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The basic framework of X-ray absorption ®ne structure (XAFS)

theory is formulated by use of the non-equilibrium Keldysh±Green

function, which presents a uni®ed view of XAFS spectra at zero and

nonzero temperature. In particular, the relation between the

scattering Green's function and the retarded Green's function Gr is

discussed, along with resonance effects in XAFS. The latter effects

give rise to unexpected peaks within one-electron theory. Loss effects,

both intrinsic and extrinsic, are also discussed.
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1. Introduction

XAFS theory has been developed on the basis of scattering theory.

The highly successful standard XAFS analysis programs FEFF,

developed by Rehr et al. (1991), and EXCURVE, developed by

Binsted & Hasnain (1996), are based on the cluster- and multiple-

scattering approach (for example, see, Lee & Pendry, 1975). The basic

theoretical framework, starting from many-body scattering theory,

has been presented by Hedin, employing the quasi-boson approx-

imation (Hedin, 1989). More sophisticated formulae, beyond the

quasi-boson approximation, have been obtained by the present

author (Fujikawa, 1999). These scattering theories, based on projec-

tion-operator techniques, have proven to be very powerful; however,

it is dif®cult to include the effects of temperature on XAFS analyses

because the quantum state to be projected onto and out of has to be

speci®ed. In some special cases, the thermal average may be taken to

include the temperature effects. For example, Debye±Waller and

Franck±Condon factors in single-scattering EXAFS analyses can

simultaneously be included within the harmonic approximation for

nuclear vibration (Fujikawa, 1996a,b). It is, however, dif®cult to go

beyond the harmonic approximation or the single-scattering

approximation.

A different approach, starting from the non-equilibrium Green's

function, has also been developed by the present author, in order to

discuss ®nite temperature XAFS spectra (Fujikawa, 1999). It is

possible to obtain a systematic approximation for the XAFS analyses

at T = 0 and T > 0. In the previous paper (Fujikawa, 1999), some

important problems, such as the Debye±Waller and Franck±Condon

factors, and the subtle cancellation of loss structures, were discussed.

In this paper, a further discussion is presented on the relation

between the scattering Green's function and the retarded Green's

function Gr, as well as on the resonance effects in XAFS. To date,

these problems have rarely been discussed.

2. Closed-path Green's function XAFS formulae

In this paper, the closed-path (Keldysh) Green function is extensively

used to describe the X-ray absorption intensity. In dipole length and

acceleration form, the X-ray absorption intensity I(!) for an X-ray

photon of energy ! is (Fujikawa, 1999)

I�!� � i
R

dx dx0���x���x0� R1
ÿ1

�>�xt; x0� exp�i!t� dt; �1�

where x = (r, �) and �> is the reducible polarization propagator

de®ned by i�>(1, 2) = h��(1)��(2)i [��(1) = �(1) ÿ h�(1)i]. In the

dipole-length formula, we have �/ e � r for linear polarization, where

e is the polarization vector of the incident X-ray.

It is not easy to handle the reducible polarization propagator �, so

we relate it to the irreducible polarization propagator P and the

screened Coulomb interaction W:

��1; 2� � P�1; 2� � R d3 d4 P�1; 3�W�3; 4�P�4; 2�: �2�
Note that only the greater (>) part of � is needed.

To obtain a realistic and useful approximation, a skeleton expan-

sion of P is applied, i.e. expansion in terms of full G keeping all

interactions other than electron±photon interactions.

3. The lowest-order approximation in skeleton expansion

The lowest-order term, the skeleton bubble (see Fig. 1a) for P in the

®rst term of (2), is given by

iP>�xt; x0� ' G>�xt; x0�G<�x0; xt�: �3�
The greater Green's function, G>, describes the propagation of

excited electrons and the lesser Green's function, G<, describes the

occupied bound states from which electrons are excited.

In the core-excitation processes, G< is well approximated by

iG<�x0; xt� ' ÿ'�c �x�'c�x0�hby�t�bi; �4�
where b �by� is the annihilation (creation) operator associated with

the core state 'c. Substituting (4) into (3), the lowest-order term of

the X-ray absorption intensity I(!) in the skeleton expansion can be

written as

I �0��!� � R �d"=2��G>
XA�"�G<

c �"ÿ !�; �5�
where

G>
XA�"� � i

R
dx dx0���x���x0�G>�x; x0; "�'�c �x�'c�x0� �6�

and

G<
c �!� �

R hby�t�bi exp�ÿi!t� dt: �7�
Both G>

XA and G<
c have transparent physical meanings. G>

XA describes

the X-ray absorption processes without core-hole effects, whereas G<
c

describes the core effects and shake effects (intrinsic effect).

To understand the physics involved in G>
XA and G<

c , we shall

consider an explicit expression for I �0��!� at 0 K in terms of Dyson

orbitals de®ned by (Hedin & Lundqvist, 1969)

gn�x� � hn;N ÿ 1j �x�j0;Ni;
"n � E0�N� ÿ En�N ÿ 1�;

fp�x� � h0;Nj �x�jp;N � 1i;
"p � Ep�N � 1� ÿ E0�N�;

�8�

where j0;Ni is the ground state of an N-electron system and  (x) is

the ®eld operator. The explicit formulae of G> and G< in terms of the

Dyson orbitals are

iG>�x; x0;!� � 2�
X

p

fp�x�f �p �x0���!ÿ "p� �9�

and

iG<�x0; x;!� � ÿ2�
X

n

gn�x0�g�n�x���!ÿ "n�: �10�



The retarded Green's function Gr has a spectral representation:

Gr�x; x0; "� �
X

p

fp�x�f �p �x0�
"ÿ "p � i�

�
X

n

gn�x�g�n�x0�
"ÿ "n � i�

: �11�

The substitution of (9) into (6) yields

G>
XA�"� � 2�

X
p

jhfpj�j�cij2��"ÿ "p�: �12�

This is positive so that G>
XA�"� can also be written as

G>
XA�"� � ÿImhcj��G>�"��jci: �13�

In the X-ray absorption process, if the condition "�� is satis®ed, the

second term of (11) can be neglected because of the large energy

denominator. In this case

G>
XA�"� ' ÿ2Imhcj��Gr�"��jci: �14�

Note the factor 2 in equation (14), in contrast to equation (13). As the

sum over p in equation (9) runs over both the bound and continuum

states, both equation (13) and equation (14) can describe the pre-

edge structures and also the X-ray absorption near-edge structure

(XANES) above the ionization edge.

The expression (13) for G>
XA�"� in terms of G> is useful in the case

where " is close to the core threshold, because we can use a formula

for G> in terms of the Fermi distribution function f(") and the spectral

function A("):

iG>�"� � �1ÿ f �"��A�"�: �15�
Substituting (15) into (13), we obtain an interesting formula for

G>
XA�"�:

G>
XA�"� � ÿ�1ÿ f �"��Imhcj��A�"��jci: �16�

The factor 1 ÿ f(") prohibits the transition to the `occupied' states. It

is interesting to note that the one-electron-like factor 1 ÿ f(") enters

the correlated many-body expression without further approximation.

As far as it is possible to calculate the spectral function A(")[1ÿ f(")]

by using conventional molecular-orbital or band-calculation techni-

ques, we obtain the `lowest-order' X-ray absorption intensity.

The dif®cult problem remains, however, of how to obtain A(") for

the highly excited states. However, Gr offers some advantages for

XAFS analysis because Gr satis®es the closed Dyson equation, and

may be used instead of the complicated Keldysh equation for G>:

Gr � Gr
0 �Gr

0�
rGr: �17�

The self-energy (optical potential) �r is conveniently calculated by

use of the analytical continuation technique from � for the imaginary

time representation, that is, i!n in � is replaced by ! ÿ i�, which

yields �r (Mahan, 1990). The temperature effects can be taken into

account in �r; on the other hand, it is dif®cult to include the core-hole

effects in the �r calculation. For the latter purpose, the many-body

scattering approach is much better (Hedin, 1989; Fujikawa, 1999).

Neglecting phonon effects, an expression of G<
c in terms of the

intrinsic amplitude Sn, de®ned by Sn = hn, N ÿ 1|b|0, Ni, can be

obtained:

G<
c �!� � 2�

X
n

jSnj2��!ÿ "n�: �18�

From equations (5), (14) and (18), we thus obtain the X-ray

absorption intensity within the intrinsic approximation:

I �0��!� � ÿ2
X

n

jSnj2Imhcj��Gr�!� "n��jci: �19�

When Gr is replaced by the corresponding scattering Green's func-

tion, this expression is a well known XAFS formula that only

considers shake-up and shake-off loss processes (Rehr et al., 1978).

Phonon effects can be discussed within the present theoretical

framework. When we use the approximation (14) for G>
XA, we ®rst

obtain the usual XAFS formulae and next average them over phonon

states at ®nite temperature. This two-step calculation is legitimate as

far as electron±phonon interactions are neglected and yields the

Debye±Waller factors. For G<
c , we have to include the phonon effects

in the operator by(t) = exp(iHt)byexp(ÿiHt) in equation (7), where

the Hamiltonian H has the phonon part before and after the core-

hole production. Therefore, G<
c can describe the Franck±Condon

factors. The X-ray absorption intensity is written as the convolution

product of these two factors (Fujikawa, 1999).

4. Resonance effects in XAFS

So far, resonance effects in XAFS have not been discussed in detail.

Here they are discussed based on the Keldysh±Green function

formalism. Figs. 1(b), 1(c) and 1(d) show the resonance Keldysh

diagrams, while Figs. 1(a) is the lowest-order diagram, as discussed in

the previous section. Figs. 1(b) and 1(c) give the X-ray absorption

intensity in terms of the Dyson orbitals de®ned by equation (8):

I �b��!� � I �c��!� � 2�Re
X

np

X
mq

�
hgnj��jfpi

�
� hfqfpjgngmihgmj�jfqi

!� "q ÿ "m ÿ i�

ÿ hgmfpjgnfqihfqj�jgmi
!ÿ "q � "m � i�

�
� c:c:

�
;

�20�

where c.c. represents the complex conjugate of the ®rst term within

the square brackets. The sum of the diagrams of Fig. 1 can be

summarized as the resonance X-ray absorption intensity,

I r�!� � 2�
X

np

jhfpj�jgni � ihfpjX�!�jgnij2��!� "n ÿ "p�; �21�

where the vertex operator X(!) is given by
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Figure 1
(a) The lowest-order skeleton Keldysh diagram for the X-ray absorption
intensity. (b), (c), (d) The resonance Keldysh diagrams. Coulomb lines are
connected to the same time leg.
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X�x; x0;!� � R �d"=2�� dx1 G�x; x1; "���x1�G�x1; x0;!� "�
� v�rÿ r0�

� i
X
mq

�
fq�x�g�m�x0�hfqj�jgmi
!ÿ "q � "m � i�

ÿ gm�x�f �q �x0�hgmj�jfqi
!ÿ "m � "q ÿ i�

�
v�rÿ r0� �22�

and

X�x; x0;!�� � R �d"=2�� dx1
~G�x0; x1;!� "����x1�

� ~G�x1; x; "�v�rÿ r0�: �23�
We can replace the bare Coulomb interaction v by the screened

Coulomb interaction W if we want more accurate calculations.

Equation (20) plays an important role when one of the energy

denominators is close to zero. The X-ray photon energy ! exceeds the

threshold of the shallow core 'c and it can be close to the threshold of

the deeper core 'd; ! ' ÿ"m. Now we have an approximate

expression for the Dyson orbital, gm(x) ' 'd(x)S d
m. The intrinsic

amplitude S d
m will be de®ned below. The particle Dyson orbital fq can

be localized, delocalized or even unbounded (scattering). The largest

contribution to the two-electron integrals, such as h fqfp|gngm i, is

expected for localized fq. In this case it can be assumed that "q ' 0.

From this consideration, the second term of X(!) in equation (22) is

found to be negligibly small in comparison with the ®rst term because

of the large energy denominator. Near resonance, ! ' "q ÿ "m, the

in®nitesimal � can be replaced by ®nite ÿ > 0 by use of the standard

technique [see for example, an excellent article by Almbladh &

Hedin (1983)].

From the above considerations, the resonance X-ray absorption

intensity can be written near the resonance energy ! ' "m:

I r�!� ' 2�
X

np

����hfpj�jgni �
X

q

hfpgmjfqgnihfqj�jgmi
!ÿ "q � "m � iÿ

����2
� ��!� "n ÿ "p�: �24�

Near the threshold of the deeper core 'd, the main contribution of

course comes from |hfp|�|'di|2. In addition, we expect a ®nite but

small contribution from the tail of the shallow-core X-ray absorption

intensity. Furthermore, we can expect the resonance contribution

near the deeper-core threshold in some special cases. For simplicity,

we only consider the two cores: the shallow core 'c and the deep core

'd. In this case, the X-ray absorption intensity near the threshold of

the deep core is obtained by

I r�!� ' 2�
X

np

jhfpj�j'dij2jS d
n j2��!� "d

n ÿ "p�

� 2�
X

np

����hfpj�j'ci �
X

q

hfp'djfq'cihfqj�j'di
!ÿ "q � "d

0 � iÿ

����2
� jS c

n j2��!� "c
n ÿ "p�; �25�

where S d
n is the intrinsic (shake-off or shake-up) amplitude associated

with the deep-core excitation given by use of the annihilation

operator d of the deep-core state 'd,

S d
n � hn;N ÿ 1jdj0;Ni: �26�

In the second term of equation (25), we take only one channel m = 0

for the intermediate state and use an approximation jS d
0 j2 ' 1 to

simplify the formula. The ®rst term of (25) represents the edge jump

at the 'd excitation threshold, while the second term shows the Fano

shape.

Let us study the resonance contribution to the X-ray absorption

intensity by use of equation (25). The ®rst term for the isolated atom

is approximately given by equation (27) for the threshold region of

the deep core (Agarwal, 1991):

I d�!� ' Cf�1=�� arctan��!ÿ !0�=�ÿ=2�� � 1=2g: �27�
For polyatomic systems, multiple-scattering effects give rise to large

structures (XANES) on I d(!). For simplicity, we neglect these effects

here. The resonance term associated with the excitation from the

shallow core, c, is given by (Almbladh & Hedin, 1983)

I c�!� � A�!� B�2=�!2 � �ÿ0=2�2�: �28�
The total X-ray absorption intensity near the deeper-core threshold is

thus given by

I r�!� � I c�!� � I d�!�: �29�
Fig. 2 represents the result of a model calculation with parameters

C/A = 10, B = 1, ÿ = ÿ0 = 2 and !0 = ÿ2.5. The resonance absorption

I c�!� shows the Fano shape and the total absorption spectra reveal a

prominent structure arising from the resonance effects, not from the

one-electron transition. Of course, in the case !0 ' ÿB or C/A� 1,

no such prominent structure is observed near the threshold.

Fig. 3 also shows the calculated result with the same parameters for

B, ÿ and ÿ0, but with different values of C/A and !0: C/A = 20 and !0

= ÿ0.5. In this case, the resonance effects do not give striking

structures compared with Fig. 2, as expected.

Sato et al. (1999) have reported an interesting result for resonant

photoemission and X-ray absorption spectra produced by excitation

from the Mn 2p core level in NiAs-type MnTe. The Mn 2p X-ray

absorption spectra are dominated by Mn 2p±3d resonance excitation

processes. So far, however, we have no reliable experimental data to

perform a ®t according to equation (29).

Typically, resonant photoemission spectra are observed when intra-

atomic processes play a dominant role (Almbladh & Hedin, 1983),

whereas recent studies demonstrate the importance of inter-atomic

resonance processes (Kay et al., 1998). The latter processes can also

contribute to the resonance peak in XAFS spectra near the threshold.

For example, we can expect the resonance peak from the O 1s

excitation near the Mn 2p threshold for MnO, which can be mislead

us to some incorrect conclusions based on the simple intra-atomic

2p ! 3d transition interpretation. This effect can raise questions

Figure 2
Near-edge X-ray absorption spectra in the deep-core region. The continuum
absorption spectrum for an isolated atom for a deep core 'd given by equation
(27) (short dashes), the resonance spectrum for a shallow core 'c given by
equation (28) (long dashes) and the sum of the two contributions (full line) are
presented. The parameters used here are C/A = 10, B = 1, ÿ = ÿ0 = 2 and !0 =
ÿ2.5.



regarding the interpretation of X-ray magnetic circular dichroism

(XMCD) spectra at the threshold of a light element such as C, N or O,

which have very small spin-orbit interactions. If nearby transition

elements can contribute to the inter-atomic resonance, the XMCD

can be pronounced by use of the spin-orbit interactions of the tran-

sition metal, not of the light elements.

In cases where strong resonance photoemission is observed, we

should analyse the near-edge spectra carefully.

5. Extrinsic and intrinsic loss effects

Loss structures observed in XAFS spectra are usually analysed

without considering the interference term. In this approximation, we

can expect an abrupt jump of the absorption intensity at the threshold

of the additional excitation of outer electrons (Rehr et al., 1978).

However, such structures have not been observed in XANES spectra.

In the case of XPS (X-ray photoemission spectroscopy) spectra, the

importance of the interference between intrinsic and extrinsic losses

has been well established from experimental results for plasmon

losses. For excitation by low-energy photons, the spectra are

featureless and are lost in the background; the two losses are

cancelled at the threshold because of destructive quantum inter-

ference. A similar situation can be expected for XAFS because the X-

ray absorption intensity formulae are obtained by averaging over all

possible ®nal states for the XPS intensity formulae.

To determine the explicit formula for the diagrams in Figs. 4(a) and

4(b), we should calculate the spectral representation of the screened

Coulomb interaction W > and W <:

W>�x; x0;!� � 2�i
X
m>0

v�m�x�vm�x0���!ÿ !m�; �30�

where the ¯uctuation potential vm(x) is de®ned by use of bare

Coulomb potential v,

vm�x� �
R

v�xÿ x0�hmj��x0�j0i dx0: �31�
W < is related to W > by

W>�x; x0;!� � W<�x0; x;ÿ!�: �32�
Using these expressions, Fig. 4(a) gives the X-ray absorption intensity

formula as

I�!�a � ÿ
X

ml

R
dx1 dx2 dx3 dx4 ���x1� ~G�x3; x1; "l ÿ !m�

� gl�x2���x3�g�l �x3�G�x4; x2;!� "l�
�G>�x1; x4;!ÿ !m�v�m�x3�vm�x4�: �33�

In these loss diagrams, W > and W < include real loss processes, while

W and ~W include virtual loss processes associated with resonance

effects, as discussed in the previous section. As we are considering the

core-excitation process, ~G("l ÿ !n) can be approximated by the hole

part because the energy denominator of the particle part is large:

~G�x; x0; "l ÿ !n� ' ÿ
X

n

gn�x�g�n�x0�
"l ÿ !m ÿ "n � i�

: �34�

This approximation greatly simpli®es the integral over x3:R
g�l �x3�v�m�x3� ~G�x3; x1; "l ÿ !m� dx3 ' S �l '

�
c �x1�hcjvmjci=!m: �35�

The amplitude of the intrinsic loss Sm is related to the ¯uctuation

potential vm (Bardyszewski & Hedin, 1985; Fujikawa, 1993):

Sm � ÿhcjvmjci=!m: �36�
The hole part of G(! + "l) including gl is small because of the large

energy denominator; thus we can obtain the approximate relation

G�!� "l� ' Gsc�!� "l�:
We can also employ the approximation G>' 2Gr as used for equation

(13) in the Im operation. These approximations lead to the X-ray

absorption intensity

I�!�a ' ÿ2
X
m>0

Im�hcj��g�"ÿ !m�vmg�"��jciS �mS0�; �37�

where " is the kinetic energy of the photoelectrons [= ! + "0 = ! +

E0(N) ÿ E0(N ÿ 1)]. Here the retarded Green's function Gr is

replaced by the damping scattering Green's function g(") under the

in¯uence of the optical potential �r.

Fig. 4(b) gives the same X-ray absorption intensity as Fig. 4(a).

These diagrams describe the interference effects between the

processes of intrinsic and extrinsic loss.

Near the threshold of the loss channel m, the interference term

ÿ4Im[hc|�*g(" ÿ wm)vmg(")�|ciS �mS0] is cancelled by the intrinsic-

loss term ÿ2|Sm|2Imhc|�*g(" ÿ !m)�|ci as discussed previously

(Fujikawa, 1993). A similar discussion based on the quasi-boson

approximation leads to the same conclusion (Hedin, 1989; Rehr et al.,

1997).

6. Other ®rst-order terms

From the second term of equation (2), PWP, we have four different

terms, ~P0
~WP>0 , P>0 WP0, ~P0W>P0 and P>0 W<P>0 , where P0 is the

skeleton bubble as shown in Fig. 1(a). All of them include W(!),

which is not important for high-energy excitation, e.g. ! � !p

(plasmon energy). These terms correspond to screening of the

radiation ®eld (Feibelman & Eastman, 1974). Of course, these terms

could be important for valence excitation.

Within this theoretical framework, electron±phonon interactions

can be discussed by use of Keldysh diagrams similar to those of Fig. 4,

but with the screened Coulomb lines replaced by phonon lines
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Figure 4
The skeleton Keldysh diagrams for loss processes (a) and (b), describing the
interference between the intrinsic and the extrinsic losses.

Figure 3
Same as Fig. 2, except that C/A = 20 and !0 = ÿ0.5.
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(Hedin & Lundqvist, 1969). So far such effects have not been

discussed. Note that the Debye±Waller and Franck±Condon factors

do not enter XAFS formulae by use of the electron±phonon inter-

action.

7. Concluding remarks

Approaches based on the non-equilibrium Keldysh±Green function

represent a `natural language' with which to interpret XAFS spectra,

both at T = 0 and at ®nite temperature. The ®rst-order terms

including the screened Coulomb interaction W > or W < in the

skeleton expansion describe the interference processes of extrinsic±

intrinsic loss, whereas those including W or ~W describe the resonance

effects.

The author is grateful to Dr T. Konishi for valuable discussions, in

particular for the discussion of the resonance effects.
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