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Temperature dependence of the Debye-Waller factors in EXAFS
is studied for monatomic fcc lattice by use of the perturbation
approach in terms of temperature Green·s function. We apply the
theory to the temperature dependence of EXAFS for Kr and Ni
crystals. Furthermore we make a comparison among sc, bcc and
fcc lattices for the present ab initio calculations.
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1. Introduction
So far several theoretical approaches have been developed to
describe the EXAFS cumulants including anharmonicity. Some
of them are the perturbation approaches(Fujikawa and Miyanaga,
1993), while others are non-perturbation approaches by use of the
path integral theory(Fujikawa et al.,  1997; Yokoyama, 1998). In
particular, perturbation approaches formulated by using
temperature Green·s functions provide wide applicability; we can
apply the resummation technique with an aid of the diagrammatic
technique. Here we focus our attention to weakly anharmonic
systems, where typical low-order cumulant expansion works
well.
In this work we apply the above perturbation approach to the
analyses of the temperature dependence of EXAFS Debye-Waller
factors. We focus our discussion on the new features in the
temperature dependence of the Debye-Waller factors for three
dimensional crystals compared with the previous works for low
dimensional ones(Miyanaga and Fujikawa, 1994a, b).

2. Temperature Green ·s function formula of EXAFS Debye-

Waller Factors
The theoretical approach used in this work is based on the
temperature Green·s function method developed by Fujikawa and
Miyanaga(1993). The second, third and fourth order cumulants
( M2 , M3 and M4 ) are explicitly shown in that paper.  We now

apply this method to the monatomic fcc lattice with anharmonic
Morse potentials between nearest neighbor atoms. It is assumed
that the nearest neighbor interaction is described by the Morse
potential as

           V x( ) = D(e
−2αx −2e

−αx)             (1)

where x is the scaled relative deviation
            x=(ÿÿA -a)/a,                        (2)
and ÿÿA and a are the instantaneous and equilibrium distances
between nearest neighbor atoms, respectively. The second order
cumulant M2  is written as the sum of  harmonic M20  and
anharmonicM21  ( M2 = M20 + M21). In this calculation, phonon
spectra ω j (k)  and the associated eigenvectors ej (k)  are needed,

which can be obtained by solving the dynamical matrix, and one
million momenta k·s in the first Brillouin zone are used.

3. Results and Discussion
First we study the shell dependence of the harmonic second and
the third order cumulants. Figure 1 shows the temperature
dependence of dimensionless harmonic second order cumulant
˜ M 20 ÿÿ

= M20 /(=a / πa 2DM) , where M  is atomic mass and  ̃ T m  is
dimensionless temperature defined by             

ÿÿ
˜ T m = kBT / =ωm

(ωm = 8Dα 2 / Ma2 ) . In the previous work for one-dimensional

monatomic crystal, the second order cumulant simply increases
with the shell(Miyanaga and Fujikawa, 1994). In this case, that
for the second shell is larger than for the nearest neighbor (first)
shell, but those for the third and the fourth shells are as large as
that for the second one. Figure 2 shows the temperature
dependence of dimensionless third order cumulant
˜ M 3 ÿÿ= M3 / 3a=

2
(4απ2

MD)
−1. Although third order cumulant also

increases with the shell for one-dimensional monatomic crystal,
that for the first shell is the largest and that for the second shell is
very small in the present case. The third order cumulant for the
third shell is much larger than that for the second shell, but, is
smaller than that for the fourth shell. Those results are consistent
with the experimental results (Yokoyama et al., 1997; Yokoyama,
1998).
Secondly we compare the calculated and experimental cumulant
for Kr and Ni crystals. For the Morse parameters for Ni crystal,
those derived by Milstein(1973) are used. For Kr crystal, the
employed pair potential is the one given by Barker et al.(1974),
which is fitted with the Morse potential. The parameters used for
the Kr and Ni crystals are as follows:
    Kr ⇒    D= 0.316×10-20 J,       α= 6.133,
                  a= 4.00787 &,           M= 13.916×10-26 kg.
    Ni ⇒    D= 0.351×10-19 J,       α= 6.288,
                  a= 2.486 &,               M= 9.746×10-26 kg.
Figure 3 compares the calculated and experimental second order
comulant M2  for Kr crystal measured by Yokoyama et al.(1997).
In this case, M2  for the first and the third shell are separately

shown. A good agreement is obtained. Figures 4 and 5 compares
the calculated and experimental third and fourth order cumulants,
M3 and M4  for the Kr crystal. The results only for the first shell is

shown. Again the present calculations well predict the
experimental result without using additional fitting parameters.
Figure 6 compares the calculated and experimental second order
cumuland M2  for the Ni crystal measured by Yokoyama(1998).
In this case, M2  for the first and the second shells are separately

shown. Figure 7 compares the calculated and experimental third
order cumulant M3 for the Ni crystal only for the first shell. We
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Figure 1
Temperature dependence of the dimentionless harmonic second order
cumulant ˜ M 20 for the monatomic fcc lattice.

Figure 2
Temperature dependence of the dimensionless third order cumulant ˜ M 3

for the monatomic fcc lattice.

Figure 3
Temperature dependence of the second order cumulantM2  for Kr.

  Figure 4
Temperature dependence of the third order cumulant M3 for Kr.

Figure 5
Temperature dependence of the fourth order cumulant M4  for Kr.

Figure 6
Temperature dependence of the second order cumulantM2  for Ni.
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Figure 7
Temperature dependence of the third order cumulant M3 for Ni.

Figure 8
Temperature dependence of the dimensionless harmonic 2nd order
cumulant ˜ M 20 for sc, bcc and fcc monatomic lattices for the first shell.

α = 6  was assumed in all the calculations.

also find a good agreement between the calculated and the
experimental results for the Ni crystal.
Lastly we make a comparison among sc, bcc and fcc lattices for
the calculated results. Figure 8 shows the comparison of the
dimensionless harmonic second order cumulant ˜ M 20  for different

crystal structures, sc, bcc and fcc lattices. We study the
temperature dependence of ˜ M 20  for the nearest neighbor atoms,

where the equilibrium nearest neighbor distances are the same.
We found that ˜ M 20  becomes larger in turn of  sc, bcc and fcc

lattices (sc>bcc>fcc). This behavior is consistent with the
expected trend due to the progressively increasing number of
nearest neighbors going from the sc to fcc structures. For the
dimensionless third order cumulant ˜ M 3, the similar result is

obtained.

4. Conclusion
We obtain some characteristic features of the EXAFS cumulants
for the three dimensional monatomic fcc system,
which are quite different from those for one dimensional crystals.
The present ab initio calculations based on the perturbation
theory by Fujikawa and Miyanaga predict well the experimental
results. Furthermore we can explain the difference in the EXAFS
cumulant among sc, bcc and fcc lattices.
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