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Anisotropic features in XMCD spectra
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We discuss the angular dependentK-edge X-ray Magnetic Circu-
lar Dichroism (XMCD) spectra based on the semi-relativistic full
multiple scattering theory, where 2-spinor formalism is used to de-
scribe spin-orbit coupling. So far most of theoretical approaches
have been limited to the simplest case where the circularly polar-
ized X-ray propagation coincides with the direction of the magnetic
field. Here we discuss more general cases, using the above theoret-
ical approaches. We separately discuss atomic, single and full mul-
tiple scattering XMCD spectra; in particular anisotropic features of
them are studied in detail.
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1. Introduction
XMCD has allowed us to measure element specific local mag-
netic properties. Some theoretical approaches have been developed
and made remarkable achievements. Sum rules of the XMCD al-
low us to probe directly the orbital magnetization (Tholeet al.,
1991; Igarashi & Hirai, 1994). Multiple scattering approach to the
XMCD analyses are successful for the interpretation of GdL2;3-
edge of rare earth and FeK-edge XMCD (Ankudinov & Rehr,
1995; Brouderet al., 1995). So far the XMCD studies have been
restricted to the simplest case where the magnetization direction
M and the circularly polarized X-ray propagation directionk are
parallel to each other. However angular dependent XMCD spectra
provide more information about spin quantization axis. The angu-
lar dependent XMCD spectra have been discussed by Carraet al.
(Carra & Alterrelli, 1990) in the purely atomic picture. They de-
rive a general formula to describe linear and circular dichroism in
electric dipole and quadrupole excitation. Angular dependence for
XMCD sum rules were discussed by van der Laan (van der Laan,
1998) in one-electron picture. Their theories take solid state effects
into account by adjustment parameters. In contrast to these ap-
proaches the multiple scattering approaches can include solid state
effect in transparent way. In Sec. 2, multiple scattering formula for
the angular dependentK-edge XMCD is derived. The calculated
XMCD for bcc Fe are compared with the observed one in Sec. 3.

2. Theory

2.1. Angular dependent XMCD
First we discuss the potential for an excited photoelectron. It is

written in the sum of each atomic potential,

V (r) =
X
�

v� (r�)

wherev� (r�) is the atomic potential at site�, which is assumed
to be spherical symmetric. As a relativistic correction we take
only spin-orbit(SO) coupling into account in the 2-spinor formula,
which yields

v� = v�c + v��ex + �
�(r)S � L (1)

wherev�c is Coulomb potential,v��ex is spin dependent exchange
potential. The third term is the SO coupling potential, which is
given by 2� 2 matrix in the 2-spinor formula,

�
�(r)S � L =

��(r)
2

�
L�z L��
L�+ �L�z

�
: (2)

Hereafter our attention is focused on light element systems, and the
off-diagonal SO coupling term can be treated as weak perturbation
Æv�, which contributes to spin-flip processes:

v� = v�0 + Æv�;

v��0 = v�c + v��ex � ��(r)
2 L�z ;

Æv� = ��(r)
2

�
0 L��

L�+ 0

�
: (3)

The scattering Green’s function at site� g0
� for the scattering po-

tentialv�0 is diagonalized as

g0
�(") =

�
g0
�(")

+ 0
0 g0

�(")
�

�
(4)

whereg0�
� denotes up and down spin Green’s function which is

written in terms ofv�0 and kinetic energy operatorTe

g0
�(")

� = ("� Te � v��0 + i�)�1
: (5)

We can construct the full Green’s function at site� including spin
orbit coupling,

g� = g0
� + g0

�Æv�g0
� + g0

�Æv�g0
�Æv�g0

� + � � � : (6)

First we consider the simple geometrical setup; spin axis and
the direction of the incident circularly polarized X-ray is parallel
to each other. In this case electron-photon interaction operator∆mp

is given by∆mp = rY1;mp(r̂) neglecting unimportant constants. As
usual we can utilize site T-matrix expansion of full Green’s func-
tion g at an X-ray absorption atomA (Fujikawa, 1993)

g = gA +
X
�6=A

gAt�gA +
X
� 6=�6=A

gAt�g0t�gA + � � � ; (7)

wheret� is the site T-matrix at site� which is related tov�; t� =
v� + v�g0t�. g0 is the free propagator and is different fromg0

�

defined by eq. (5). Now we defineT(mp; m0
p) in terms of 1s core

spinor functionjci and full Green’s functiong given by eq. (7),

T(mp; m0
p) = �

1
�

Im hcj∆�mpg∆m0

p
jci : (8)

Each ofT(mp; m0
p) is written as the sum of atomic termT(0), sin-

gle scattering termT(1), and double scattering termT(2) and so on,
T = T(0) + T(1) + T(2) + � � �. In the next step, let specify the ge-
ometrical setup considered in this work. The direction of magnetic
field should be in thez-axis to use eqs. (1)-(4). The incident X-ray
photons come into the target from positivez0-direction, which is in
thexz-plane tilted with angle� (see Fig. 1 ).
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Figure 1
The geometrical setup in the XMCD experiment. The incident X-ray
photons come into the target from positivez0-direction, which is in the
xz-plane tilted with angle�.

The spherical harmonicsY1;mp written in r̂ 0 in the x0y0z0-
coordinate system is related to those inr̂ ,

Y1;mp(r̂
0) =

X
�

Y1;�(r̂ )d
(1)
�;mp(�): (9)

Similar to eq. (8) we define the matrix elementsT0(mp; m0p) in the
x0y0z0-coordinate system,

T0(mp; m0p) = �
1
�

Im hcj∆0�mpg∆0m0

p
jci ; (10)

where∆0mp = rY1;mp(r̂
0). From eq. (9) we have a relation,

T0(mp; m0p) =
X
�;�0

d(1)
�;mp(�)d

(1)
�0

;m0

p
(�)T(�;�0): (11)

Substituting explicit formulas ofd(1), we have an explicit formula
for the X-ray circular dichroism for the general experimental ar-
rangement shown in Fig. 1,

T0(1; 1)� T0(�1;�1) =

cos�fT(1; 1)� T(�1;�1)g

+ sin�p
2
fT(0; 1) + T(1; 0) + T(0;�1) + T(�1; 0)g: (12)

Of course, it is justT(1; 1)� T(�1;�1) when� = 0Æ. Typically
we measure the XMCD under the condition,� = 45Æ.

2.2. Atomic XMCD
Because of the selection rule, only diagonal termmp = m0p can

contribute to the atomic term, the first termgA in eq. (7). From
eq. (12), angular dependent atomic XMCD is simply described by
cos�fT (0)(1; 1) � T(0)(�1;�1)g. Carraet al. obtained the same
result for the electric dipole transition (Carra & Alterrelli, 1990).
The atomic X-ray absorption intensityT0(mp; mp)(mp = �1) is
given by use of the perturbation expansion eq. (6) forgA,

T(0)(mp; mp) =

� 1
�

Im
P
�

h�j∆�mp(g
0�
A + g0�

A Æv��̄A g0�̄
A Æv�̄�A g0�

A )∆mp j�i (13)

where� and�̄ = ��(= �1=2) designate the spin state. Asg0+
A is

different fromg0�
A because of different spin-polarization potential

vA�
0 in eq. (3), we can expect the nonzero contribution from the

second term toT(0)(1; 1) � T(0)(�1;�1) which gives rise to the
lowest order atomic XMCD.

2.3. Single and Multiple Scattering XMCD

By applying the site T-matrix expansion shown by eq. (7),
we can write the single scattering X-ray absorption intensity
T(1)(mp; m0p) up to the second order of�,

T(1)(mp; m0p)1 = � 1
�

Im
P
�

h�j∆�mpg��A t��g��A ∆m0

p
j�i

� 1
�

Im
P
�

h�j∆�mpg��̄A t�̄�g�̄�A ∆m0

p
j�i (14)

wherej�i is the core state with spin�, and no spin flip scattering
take place at site�. Furthermore we should consider the spin flip
scattering at site�,

T(1)(mp; m0p)2 = � 1
�

Im
P
�

h�j∆�mpg�At��̄� g�̄�A ∆m0

p
j�i

� 1
�

Im
P
�

h�j∆�mpg��̄A t�̄�� g�A ∆m0

p
j�i (15)

The lowest order spin flip t-matrixt��̄� is given by,t+�� � Æv+�� =
�L�=2; t�+

� � Æv�+
� = �L+=2: The lowest order spin flip Green’s

functiong+� at the X-ray absorption atomA is calculated based on
perturbation theory with aid of eq. (6).

The multiple scatterings play an important role in the analy-
ses of XANES spectra (Fujikawa, 1993). As far as we neglect
the spin flip processes at the nearby atoms, we can renormalize
the multiple scattering series,T1 = T(0) + T(1) + T(2) + � � �,
which is crucial in the near edge XMCD analyses. For example
T1(1; 1)� T1(�1;�1) is given by

T1(1; 1) � T1(�1;�1) =

1
2�2 Im

h
�+�(k)c�

�+(k)c

�
G(1� X�)�1

	A;A

10;10

���+(k)c�
+�(k)c

�
G(1� X+)�1

	A;A

10;10

i
; (16)

whereX = tGand���̄(k)c is spin flip radial dipole integral defined
by

�
��̄(k)c =

Z
drR�1s(r)r

3R̃��̄1 (kr);

whereR̃��̄1 (kr) is the radial part of the spin flip scattering function
with angular momentuml = 1.

Because we haveG(1 � X�)�1 = G(1 � X+)�1 for nonmag-
netic systems, no XMCD is expected to be obtained if� = 0. If
SO coupling is absent, the spin flip radial dipole integrals���̄(k)c

vanish. As is well known, both of the spin polarization and the SO
interaction are essential for the XMCD interpretation.

3. Results and discussion

Fig. 2 shows the atomic XMCD discussed in subsection 2.1, and
the single scattering XMCD (magnetic EXAFS) spectrum dis-
cussed in subsection 2.2 for FeK-edge compared with the experi-
mental result by Sch¨utzet al.(Schütz & Ahlers, 1997). The atomic
XMCD is smooth as a function of energy, whereas the scattering ef-
fects give rise to rapid oscillation. In the low energy region, atomic
XMCD cannot be neglected whereas it decays rapidly; in the EX-
AFS region, it is about 2 % of the magnetic EXAFS. The calculated
spectrum including the single scattering term gives main features
of experimental one, though for the detailed analysis we should
include multiple scattering.



dichroism

418 Received 31 July 2000 � Accepted 22 November 2000 J. Synchrotron Rad. (2001). 8, 416±418

Figure 2
The calculated normarized XMCD spectra∆T(0) =
T(0)(1; 1) � T(0)(�1;�1) (atomic) and ∆T = ∆T(0) +
∆T(1)(atomic+ single scattering) of Fe K-edge in bcc Fe.∆T(0)

� 20
(long dashed line) and∆T (solid line) are compared with the experi-
mental result (Sch¨utz & Ahlers, 1997) shown by dotted line.�(0) means
2�(0) = T(0)(1; 1) + T(0)(�1;�1) (atomic absorption). For the single
scattering calculation we use a cluster with 59 atoms.

We study the angular dependence of magnetic EXAFS. Fig. 3
shows the single scattering X-ray absorption intensity∆T(1) =
T(1)(1; 1) � T(1)(�1;�1), andÆT(1) = T(1)(1; 0) + T(1)(0; 1) +
T(1)(�1; 0) + T(1)(0;�1) in eq. (12). The scatterers� = (a; a; a)
and�0 = (a; a;�a) give different interesting oscillations;∆T(1) is
quite similar for both scatterers, whereasÆT(1) for the scatterer�
is�ÆT(1) for the scatterer�0. The latter finding is explained by use
of the symmetry ofGL;L0(kR) whereL means angular momentum
L = (l ; m). This example demonstrates that the latter contribution
ÆT(1) usually have negligibly small contribution for highly sym-
metric systems becauseÆT(1) is fully cancelled out.

Figure 3
Comparison of the single scattering FeK-edge XMCD from the dif-
ferent scatterer� and�0. The solid lines showÆT (1) = T(1)(1; 0) +
T(1)(0; 1) + T(1)(�1; 0) + T (1)(0;�1), and the dashed lines∆T(1) =
T(1)(1; 1) � T(1)(�1;�1) (see eq. (12)). The siteA denotes X-ray ab-
sorption atom. The energy zero is the same as that in Fig. 2.

Fig. 4 shows the calculated FeK-edge XMCD spectrum com-
pared with the experimental one (� = 45Æ) in the near edge region.
As discussed in the subsection 2.3, full multiple scatterings play an
essential role. The agreement with the experimental is satisfactory
in the energy range 7-25 eV. The peak at 30 eV is not reproduced
in our calculation; which requires further studies. The second part
in eq. (12) proportional to sin� is found to be negligibly small.

Figure 4
The calculated FeK-edge XMCD spectrumP = (T1(1; 1) �
T1(�1;�1))=(T1(1; 1) + T1(�1;�1)) by use of the full multiple
scattering approach for a cluster with 59 iron atoms in bcc Fe. Experi-
mental result is also shown for comparison (Mizumaki, 1996). The en-
ergy zero is set to be at the first inflection point in the absorption spec-
trum.

4. Conclusion

K-edge XMCD theory is described on the basis of semi-relativistic
theory where spin-flip term is treated as weak perturbation. This
severely restricts the application to light elements such as the first
row transition metals. For many systems, angular dependence of
K-edge XMCD is dominated by cos� term in eq. (12). However
further study should be necessary to use cos� term in the analyses
of XMCD spectra.
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Schütz, G. & Ahlers, D. (1997).J. Phys. IV FRANCE7, C2-59 – 65.
Thole, B. T., Paoro Carra, Sette, F. & van der Laan, G., (1991).Phys. Rev.

Lett.68, 1943–1946.
van der Laan, G., (1998).Phys. Rev. B57, 5250–5258.


