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The temperature dependence of EXAFS (extended X-ray absorption

®ne structure) cumulants was investigated for bulk Cu and a thin ®lm

of Cu by means of the path-integral effective classical potential

method. By using the semi-empirical embedded-atom method as a

potential, agreement between the experiments and calculations is

found to be excellent for bulk Cu. In the thin Cu(111) ®lm,

anisotropic anharmonic vibration was clearly observed; the out-of-

plane vibration is much more enhanced and more anharmonic than

the lateral vibration. The results are semiquantitatively consistent

with the previous experimental data on Cu(111)/graphite. Such a

vibrational enhancement should be the driving force for the

roughening transition and/or the surface pre-melting at higher

temperature. The practical usefulness of the path-integral effective

classical potential method combined with the embedded-atom

method is demonstrated.
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1. Introduction

EXAFS spectroscopy has been applied widely to the determination

of local structures of crystalline and noncrystalline solids, amorphous

materials and liquids, solutions, catalysts, biological and environ-

mental materials, surface and interfaces, and so forth. EXAFS is

commonly recognized to provide information on coordination

numbers and interatomic distances. However, since EXAFS contains

information on radial distribution functions around X-ray-absorbing

atoms, one can obtain higher-order information on thermal ¯uctua-

tion, including anharmonicity. Stimulated by interesting experimental

observations by means of temperature-dependent EXAFS, existing

theories have been exploited in recent years. The quantum-

mechanical statistical perturbation theory gives analytical formulae

of the EXAFS cumulants that are experimentally obtainable (Fuji-

kawa & Miyanaga, 1993) and the perturbation formulae are useful to

describe molecules and clusters (Yokoyama et al., 1996, 1997;

Yokoyama, 1999). It is, however, rather complicated to apply the

perturbation theory to large-dimensional systems, such as solids and

solid surfaces, especially for higher-order cumulants that describe

anharmonicity.

Another theoretical approach is the Feynman path-integral theory,

which treats the motion of atoms in real space like a classical image

for particles. The real-space representation should be more suitable

to describe the radial distribution function, especially of solids

observed by EXAFS, when compared with the perturbation theory,

which is based on the eigenstate (or reciprocal) representation.

Moreover, the path-integral theory can handle greater anharmonicity

than the perturbation theory. Although the path-integral Monte

Carlo method is established, the calculations usually require heavy

computational loads. A more practical method is to employ the path-

integral effective classical potential (PIECP) theory (Cuccoli et al.,

1992, 1995; Kleinert, 1995). The ®rst application of the PIECP theory

to EXAFS cumulants was conducted for a two-body potential

(Fujikawa et al., 1997) and comparisons with experimental data of a

diatomic molecule of Br2 and of solids such as face-centred cubic

(f.c.c.) Kr and Ni, were subsequently performed (Yokoyama, 1998).

In the former part of this article, a brief review of the PIECP

theory is at ®rst presented, including a practical usage of the potential

function. The PIECP theory is based on the two-body potential,

which is suf®ciently accurate to describe rare-gas solids but is insuf-

®cient for metals or semiconductors. It is, however, found that one

can apply the embedded-atom method (EAM) (Foiles, 1985) to the

PIECP theory without modi®cation of the formulae. The results for

bulk Cu calculated using the PIECP theory combined with EAM are

subsequently given.

In the latter part of this paper, a surface anisotropic and anhar-

monic vibration is discussed. An enhancement of vibrational ampli-

tudes and anharmonicity of surface atoms is believed to be the

driving force of surface roughening transitions, subsequent surface

pre-melting and consequent bulk melting, the transition mechanisms

of which have been a long-standing problem from a microscopic point

of view. EXAFS provides valuable information on local disorder

which cannot be obtained by diffraction techniques. In order to

observe a surface anisotropic and anharmonic vibration, we have

investigated thin Ni(111) and Cu(111) ®lms grown epitaxically on

graphite and have found that the out-of-plane surface vibration is

signi®cantly enhanced and becomes more anharmonic compared with

the in-plane one (Kiguchi et al., 2000). In this work, the PIECP

calculations of thin Cu(111) ®lms are compared with the experi-

mental observations to demonstrate the practical usefulness of the

PIECP theory for temperature-dependent EXAFS studies of real

systems.

2. Theory

2.1. Path integral effective classical potential method

In this section, the PIECP theory is reviewed brie¯y. Details of the

theory can be found in the literature (Cuccoli et al., 1992, 1995;

Kleinert, 1995). According to the Feynman theory, the density

function �(X) (X is the 3N-dimensional Cartesian coordinate) is

expressed as a functional form:

��X� � �1=Z�hXj exp�ÿ�H�jXi
� �1=Z� R

�X;0�)�X;h ��
DX expfÿA�X�u��=hg ; �1�

where � = (kBT)ÿ1, h is the Planck constant divided by 2�, H is the

Hamiltonian of the system, Z is the partition function and A[X(u)] is

the Euclidean action,

A�X�u�� � Rh�
0

du 1
2

t _X�u�M _X�u� � V�X�� �
: �2�

In the PIECP approximation, the Euclidean action A is solved

variationally. For a trial function of A[X(u)], a solution of a harmonic

oscillator A0 should be the best candidate since thermal properties of

solids are being investigated:

A0�X�u�� �
Rh �
0

du 1
2

t _XM _X� w� �X� � 1
2

t�Xÿ �X�F�Xÿ �X�� �
; �3�

where �X is the average path,

�X � �1=h�� Rh �
0

du X�u� ; �4�
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and the force constant matrix F and the scalar potential w are

variational parameters.

The Cartesian coordinate X is transformed into a normal coordi-

nate Q through Q = tUM1/2(X ÿ �X), where U is the eigenvector

matrix of Mÿ1/2FM1/2. One can thus rewrite

A0�X�u�� �
Rh�
0

du 1
2

t _Q _Q� 1
2

tQx2Q� w� �X�� �
; �5�

where x2 is the diagonal eigenvalue matrix. The density matrix �0 of

the harmonic oscillator is obtained as

�0� �X� � exp�ÿ�w�X��=detMÿ1=2

�Q
k

�2�h 2��ÿ1=2 �fk= sinh fk� �2��k�ÿ1=2

� R1
ÿ1

dQk exp�ÿ�Qk ÿ �Qk�2=�k� ; �6�

where

�k � �h =2!k��coth fk ÿ 1=fk� and fk � �h!k=2 : �7�
�k is the difference between the quantum-mechanical and classical

¯uctuations of the phonon mode k. The expected value of a certain

physical quantity hOi0 is given as

hOi0 � �1=Z0� �1=detMÿ1=2� �1=�2�h 2��3N=2�
� R d �X exp�ÿ�Veff� �X�� hhO� �X�M1=2UQ�ii ; �8�

where Veff� �X� is the effective classical potential,

Veff� �X� � w� �X� � �1=��P
k

ln��sinh fk�=fk� : �9�

In order to optimize the variational parameters of w and F, the

Jensen±Feynman inequality can be used:

F � F0 � �1=h��hAÿ A0i0 ; �10�
where F and F0 are respectively the true and trial free energies. The

optimized results are as follows:

hhV� �X�M1=2UQ�ii � w� �X� � 1
2

P
k

!2
k� �X��k� �X� �11�

and

hhrrV� �X�M1=2UQ�ii � F ; �12�
where rrV denotes the dyadic, the ij component of which is de®ned

as

�rrV�X��ij � @ 2 V�X�=@Xi@Xj : �13�
Using equation (8), the EXAFS cumulants can thus be evaluated.

2.2. Low-coupling approximation in two-body potential solids

The 3N-dimensional integrals in equations (6) and (8) cannot,

however, be numerically calculated in the case of a large-dimensional

system. We will here employ a further approximation: the so-called

low-coupling approximation. This assumes that w and F are inde-

pendent of �X. Moreover, we will for simplicity con®ne ourselves in a

monatomic Bravais lattice with an atomic mass m in which only two-

body forces are active. The dynamical matrix D is de®ned as

D �P
j

Foj exp�ik � Roj� ; �14�

where Foj is the 3 � 3 matrix of F for atoms o and j, and Roj is the

location vector of atom j with respect to atom o. When the eigen-

values and eigenvectors of the matrix D are written as m!2
k� and e2

k�

(� = 1, 2 and 3 are the phonon branches), the effective classical

potential Veff� �X� is obtained as

Veff� �X� � V� �X� �P
i 6�j

�u00�Rij� ÿ u00�R0
ij����2�Lij

�P
i6�j

�u0�Rij�=Rij ÿ u0�R0
ij�=R0

ij����2�Tij

� �1=��P
k

ln��sinh fk�=fk� ; �15�

where V� �X� is the bare classical potential, u(Rij) is the two-body

potential between atoms i and j with the distance Rij, and R0
ij is the

equilibrium distance. ��2�Lij and ��2�Tij are respectively expressed as

��2�Lij � �2=Nm�P
k;�

�1ÿ cos k � R0
ij� �R̂0

ij � ek;��2 �k;� �16�

and

��2�Tij � �2=Nm�P
k;�

�1ÿ cos k � R0
ij� �1ÿ �R̂0

ij � ek;��2��k;� ; �17�

where R̂0
ij is the unit vector of R0

ij. �
�2�L
ij is the difference of the EXAFS

Debye±Waller factors between the quantum-mechanical and the

classical schemes. The formula can be adopted for a monatomic

Bravais lattice with a two-body potential, such as rare-gas solids.

2.3. Application of the embedded-atom method to PIECP

Metallic bonds are regarded as a many-body force between valence

electron densities and ion cores, and two-body interaction potentials

are inadequate to describe thermal properties of metals. The EAM

has extensively been employed in classical simulations of metals,

which assumes semi-empirical parameters based on the density-

functional theory. The EAM potential V is written as

V �P
i

h
F i��h;i� � 1

2

P
j6�i

'ij�Rij�
i
; �18�

where �h,i is the host electron density,

�h;i �
P
j6�i

�a
j �Rij� ; �19�

and �a
j �Rij� is the electron density of atom j at the site of atom i.

F i��h;i� is the embedding energy of atom i into the host and corre-

sponds to an attractive many-body force between valence electrons

and ion cores. F i��h;i� is in principle a functional but is replaced by a

normal function Fi under the local-density approximation. 'ij�Rij� is

the repulsive potential between ion cores i and j. �a
j �Rij� can be

calculated by using atomic wavefunctions, and the function forms of

Fi and 'ij are empirically parameterized.

The EAM potential seems not to be applicable to the PIECP

formula (15) since it contains the many-body force of Fi. When the

EAM potential is Taylor expanded up to the second order, however,

we obtain

V � N�F� ��� ÿ ��F 0� ���� � 1
2

P
i 6�j

u�Rij� ; �20�

where �� is given in the equilibrium geometry and

u�R� � '�R� � 2F 0� ����a
j �R� � F 00��a�R��2 : �21�

The expansion includes a very important consequence: the EAM

potential is two body within the harmonic approximation. We can

thus employ equation (15) of a two-body potential system within the

EAM. This is ascribed to the absence of angular-dependent terms in

the EAM potential, although it is inherently a many-body potential.

We can replace the bare classical potential V� �X� in equation (15) with



the EAM potential V in equation (18) for PIECP calculations of

metals.

3. Computational details

For the PIECP calculations of bulk Cu, the above formalism is

available without further approximation. The employed EAM

potential was obtained from the literature (Foiles et al., 1986). The

normal vibrational analysis was initially performed using a cubic

Brillouine zone (ÿ2�/a0, 2�/a0) (a0 is the f.c.c. lattice constant) by

sampling about 106 phonons. This yielded ��2�Tij and ��2�Lij in Veff. The

classical-like NPT (constant pressure and temperature in a closed

system) Monte Carlo (MC) calculations were subsequently

preformed using Veff instead of the bare potential for 256 Cu atoms

(43 f.c.c. unit cells). Three-dimensional periodicity was imposed.

20000 MC steps were calculated to reach the equilibrium and a

further 10000 MC steps were performed to obtain the EXAFS

cumulants; each MC step contained 256 movements of atoms and one

variation of the lattice constant.

For the thin Cu ®lm, there exists no three-dimensional periodicity,

thus leading to dif®culties in applying the above formula. In a prac-

tical sense, however, for the estimation of the EXAFS cumulants for

comparison with the experimental data, the quantum-mechanical

correction in Veff can be replaced by the bulk values, although rather

crudely from a theoretical point of view. This would give some

overestimation of the vibrational amplitude of surface phonons at

low temperature since the eigenfrequencies should be smaller than

the bulk ones. Within this approximation, the PIECP calculations can

similarly be performed. A six-layer Cu(111) ®lm was assumed, each

layer containing 48 atoms in a rectangular lattice; the lowest layer was

assumed to be vibrationally ®xed. Similar NPT MC simulations were

performed to obtain the EXAFS cumulants of intra- and interlayer

atom pairs.

4. Results and discussion

The calculated EXAFS cumulants for the ®rst-nearest-neighbour Cu±

Cu shell of bulk Cu are shown in Fig. 1, together with the experi-

mental observations. Although the calculated values of the distance R

are shifted by �0.01 AÊ compared with the EXAFS and X-ray

diffraction experimental data, the temperature dependence of R

(slope of the curves) indicates that the thermal expansions are

comparable. The deviations of the absolute values are partly derived

from the fact that the EAM parameters were determined in a classical

scheme. Other temperature-dependent quantities, such as the mean-

square relative displacement C2 and the mean-cubic relative displa-

cement C3, are also in good agreement with the experimental EXAFS

values. In the C2 plot, the Debye ®t was evaluated by using the

correlated Debye model (Beni & Platzman, 1976) with the Debye

temperature as a ®tting parameter. It can be concluded here that the

PIECP calculations combined with the EAM is suf®ciently adequate

to describe the thermal properties of bulk Cu.

Let us now turn to the results for the Cu(111) ®lm. The tempera-

ture dependences of R, C2 and C3 for the ®rst-nearest-neighbour Cu±

Cu shells are depicted in Figs. 2, 3 and 4, respectively. In Figs. 2, 3 and

4, the obtained quantities for each layer are given separately. For

instance, the curves denoted 12 correspond to the ®rst-and-second

interlayer quantities, while those denoted 11 correspond to the ®rst-

and-®rst intralayer quantities. Note that the ®rst-and-second layer

(12) distance in Fig. 2, as well as all the intralayer distances 11, 22, 33

and 44, are contracted compared with the bulk one, while the second-

and-third (23) and third-and-fourth (34) layer distances are elon-

gated. Thermal expansion (Fig. 2), C2 (Fig. 3) and C3 (Fig. 4) are

found to be signi®cantly enhanced for the ®rst-and-second layer.

We will next compare the present theoretical results with experi-

mental data (Kiguchi et al., 2000). In the previous work, polarization-

dependent Cu (and also Ni) K-edge EXAFS spectra were recorded

for ultra-thin Cu(111) [or Ni(111)] ®lms grown epitaxically on HOPG

(highly oriented pyrolitic graphite) by varying the thickness. By using

the results for the thickness dependence of anisotropic C2 and C3, the

surface out-of-plane and in-plane components can be extracted.

Moreover, by assuming (roughly) that all the contributions, other

than the in-plane ®rst-and-®rst (11) and the out-of-plane ®rst-and-

second (12) contributions, are equal to the bulk contribution, three

components of 11, 12 and bulk were successfully determined. For

detailed procedures of the data analysis, see the work of Kiguchi et al.

(2000). The results are summarized in Table 1. In the experimental
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Figure 1
Temperature dependence of the interatomic distance R, the mean-square
relative displacement C2 and the mean-cubic relative displacement C3 for the
®rst-nearest-neighbour Cu±Cu shell in bulk Cu. The PIECP results are given
as crosses and solid lines, while the experimental EXAFS data are shown as
®lled squares. X-ray diffraction data for the distance (dotted line) and the
Debye ®tting results for C2 (dashed line) are also shown.
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work, the parameters were obtained as differences between 100 and

300 K. For C2, the �C2 values are replaced by the effective Debye

temperature �D, which is similarly evaluated by using the correlated

Debye model (Beni & Platzman, 1976).

Although the difference between the out-of-plane and the in-plane

vibrations is underestimated in the calculations, the calculated and

experimental results agree well semiquantitatively. It is concluded,

both experimentally and theoretically, that the surface out-of-plane

vibration is signi®cantly softer and more anharmonic than the inner,

lateral or bulk vibration. As a reason for the underestimation in the

calculations, one can suppose that the present theoretical calculations

are valid for perfect ®lms, while the actual ®lms should contain many

defects and some roughening might already have occurred at room

temperature. This is indicated by the experimental ®ndings of smaller

coordination number and larger C2 (Kiguchi et al., 2000). Since the

surface area becomes wider in the presence of defects, the surface

Debye temperature would effectively be lowered. One should also

note that the surface Debye temperature of Cu(100) determined by

LEED (low energy electron diffraction) is 235 K (MuÈ ller et al., 1995),

which is still lower than the EXAFS result of 262 K.

It is essential to recall intrinsic differences between EXAFS and

diffraction. Diffraction techniques such as LEED provide informa-

tion on absolute displacements with respect to the lattice, while

EXAFS gives relative displacements between X-ray-absorbing and

neighbouring atoms. Although within the correlated Debye model

the value of the Debye temperature should be equal to that given by

diffraction, C2 and C3 are obtained uniquely by EXAFS. It is natural

that the out-of-plane vibration is enhanced at the surface as long as

the absolute displacement is discussed. This is ascribed simply to a

lack of atoms above the surface. On the contrary, from a local point of

view, the out-of-plane motion is not always enhanced, as can be seen

in the literature: in the p4g(2� 2)N/Ni(001) surface, the out-of-plane

N±Ni bond has been found to be much stiffer and less anharmonic

than the lateral bonds (Wenzel et al., 1990); similarly the out-of-plane

S±Ni bond in c(2 � 2)S/Ni(110) has been found to be stiffer and less

anharmonic than the lateral bonds (Yokoyama et al., 1994). In the

present case, the surface out-of-plane bond is found to be weaker and

more anharmonic than the in-plane bond.

The aim of this work is to obtain a hint of surface melting, which is

an initial stage of bulk melting. The enhancements of the vibrational

amplitude and anharmonicity along the surface normal give rise to an

important conclusion, since a roughening transition should occur

through the `hopping' of surface atoms, for which not only the

amplitude but the anharmonicity of the vibration are essential.

5. Conclusions

In this article, the usefulness of the PIECP theory for the evaluation

of the EXAFS cumulants or, in general, the radial distribution

function is demonstrated. In the PIECP theory, the physical quan-

tities converge to be harmonic at low temperature and to be classical

Figure 3
Temperature dependence of the mean-square relative displacement C2 for
several ®rst-nearest-neighbour Cu±Cu shells in a 6 ML Cu(111) ®lm, together
with the bulk values (see the legend of Fig. 2 for notations).

Figure 2
Temperature dependence of the interatomic distance R for several ®rst-
nearest-neighbour Cu±Cu shells in a 6 ML Cu(111) ®lm, together with the
bulk values. 11 implies the ®rst-and-®rst intralayer distance, 12 indicates the
®rst-and-second interlayer distance, etc. (11: open squares; 22: open circles; 33:
upward open triangles; 44: downward open triangles; 12: ®lled squares; 23:
®lled circles; 34: ®lled upward triangles; intralayer: dashed line; interlayer:
solid line; bulk: crosses and dot-dashed line).

Table 1
Effective Debye temperature �D and difference of the third-order EXAFS cumulants �C3 (difference between 100 and 300 K) for the surface out-of-plane, surface
in-plane and bulk vibrations.

Both experimental (Kiguchi et al., 2000) and theoretical results (this work) are given.

Out of plane In plane Bulk

�D �C3 �D �C3 �D �C3

Calculation 272 3.65 290 2.47 313 1.48
Experiment 262 (25) 3.8 (8) 322 (30) 3.1 (6) 338 1.62



at high temperature. Therefore, anharmonicity at low temperature

cannot be estimated. In order to obtain such information, one has to

perform quantum-statistical perturbation calculations or more

sophisticated path-integral Monte Carlo simulations. Low-tempera-

ture anharmonicity is usually not very important for EXAFS

researchers and the PIECP theory is thus practically very useful to

simulate the EXAFS cumulants. In summary, the PIECP theory can

handle the quantum effect, anharmonicity, many degrees of vibra-

tional freedom, three-dimensional periodicity, higher-nearest-neigh-

bour interactions and many-body interactions. It is essentially

dif®cult or impossible to include all these contributions using other

theories, at least in a practical sense of numerical calculations. It is

worth noting again that the EAM matches the PIECP theory excel-

lently, this allowing one to investigate the vibrational properties of

metals quantum statistically.

In the simulations of thin Cu(111) ®lm, thermal vibration and local

thermal expansion are larger than in the bulk metal. The relative

motions, focussing on the local bonds of the surface, are found to be

enhanced in the surface normal direction. These ®ndings are

consistent with the EXAFS experiments. The enhanced vibrational

amplitude and anharmonicity in the surface normal direction could

be the trigger of a roughening transition, surface melting and

consequent bulk melting.
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Figure 4
Temperature dependence of the mean-cubic relative displacement C3 for
several ®rst-nearest-neighbour Cu±Cu shells in a 6 ML Cu(111) ®lm, together
with the bulk values (see the legend of Fig. 2 for notations).


