation of diffraction spot parameters

The parameters that need to be extracted for each

diffraction spot are the exact position in the image and the

integrated intensity. Providing that there are no over-

lapping spots in the image region under consideration,

parameter calculation can be performed in the following

way: (i) identify the valid spot region(s); (ii) calculate the

integrated intensity within the valid region(s); (iii) calculate

the centre of gravity for each spot.

The valid spot regions are within the boundary line that

divides the valid spot signal values and background values.

The boundary line is calculated from individual spot

pro®les that are obtained by taking the approximation

intensities along the line originating from the reference

spot centre point. The orientation of the line is changed

from 0 to 360� in discrete steps. The boundary point for the

corresponding line angle lies at the position where the spot

pro®le along that line reaches the background intensity

level or global minimum in the case of overlapping spots.

The spot pro®les can be calculated with a sub-pixel accu-

racy using the analytical representation of the concentrated

RBF network, r̂local, and interpolated reference pro®les r̂.

The interpolated reference pro®le is calculated using the

standard bi-cubic interpolation technique (Press et al.,

1995). The analytical representation of concentrated RBF

network for Gaussian basis functions is

r̂ local�xi; yi� �
Xm

j�1

ŵj exp ÿ xi ÿ �xj

ÿ �2
=�2

x

h i
� exp ÿ yi ÿ �yj

ÿ �2
=�2

y

h i
;

�10�

where xi and yi are rational numbers, m is the number of

basis functions in the design matrix Hlocal, (�xj�xj) and (�yj

and �y) are the mean and standard deviation in the x and y

directions, respectively, of the j th basis function.

The individual spot pro®le p(�) calculated at a desired

resolution �t is therefore

p �; xi; yi� � � r̂ �xi; yi� � r̂ local�xi; yi�; �11�
where xi � t cos��� � xr and yi � t sin��� � yr for

t � 0;�t; 2�t; . . . and �xr; yr� is the reference pro®le

centre.

An example of the calculated boundary line is shown in

Fig. 11. Once the valid spot region is identi®ed, it is

straightforward to calculate the integrated spot intensity.

As the integrated intensity for the normalized reference

peaks is known a priori, it is only necessary to calculate the

contribution of the concentrated RBF network. The

contribution of the concentrated RBF network towards the

integrated intensity is calculated using the analytical

representation within the valid spot regions. Adding this

contribution to the scaled integrated intensity of the

corresponding reference pro®le leads to the ®nal integrated

intensity of the diffraction spot. The centre of gravity

(cx ,cy) is then calculated from intensity levels within the

valid peak region using

cx �
P

i

xi r̂ �xi; yi� � r̂ local �xi; yi�
� �

P
i

r̂ �xi; yi� � r̂ local �xi; yi�
;

cy �
P

i

yi r̂ �xi; yi� � r̂ local �xi; yi�
� �

P
i

r̂ �xi; yi� � r̂ local �xi; yi�
:

�12�

The centre of gravity of the spot shown in Fig. 11 is marked

by a cross. Two more examples of processing of non-over-

lapping diffraction spots are shown in Figs. 12 and 13. As

can be seen from these examples, the ®tting re®nement

Figure 10
Final approximation of two overlapping Bragg spots.

Figure 11
Boundary line with indicated centre of reference pro®le (marked
by a cross) of spot marked by box number 1 in Fig. 2.
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using the concentrated RBF network considerably

improves the approximation RMS error over the reference

pro®le approximation RMS error. The ®nal approximation

RMS error approaches the RMS noise value, which indi-

cates that the concentrated network approximates the data

accurately without over-®tting the residual intensity raw

data. The integrated intensity calculated using only the

reference pro®le differs from the intensity calculated using

the re®ned approximation by as much as 20%, with marked

improvement in the I/�(I) ratio for examples shown in

Figs. 11±13. The results are summarized in Table 1.

In the situations when the image region contains two or

more spots that overlap, it is ®rst necessary to deconvolve

the spots so that the individual integrated intensities and

centres of gravity can be calculated. This is achieved by

identifying the overlapping regions between the spots by

using the initially ®tted reference pro®les. Fig. 14 shows two

overlapping diffraction spots with centre positions of

reference pro®les marked by dark crosses. The pixels in the

overlapping region are marked by white crosses. The spot

pro®les p, de®ned by equation (11), are scaled in the

overlapping region using the reference pro®le geometry.

The scaled spot pro®le �p within the overlapping region of

spots a and b is calculated as

�pa��o; xo; yo� �
r̂a�xo; yo�

r̂a�xo; yo� � r̂b�xo; yo�
p��o; xo; yo�; �13�

where �o , xo and yo are line angles, x and y are positions

within the overlapping region and r̂a�xo; yo� and r̂b�xo; yo�
are the reference pro®le intensities of spots a and b at the

overlapping position (xo, yo).

The valid regions of individual spots are determined

using the combination of spot pro®les in no overlapping

regions and scaled spot pro®les in the overlapping regions

(see Fig. 15). Determination of integrated spot intensities

and centres of gravity are performed in the same manner as

for non-overlapping spots taking care to use scaled spot

pro®les in the overlapping regions.

Figure 13
Boundary line with indicated centre of reference pro®le (marked
by a cross) of spot marked by box number 3 in Fig. 2.

Table 1
Summary of results after processing of image segments marked by boxes 1, 2, 3 and 4 in Fig. 2.

Segment number

3 4

Parameter 1 2 Spot 1 Spot 2 Spot 1 Spot 2

Cx (pixel) 489.74 256.68 604.22 594.32 849.93 851.79
Cy (pixel) 76.98 48.88 790.92 780.87 717.92 707.99
Noise RMS (ADU) 11.65 9.36 11.94 11.94 7.91 7.91
Reference RMS (ADU) 22.741 24.45 17.23 21.67 16.34 19.71
Reference intensity 10733.67 1581.93 8737.06 9649.22 6211.95 4346.82
Reference I/�( I ) 472.00 64.70 507.08 445.28 380.17 220.54
Final RMS (ADU) 11.03 5.41 8.65 9.55 6.99 5.66
Final intensity 8701.99 2028.59 7271.22 7974.96 6090.49 3610.03
Final I/�( I ) 788.94 374.97 840.60 835.07 871.31 637.81

Figure 12
Boundary line with indicated centre of reference pro®le (marked
by a cross) of spot marked by box number 2 in Fig. 2.
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7. Conclusions

In this paper a novel technique for accurate Bragg spot

integrated intensity calculation is presented. The method is

based on the two-stage RBF network that is ef®ciently used

to approximate complex two-dimensional Bragg spot

shapes. It overcomes the limitation of conventional tech-

niques that use pre-determined reference pro®les to esti-

mate the spot integrated intensities. The use of RBF is

surprisingly computationally ef®cient. In a practical

implementation the additional sophistication of this

approach would be applied to any weak re¯ections, with

estimation of the underlying noise PDF probably not

calculated for every slice.

This work was undertaken as part of a programme of

crystallographic detector development funded by the

Foresight Initiative IMPACT grant (managed by PPARC as

grant reference GR/L29576) and the Daresbury Labora-

tory Detector Upgrade Initiative (managed by EPSRC as

grant reference GR/M39183).
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