# Unexpected Fe local order in iron oxidecoated nanocrystalline magnesium oxides with exceptional reactivities against environmental toxins

Jacques Moscovici,<sup>ab</sup> Mouad Benzakour,<sup>a</sup> Shawn Decker,<sup>c</sup> Corrie Carnes,<sup>d</sup> Kenneth Klabunde<sup>d</sup> and Alain Michalowicz,<sup>ab</sup>

<sup>a</sup>GPMD - Université Paris XII - 61 avenue du Général de Gaulle -94010 Créteil Cedex, France, <sup>b</sup>LURE - Université Paris Sud -91898 Orsay Cédex, France, <sup>c</sup>NANTEC - Manhattan, KS 66506, USA, <sup>d</sup>Department of Chemistry - Kansas State University -Manhattan, KS 66506, USA. Email:moscovic@univ-paris12.fr

Mg oxide nanoparticles are very reactive materials used to mitigate atmospheric pollution and to sequester polluting molecules. Using Fe K-edge XAFS, we have studied the structure of iron oxide-coated MgO nanoparticles before and after reaction with CCl<sub>4</sub>. Before reaction, the local structure around Fe is totally different from that in iron oxide coatings on SrO and CaO nanoparticles, although these coated materials were prepared in the same way. In SrO and CaO, the iron oxide coating has been shown to be well separated from the bulk of the nanoparticle, whereas in MgO, Fe was found to mix with MgO. After reaction with CCl<sub>4</sub>, Fe-Cl bonds can be detected when the coated nanoparticle is saturated. Such Fe-Cl EXAFS signals have not been observed in previously studied nanoparticles.

# Keyword: nanoparticle, atmospheric pollution, EXAFS structure, coating surface

# 1 Introduction

Atmospheric pollution is a major worldwide environmental issue that should be addressed at the molecular level. Solutions to atmospheric pollution problems present some risk, including the creation of other pollutants from incomplete incineration. For several years we have been working on an alternative approach that involves separation of the toxic part of a polluting molecule by using a reactive solid material such as alkaline earth oxide nanoparticles. Nanoparticulate MgO, SrO, and CaO are very reactive materials used for the absorption of polluting molecules like chlorocarbon compounds (Li et al., 1992). The process is not catalytic but is based on the possibility that the metal oxide will remove the heteroatom (Cl) from the atmosphere and immobilize it in the solid.

An important parameter affecting the reactivity of this process are the surfaces of the metal oxide nanoparticles. Two different means of sample preparation have been performed to obtain the most reactive product. The first, called "AP" preparation, is a sol-gel process followed by an aerogel hypercritical drying procedure (Kopper et al., 1993). The second is termed a conventional preparation (CP) which generates oxides from ex-hydroxides.

It is possible to increase the reactivity of the nanoparticles by adding a small quantity of iron oxide as a surface coating. The specific surface area for [Fe]AP-MgO is about 460 m<sup>2</sup>/g, whereas for [Fe]CP-MgO it is 203 m<sup>2</sup>/g (Klabunde et al., 1996).

In previous papers (Decker et al., 1998; Moscovici et al., 1999) we proposed a model for reactions between iron oxide-coated SrO nanoparticles and  $CCl_4$ , which assumes that adsorbed  $CCl_4$  readily reacts with the iron oxide (Fe<sub>2</sub>O<sub>3</sub>) to form FeCl<sub>3</sub>. Calculated heats of

formation suggest that  $FeCl_3$  can in turn react with strontium oxide to regenerate the  $Fe_2O_3$  species and form a strontium chloride salt.

The aim of this work was to study the surface structure of iron oxide-coated AP-MgO nanoparticles before and after reaction. Due to the small quantity of iron oxide on the surface, powder X-ray diffraction and TEM were unsuccessful in determining the location of Fe ions, and only the EXAFS method can provide structural information about the surface.

EXAFS study of MgO nanocrystalline powders follows our previous studies on similar iron oxide-coated SrO and CaO. In these two compounds, the local coordination environment of Fe before reaction was found to be similar to that in very disordered iron oxides (Decker et al, 1998; Moscovici et al, 1999). However, iron oxide-coated MgO is less reactive than AP-SrO and AP-CaO. Comparative local structural information on [Fe]AP-MgO is required to explain these differences.

# 2 Experiment and data analysis

We have studied iron oxide-coated AP-MgO nanoparticles before and after reaction with CCl<sub>4</sub>. We chose powdered commercial samples of Fe<sub>2</sub>O<sub>3</sub> and FeCl<sub>3</sub> as model compounds. The experiments were done with the two types of samples prepared after reaction with CCl<sub>4</sub>. First, the amount of CCl<sub>4</sub> pulsed over the samples was in stochiometric excess for both AP and CP, assuming that 100% of the MgO reacts to form a chloride salt. The second preparation corresponds to a reaction with a smaller quantity of CCl<sub>4</sub>. The pulse of CCl<sub>4</sub> over the sample was stopped just before saturation. The experimental conditions of these reactions are described elsewhere (Decker, 1998). The EXAFS spectra were recorded at the Fe K-edge at LURE (Laboratoire pour l'Utilisation du Rayonnement Electromagnétique), Orsay, France on the EXAFS 2 and EXAFS 13 workstations in transmission and fluorescence modes. All the samples were prepared in a dry nitrogen atmosphere in a glove box and recorded in an atmosphere-controlled sample holder. EXAFS data analysis was performed with "EXAFS 98" and "EXAFS pour le mac" programs (Michalowicz, 1996 and 1998). After Fourier filtering, the 1<sup>st</sup> and the 2<sup>nd</sup> single shell Fe-O and Fe-X (X = Mg, Fe) were fitted to the standard EXAFS formula without multiple scattering. The amplitudes and phases were extracted from calculated spectra by the computer program FEFF7 (Rehr et al, 1992). Complete FEFF modeling of Fe<sub>2</sub>O<sub>3</sub>, FeCl<sub>3</sub>, Fe<sub>2</sub>MgO<sub>4</sub>, and MgO was carried out, and no multiple-scattering paths were observed in the 1<sup>st</sup> two shells (R < 3.2 Å) except for the tetrahedral site of Fe<sub>2</sub>MgO<sub>4</sub>.

# 3 Results and discussion

# 3.1 Before reaction with CCI<sub>4</sub>

In spite of the non-reducing conditions of its preparation, we cannot rule out the presence of some Fe(II) ions in [Fe]AP-MgO. The Fe K-edge spectrum of [Fe]AP-MgO is close to that of  $Fe_2O_3$  and is typical of Fe(III) in an octahedral site coordinated by oxygens (Fig. 1).

Figure 2 presents the EXAFS spectra of [Fe]AP-MgO, [Fe]AP-SrO, and  $Fe_2O_3$ . The spectrum of [Fe]AP-MgO is completely different from that of  $Fe_2O_3$ , indicating that the local structure around Fe in [Fe]AP-MgO doesn't correspond to that in  $Fe_2O_3$ . It is also different from the Fe local structure of the AP-SrO coating.

This difference is confirmed by the imaginary parts of the FT (Fig. 3). The 1<sup>st</sup> peak of the Fe EXAFS signal FT in AP-MgO coating corresponds to a Fe-O signal as for Fe<sub>2</sub>O<sub>3</sub>. The 2<sup>nd</sup> peak is out of phase with the 2<sup>nd</sup> peak of Fe<sub>2</sub>O<sub>3</sub>. Thus, it does not correspond to the same Fe-Fe signal as in Fe<sub>2</sub>O<sub>3</sub>.

In order to characterize quantitatively the Fe local order in [Fe]AP-MgO, we used two structural models - Fe<sub>2</sub>O<sub>3</sub> and Fe<sub>2</sub>MgO<sub>4</sub>, which is a



Figure 1 Edge spectra of [Fe]AP-MgO and Fe<sub>2</sub>O<sub>3</sub>



#### Figure 2

Fe K-edge EXAFS spectra of iron oxide-coated AP-MgO and AP-SrO and commercial  $Fe_2O_3$  before reaction with  $CCl_4$ .

mixed Fe/Mg oxide with an inverse spinel structure (Wyckoff, 1963). In the later compound, Fe ions occupy both tetrahedral ( $T_d$ , Fe-O = 1.92 Å, Fe-Fe = 3.48 Å) and octahedral ( $O_h$ , Fe-O = 2.04 Å, Fe-Fe = 2.97 Å) sites. The fit of the 1<sup>st</sup> shell gives 6.8 O at 2.015 Å, which is compatible with an octahedral site.

For the 2<sup>nd</sup> shell, we tried either Fe or Mg. The results for these fits are given in Table 1. With only Fe neighbors at about 3 Å, the fit is unsatisfying, whereas for a shell of Mg, we obtain a significantly better fit (Fig. 4). The difference is due to the phase shift between Fe-Mg and Fe-Fe signals. The statistical F-test of this fit (Michalowicz et al, 1998) gives a probability of 86% in favor of a Mg shell at 3.03 Å. Fits with a mixing of Mg and Fe can also be done. Due to the increase in number of variable parameters and correlation effects, these fits are not reliable. If there is some Fe in the 2<sup>nd</sup> shell, the Mg contribution is clearly dominant. In [Fe]SrO and [Fe]CaO nanoparticles, the Fe local structures were found to be very disordered and weakly bound to the bulk (Moscovici et al, 1999 and Decker, 1998). In [Fe]MgO, we found an Fe local environment totally different from that of [Fe]SrO or [Fe]CaO. The Fe EXAFS spectrum is well ordered with a clear Fe-Mg correlations. Although the iron oxide coatings of the MgO, CaO, and SrO nanoparticles were deposited under exactly the same chemical conditions, insertion of Fe in MgO was found in the MgO nanoparticles. The Fe-O and Fe-Mg distances and number of neighbors

are close to those for the octahedral sites of  $Fe_2MgO_4$ , but a simple substitution of Mg by some Fe in MgO is also possible. It is impossible to characterize more precisely the location of iron at the surface or in the bulk of the MgO nanoparticles in this study.



# Figure 3



# Table1

Fitting results for 1<sup>st</sup> and 2<sup>nd</sup> shells of iron oxide-coated AP-MgO nanoparticles before reaction: Nind=17, Npar=3,  $\Delta \chi^2$ =14 for Fe-Mg and  $\Delta \chi^2$ =27 for Fe-Fe.

|       | Ν          | σ(Å)     | R(Å)      | $\Delta E_0 (eV)$ |
|-------|------------|----------|-----------|-------------------|
| Fe-O  | 6.8 (6)    | 0.110(5) | 2.015(12) | -3.31 (1.1)       |
| Fe-Mg | 7.6(1.8)   | 0.10(1)  | 3.031(14) | -0.32 (1.0)       |
| Fe-Fe | 14.36(2.0) | 0.148(5) | 3.172(11) | -3.01(1.0)        |



### Figure 4

AP-MgO filtered experimental spectrum and theoretical best fit with Fe-O  $(1^{st} shell)$  and Fe-Mg or Fe-Fe  $(2^{nd} shell)$ .

#### 1.2 After reaction with CCl<sub>4</sub>

Figures 5a and 5b present, respectively, the FT modulus of the Fe K-edge EXAFS spectra of [Fe]AP-MgO after  $CCl_4$  reaction in the unsaturated and saturated modes. For the unsaturated compound, the only change is a slight disorder, which is represented by the small decrease of both Fe-O and Fe-Mg amplitudes (Fig. 5a).

For the saturated compound (Fig. 5b), the Fe-O and Fe-Mg peaks remain, but with a strong decrease in their amplitudes. In addition, a new peak appears just between the previous ones. Since the reaction of these nanoparticles with  $CCl_4$  implies storage of chlorine, this peak is assigned to a Fe-Cl pair correlation. This hypothesis is qualitatively verified in Figure 6 where the [Fe]AP-MgO and FeCl<sub>3</sub> FT spectra are compared. The position and the phase of this  $3^{rd}$  peak matches quite well with the FeCl<sub>3</sub> signal (Fe-Cl = 2.30 Å). Fitting this feature as a Fe-O pair correlation would lead to an abnormal distance (about 2.3 Å) for such oxides and a phase inversion impossible to correct with a reasonable  $E_0$  shift.

As in [Fe]AP-MgO before reaction with CCl<sub>4</sub>, the Fe local structure after reaction of [Fe]AP-MgO differs from those of [Fe]AP-CaO and [Fe]AP-SrO. In these cases, we have previously shown that the surface disordered structure is converted to ordered Fe<sub>2</sub>O<sub>3</sub> upon CCl<sub>4</sub> reaction. No Fe-Cl bond was detected. In the present work, in contrast, we see a weak disorder effect or the presence of a Fe-Cl signal.

We have seen that the EXAFS spectrum at the Fe K-edge of [Fe]AP-MgO before reaction is unable to clarify where the Fe ions migrate inside the MgO nanoparticle. After CCl<sub>4</sub> reaction, the Fe local environment is not modified by the presence of chlorine until total saturation. A model with the Fe ions near the surface would explain this behavior more likely than a homogeneous Fe-MgO solid solution.



#### Figure 5a

FT Modulus spectra of coated AP-MgO before and after reaction with CCl<sub>4</sub> without saturation.



#### Figure 5b

FT Modulus spectra of iron oxide-coated AP-MgO before and after reaction with  $CCl_4$  with saturation.

This model can be used to explain the differences observed in the reactivities of iron oxide-coated CaO and MgO nanoparticles for the destruction of CCl<sub>4</sub>, although their chemical preparations were identical (Table 2).

### Table 2

| Reaction ratio | for | destructive | absorption | 1 of CCl <sub>4</sub> | with F | Fe coated M | igO and | CaO |
|----------------|-----|-------------|------------|-----------------------|--------|-------------|---------|-----|
|                |     |             |            |                       |        |             | 0       |     |

| Sample     | Reaction ratio (Mole CCl <sub>4</sub> /Mole MO) |
|------------|-------------------------------------------------|
| AP-MgO     | 0.17                                            |
| AP-CaO     | 0.31                                            |
| [Fe]AP-MgO | 0.36                                            |
| [Fe]AP-CaO | 0.51                                            |

For CaO, the iron oxide coating leads to the maximum reactivity ratio (0.5 mol  $CCl_4/mol$  MO). The AP-MgO nanoparticles are less reactive (0.36). This difference may be due to the fact that Fe in MgO is a less efficient surface catalyst than the disordered  $Fe_2O_3$  on the surface of [Fe]SrO and [Fe]CaO.



#### Figure 6

Complete FT spectrum of a) iron oxide-coated AP-MgO after reaction with CCl<sub>4</sub> in saturation and b) complete FT spectrum of the model compound FeCl<sub>3</sub>

#### 4 Conclusion

We have shown that the structural environment of Fe in iron oxidecoated MgO nanoparticles is different from that in coated SrO and CaO nanoparticles. In the case of [Fe]AP-MgO, it was possible to show that Fe occupies octahedral sites with a 1<sup>st</sup> shell of oxygens and a 2<sup>nd</sup> shell of Mg. We propose that Fe occupies sites near the surface of the nanoparticles. After reaction with CCl<sub>4</sub>, chlorine does not coordinate Fe until saturation.

The particular Fe local structure found in these MgO nanoparticles is probably the reason for the less efficient reactivity for dechlorinating CCl<sub>4</sub>. This result suggests that new coating methods are needed to obtain a better reactivity.

#### References

Decker, S. (1998). PhD thesis, Kansas State University

Decker, S., Lagadic, I., Klabunde, K.J., Moscovici, J.& Michalowicz A. (1998). *Chem. Mater.* 10, 674-678.

Klabunde, K.J., Stark, J., Kopper, O., Mohs, C., Park, D.G., Decker, S., Jiang, Y., Lagadic, I. & Zhang, D. (1996). *J. Phys. Chem.* **100**, 12142.

Kopper, O., Li, Y.X. & Klabunde, K.J. (1992). Chem. Matter. 5, 500.

Li, Y.X., Kopper, O., Atteya, M & Klabunde, K.J. (1992). Chem. Matter. 4, 323.

Michalowicz, A. (1991). Société Française de Chimie, Paris. 102

Michalowicz, A & Vlaic, G. (1998). J. synchrotron Rad. 5, 1317-1320

Moscovici, J., Michalowicz, A., Decker, S., Lagadic, I., Latreche, K. & Klabunde, K.J. (1999). J. Synchrotron Rad. 6, 604-606.

Rehr, J.J., Zabinski, S.I. & Albers, A.C. (1992). Phys. Rev. Let. 69, 3397.

Wyckoff, R.W.G. (1963) Crystal Structures. 1, 75