XAFS study on metal endohedral fullerenes

Yoshihiro Kubozono,^a Takashi Inoue,^b Yasuhiro Takabayashi,^a Satoshi Fujiki,^a Setsuo Kashino,^a Takeshi Akasaka,^c Takatsugu Wakahara,^c Masayasu Inakuma,^b Haruhiko Kato,^b Toshiki Sugai,^b Hisanori Shinohara,^b and Shuichi Emura^d

^aOkayama University, Okayama 700-8530, ^bNagoya University, Nagoya 464-8602, ^cNiigata University, Niigata 950-2181, ^dOsaka University, Osaka 567-0047, Japan. Email: kubozono@cc.okayama-u.ac.jp

Structure of metal endohedral fullerenes is studied by XAFS and XANES. The Sc-Sc distance of 2.23(1) Å determined from Sc K-edge XAFS supports the formation of a triangular Sc₃ cluster in Sc₃@C₈₂ as is found by MEM analysis for the X-ray diffraction. Gd L_{III}-edge XAFS of Gd@C₈₂ shows that the first and the second neigboring Gd-C distances are 2.51(2) and 2.85(4) Å, respectively. The La-La distance of La₂@C₈₀ has been determined to be 3.90(1) Å at 40 K. This value does not change when increasing temperature [3.90(2) Å at 240 K]. The position and the valence of the Eu atom in Eu@C₆₀ are also discussed based on Eu L_{III}-edge XAFS and XANES.

Keywords: XAFS; XANES; metal endohedral fullerene; structure; valence

1. Introduction

The structure and physical properties of metal endohedral fullerenes are very interesting subject in chemistry and physics. The structures of metallofullerenes are gradually determined by X-ray powder diffraction and XAFS. Nomura et al. (1995) confirmed the endohedral structure of $La@C_{82}$ on the basis of the La L_{III}-edge XAFS. The distance between the La atom and the first neighboring C atoms was 2.47(2) Å, implying that the La atom is not located at the on-center but the off-ceneter position of C₈₂ cage. Takata et al. (1995) showed the endohedral structure of Y@C₈₂ by the X-ray powder diffraction and its maximum entropy method (MEM) analysis. It was found that the Y atom was located near C₈₂ cage. The MEM analysis is successfully applied to the structural determination of $Sc@C_{82}$ and $Sc_2@C_{84}$ (Nishibori et al., 1998; Takata et al, 1997). The molecular symmetry of C_{82} in $Sc@C_{82}$ was determined to be $C_{2\nu}$ on the basis of the MEM analysis. The distance between the Sc and the first neighboring C atoms in Sc@C₈₂ was 2.53(8) Å. Recently, Takata et al. (1999) found the formation of triangular Sc₃ cluster in $Sc_3@C_{82}$ by the MEM analysis. The observed Sc-Sc distance, 2.3(3) Å, was considerably shorter than those of neutral Sc_3 (3.04) Å) and slightly charged Sc_3^+ (2.89 Å) (Walch & Bauschlicher, 1985). The charge state of the triangular cluster was estimated to be $(Sc_3)^{3+}$.

The physical properties of metal endohedral fullerene and their application to electronic device are also studied by many researchers. The physical properties of La@C₈₂ and Ce@C₈₂ in solid state were studied by Watanuki *et al.* (2000) and Iwasa *et al.* (2000). Further, the dynamical properties of encapsulated atoms in metal endohedral fullerenes attract the interests of many researchers. Two La atoms in La₂@C₈₀ are encapsulated in C₈₀

with I_h symmetry (Moriyama *et al.*, 2000), as expected from a theoretical calculation (Kobayashi, Nagase & Akasaka, 1995). The molecular symmetry of La₂@C₈₀ is lowered from I_h by encapsulating two La atoms. The most stable structure of La₂@C₈₀ is theoretically predicted to be D_{2h} (Kobayashi, Nagase & Akasaka, 1995). However, the ¹³C and ¹³⁹La NMR suggested the I_h structure for La₂@C₈₀ (Akasaka *et al.*, 1997). This implies that two La atoms rotate rapidly in the time scale of NMR.

M@C₆₀ is expected to have great potentials to new materials with high quality because three-electrons-transfer from the metal atoms to three-degenerate t_{1u} orbital of C₆₀ with I_h symmetry induces the superconductivity and metallic conductivity in metal doped C₆₀. However, it was difficult to isolate the pure sample of M@C₆₀ by a normal high performance liquid chromatography (HPLC). We measured the Eu L_{III}-edge XAFS of the soot containing large amounts of Eu@C₆₀, and confirmed the endohedral structure for Eu@C₆₀ (Inoue et al, 1999). The Eu atom was located on the off-center position as found in metal endohedral C₈₂. Recently, Inoue et al. (2000) and Ogawa, Sugai & Shinohara (2000) have succeeded in obtaining the pure solid of Eu@C₆₀ and Er@C₆₀, respectively, by combining sublimation and HPLC. The Eu L_{III}-edge XANES of solid Eu@C₆₀ showed that the valence of Eu atom was +2 (Inoue et al., 2000). The XAFS is only available technique for the structural determination of M@C₆₀ because the crystalline samples of M@C₆₀ have not yet been obtained.

In the present paper, we report the XAFS studies on the structure of metal endohedral fullerenes with interesting structural and dynamical properties. The XAFS of $Sc_3@C_{82}$, $Gd@C_{82}$ and $Eu@C_{60}$ are studied at 295 K. The XAFS of $La_2@C_{80}$ are studied at 40 and 240 K in order to clarify the dynamical properties. The molecular structure of $Eu@C_{60}$ and the valenec of Eu atom are also discussed on the basis of the Eu L_{III}-edge XAFS and XANES.

2. Experimental

2.1. Sample Preparation

The soots containing $Sc_3@C_{82}$, $Gd@C_{82}$ and $La_2@C_{80}$ were prepared by a general direct-arc-discharge method. The $Sc_3@C_{82}$, $Gd@C_{82}$ and $La_2@C_{80}$ were separated and isolated from other empty and metal endohedral fullerenes by a general two-stage HPLC after extraction in pyridine and CS_2 (Shinohara & Saito, 1997). The sample of $Eu@C_{60}$ was purified by combining sublimation and HPLC after extraction in aniline (Inoue *et al.*, 2000).

2.2. XAFS and XANES measurements

All XAFS and XANES were measured at the BL01B1 of SPring-8. A Rh mirror was inserted in all XAFS and XANES measurements in order to eliminate the harmonics. The Lytle detector and ionization chamber were used to detect the XAFS signals in fluorescence and transmission modes, respectively.

Sc K-edge XAFS of Sc₃@C₈₂, Gd L_{III}-edge of Gd@C₈₂ and Eu L_{III}-edge XANES of Eu@C₆₀ were measured at 295 K in the fluorescence mode with a Si(111) monochromator. La K-edge XAFS of La₂@C₈₀ were measured in the transmission mode at 40 and 240 K with a Si(311) monochromator. Eu L_{III}-edge XAFS of Eu@C₆₀ was measured in the transmission mode with Si(111) monochromator.

2.3. XAFS analyses

The XAFS oscillation $\chi(k)$ was extracted from the observed XAFS spectra by eliminating the background with Victreen formula, cubilc spline method and McMaster coefficients (McMaster *et al.*, 1969). The threshold energy E_0 was determined from the inflection point of X-ray absorption edge. The radial structure function $\Phi(r)$ in the real space (r-space) was obtained by a Fourier transform of the $k^3\chi(k)$ in momentum space (kspace) of photoelectron. The structural parameters were obtained by a least-squares fitting to the $\chi(k)$ derived by an inverse-Fourier transform of $\Phi(r)$ with XAFS formula within the framework of the harmonic approximation (Lee et al., 1981, Boland, Crane & Baldseschweiler, 1982, Ishii, 1991). The theoretical values (FEFF) reported by Rehr et al. (1991) as well as those by McKale et al. (1988) were used for the phase shifts of the absorbing and the scattering atoms, and backscattering amplitudes of the scattering atoms, in determining the structural parameters of Sc₃@C₈₂, Gd@C₈₂ and La₂@C₈₀ at 40 K. The structural parameters of La2@C80 at 240 K and Eu@C60 were determined with only McKale's values. All analyses were performed by using XAFS93, MBF93 (McKale) and FBF95 (FEFF) programs developed by Maeda (1987).

3. Results and Discussion

3.1. Formation of a triangular cluster Sc_3 in $Sc_3 @C_{a2}$

The $\Phi(r)$ obtained from the $k^3\chi(k)$ [3.0 - 10.0 Å⁻¹] of Sc₃@C₈₂ is shown in Fig. 1. A peak is observed at r = 1.69 Å in the imaginary part of $\Phi(r)$ which is significantly shorter than that of Gd@C₈₂ [r = 2.07 Å] described in the subsequent session. We assumed that this peak was not due to the Sc-C but the Sc-Sc scattering. The peak at r = 2.09 Å may be assigned to the Sc-C scattering because the r is close to that of Gd-C scattering in Gd@C₈₂. The structural parameters were determined by the leastsquares fitting for the $\chi(k)$ [3.5 - 10.0 Å⁻¹] derived from the $\Phi(r)$ [1.19 - 2.25 Å]. The final distances r_{Sc-Sc} are listed together with

 $\Phi(r)$ of Sc₃@C₈₂. The thick and thin lines refer to the magnitude and imaginary part of $\Phi(r)$.

the final *R*-factor in Table 1. The structural parametes determined by the analysis with the FEFF codes are consistent with those with McKale's values within the estimated standard deviation (esd), indicating that the analysis with McKale's values is also reliable. The short $r_{\text{Sc-Sc}}$ [2.23(1) Å (McKale) and 2.21(1) Å (FEFF)] is consistent with that [2.3(3) Å] determined by the MEM analysis (Takata *et al.*, 1999). This result supports directly the formation of Sc₃ cluster in Sc₃@C₈₂. The mean square displacement, $\sigma(2)$, of Sc-Sc [0.005(1) Å² (McKale) and 0.004(1) Å² (FEFF)] is very small even at 295 K, which suggests that the Sc atoms are fixed near the C₈₂ cage in the time scale of X-ray. This result is consistent with the fact that three MEM charge densities are clearly observed at room temperature (Takata *et al.*, 1999). The distance of the Sc atom and the first neighboring C atoms, Sc-C(1), [2.55(1) Å (McKale) and 2.52(2) Å (FEFF)] determined from XAFS is consistent with that [2.52(2) Å] by MEM analysis (Takata *et al.*, 1999) within esd.

3.2. Structure of Gd@C₈₂

The $\Phi(r)$ of Gd@C₈₂ obtained from the $k^3\chi(k)$ [2.0 - 10.0 Å⁻¹] is shown in Fig. 2. The peak observed at 2.07 Å can be assigned to the Gd-C scattering. The distance between the Gd and the first neighboring C atoms, and that between the Gd and the second neighboring C atoms, $r_{Gd-C(1)}$ and $r_{Gd-C(2)}$ are listed in Table 1. In this analysis, we assumed that the Gd atom exists on the C₂ axis through the six-membered ring in the C₈₂ cage with C_{2V} symmetry. The $r_{Gd-C(1)}$ of 2.51(2) Å (McKale) and 2.56(1) Å (FEFF) are close to the $r_{Sc-C(1)}$ in Sc₃@C₈₂ and the $r_{La-C(1)}$ in La@C₈₂ [2.47(2) Å] (Nomura *et al.*, 1995). This result shows that the Gd atom in Gd@C₈₂ is located near C₈₂ cage. The σ (2) of Gd-C(1) and Gd-C(2) were 0.016(2) and 0.029(6) Å² for McKale code, respectively, and 0.008(2) and 0.021(7) A² for FEFF code.

 $\Phi(r)$ of Gd@C₈₂. The thick and thin lines refer to the magnitude and imaginary part of $\Phi(r)$.

3.3. Structure of La, @C_{so} at 40 and 240 K

Two peaks were observed at 1.69 and 2.21 Å in the imaginary part of $\Phi(r)$ obtained by the Fourier-transform of the $k^3\chi(k)$ [2.0 to 10.0 Å⁻¹] at 40 K. The parameter fitting was performed for the $\chi(k)$ obtained from the $\Phi(r)$ [1.17 - 2.70 Å]. In this analysis, we assumed that each La atom exists on the C₂ axis through the sixmembered ring of the C₈₀ cage with I_h symmetry. The distances between the La and the first neighboring C atoms, and between the La and the second neighboring C atoms, $r_{\text{La-C(1)}}$ and $r_{\text{La-C(2)}}$, of La₂@C₈₀ are listed in Table 1. The $\sigma(2)$ of La-C(2) [0.012(8) Å² (McKale) and 0.012(2) Å² (FEFF)] is the same as that of La-C(1) [0.013(4) Å² (McKale) and 0.013(2) Å² (FEFF)], contrary to the case of Gd@C₈₂ and La@C₈₂ at room temperature (Nomura *et al.*, 1995).

The Fourier transform for the $k^3\chi(k)$ of 5.0 - 11.0 Å⁻¹ was performed to get the structural information on La-La because the backscattering amplitude of La atom largely contributes to the higher *k*-region than that of C atom. The relatively large peak was observed around 3.7 Å in the $\Phi(r)$. The parameter fitting was performed for the $\chi(k)$ [5.0 - 11.0 Å⁻¹] obtained from the $\Phi(r)$ [3.24 - 4.03 Å]. The La-La distance, $r_{\text{La-La}}$, was 3.90(1) Å (McKale) and 3.87(1) Å (FEFF). This value is considerably larger than that [3.66 Å] predicted by Kobayashi *et al.* (1996). The $\sigma(2)$ of La-La [0.008(1) Å² (McKale) and 0.007(1) Å² (FEFF)] is smaller than those of La-C.

The $r_{\text{La-C(1)}}$ and $r_{\text{La-C(2)}}$ at 240 K were determined by the same procedure as that at 40 K. The $r_{\text{La-C(1)}}$ is slightly larger than that at 40 K, while the $r_{\text{La-C(2)}}$ is the same as that at 40 K within the esd. The $\sigma(2)$ of La-C(1) [0.014(3) Å²] at 240 K is slightly larger than that at 40 K and that of La-C(1) in La@C₈₂ at 295 K [0.011 Å²] (Nomura *et al.*, 1995)]. However, the $r_{\text{La-La}}$ [3.90(2) Å] and $\sigma(2)$ [0.009(2) A²] at 240 K is almost the same as those at 40 K. The dynamical behavior of the La atoms in La₂@C₈₀ should further be studied based on the detail temperature dependence of $\sigma(2)$.

Table 1

Interatomic distances r (Å) determined by XAFS.

Sample	Type of M ^a	<i>r</i> _{M-C(1)}	<i>r</i> _{M-C(2)}	r _{M-M}	R-factor	Type of theoretical values ^b
Sc3@C82	Sc	2.55(1)	-	2.23(1)	0.08	MK
Sc ₃ @C ₈₂	Sc	2.52(2)	-	2.21(1)	0.07	F
Gd@C ₈₂	Gd	2.51(2)	2.85(4)	-	0.08	MK
Gd@C ₈₂	Gd	2.56(1)	2.77(3)	-	0.05	F
La2@C80 c	La	2.42(5)	2.97(7)	3.90(1)	0.06	MK
La2@C80 c	La	2.39(5)	2.93(7)	3.87(1)	0.06	F
La2@C80 ^d	La	2.46(2)	2.94(4)	3.90(2)	0.08	MK
Eu@C ₆₀ e	Eu	2.34(1)	2.84(1)		0.03	MK
Eu@C ₆₀ f	Eu	2.34(1)	2.84(1)		0.04	MK

^a The "M" refers to the metal atom encapsulated into fullerene cage. ^bThe "MK" and "F" correspond to the analysis with McKale and FEFF codes,

respectively. ^c Measured at 40 K.

^dMeasured at 240 K.

^eAnalyzed with the six-membered ring model.

f Analyzed with the five-membered ring model.

3.4. Molecular and Electronic Structure of Eu@C₆₀

The Eu $L_{III}\text{-edge}$ XANES of $\text{Eu}@C_{60}\text{, }\text{Eu}_2O_3$ and EuS solids exhibited the edge energy E_0 of 6973, 6979, 6971 eV, respectively. The E_0 of Eu@C₆₀ is close to that of EuS in which the valence of Eu is +2, showing that the valence of Eu atom is +2 in Eu@C₆₀; the electronic configuration of Eu²⁺ is [Xe]4f⁷ (J =7/2). This electronic configuration of $Eu@C_{60}$ is supported by a theoretical calculation (Suzuki et al., 2000). We adopted two models for the analyses of Eu L_{III}-edge XAFS in order to clarify the location of the Eu atom in Eu@C₆₀. The Eu-C distances in Eu@C₆₀ reported previously (Inoue et al., 1999) based on the model that the Eu atom lies on the six-membered ring $[r_{Eu-C(1)} = 2.34(1) \text{ Å and } r_{Eu-C(2)} = 2.84(1) \text{ Å}]$ were the same as those determined based on the model that the Eu atom lies on the five-membered ring (Table 1). The experimental $r_{Eu-C(2)}$ is close to a value (2.87 Å) expected for the six-membered ring model when the experimental $r_{Eu-C(1)}$ is 2.34(1) Å. In fact, the *R*factor is better in the six-membered ring model than that in the five-memebered ring model. Therefore, the XAFS suggests that the Eu atom lies on the six-membered ring inside the C_{60} cage.

This work was achieved under the proposals of SPring-8 (1998A0048-CX-np, 1999B0057-NX-np, 1999B0331-NX-np, 2000A0002-NX-np), and was supported by a Grant-in-Aid

(11165227) from the Ministry of Education, Science, Sports and Culture, Japan.

References

- Akasaka, T., Nagase, S., Kobayashi, K., Wälchli, M., Yamamoto, K., Funasaka, H., Kato, M., Hoshino, T. & Erata, T. (1997). Angew. Chem. Int. Ed. Engl. 36, 1643-1645.
- Boland, J. J., Crane, S. E. & Baldeschwieler, J. D. (1982). J. Chem. Phys. 77, 142-153.
- Inoue, T., Kubozono, Y., Hiraoka, K., Mimura, K., Maeda, H., Kashino, S., Emura, S., Uruga, T. & Nakata, Y. (1999). *J. Synchrotorn Rad.* 6, 779-780.
- Inoue, T., Kubozono, Y., Kashino, S., Takabayashi, Y., Fujitaka, K., Hida, M., Inoue, M., Kanbara, T., Emura, S. & Uruga, T. (2000). *Chem. Phys. Lett.* **316**, 381-386.
- Ishii, T. (1992). J. Phys. Condens. Matter, 4, 8029-8034.
- Iwasa, Y., Nuttall, C. J., Inada, K., Nagai, K., Hayashi, Y., Kitani, T. & Mitani, T. (2000). Abstract of Conference of Physical Society of Japan, 740.
- Kobayashi, K., Nagase, S. & Akasaka, T. (1995). Chem. Phys. Lett. 245, 230-236.
- Lee, P. A., Citrin, P. H., Eisenberger, P. & Kincaid, B. M. (1981). Rev. Mod. Phys. 53, 769-806.
- McMaster, W. H., Kerr, N., Grande, D., Mallet, J. H. & Hubell, J. H. (1969). *Combination of X-ray cross sections*, National Technical Information Service, Springerfeld.
- Moriyama, M., Sato, T., Yabe, A., Yamamoto, K., Kobayashi, K., Nagase, S., Wakahara, T. & Akasaka, T. (2000). *Chem. Lett.* pp. 524-525.
- Maeda, H. (1987). J. Phys. Soc. Jpn. 56, 2777-2787.
- McKale, A. G., Veal, B. W., Paulikas, A. P., Chan, S.-K., & Knapp, G. S. (1988). J. Am. Chem. Soc. 110, 3763-3768.
- Nomura, M., Nakao, Y., Kikuchi, K. & Achiba, Y. (1995). *Physica* B208 & 209, 539-540.
- Nishibori, E., Takata, M., Sakata, M., Inakuma, M. & Shinohara, H. (1998). *Chem. Phys. Lett.* **298**, 79-84.
- Ogawa, T., Sugai, T. & Shinohara, H. (2000). J. Am. Chem. Soc. 122, 3538-3539.
- Rehr, J. J., Mustre de Leon, J., Zabinsky, S. I. & Albers, R. C. (1991). J. Am. Chem. Soc. 113, 5135-5140.
- Shinohara, H. & Saito, Y. (1997). Fullerene no Kagaku to Butsuri, pp. 191-232. Nagoya: Nagoya University Press.
- Suzuki, S., Kushida, M., Amamiya, A., Okada, S. & Nakao, K. (2000). Chem. Phys. Lett. 327, 291-298.
- Takata, M., Nishibori, E., Sakata, M., Inakuma, M., Yamamoto, E. & Shinohara, H. (1999). *Phys. Rev. Lett.* 83, 2214-2217.
- Takata, M., Nishibori, E., Umeda, B., Sakata, M., Yamamoto, E. & Shinohara, H. (1997). *Phys. Rev. Lett.* **78**, 3330-3333.
- Takata, M, Umeda, B., Nishibori, E., Sakata, M., Saito, Y., Ohno, M. & Shinohatra, H. (1995). *Nature* **377**, 46-49..
- Walch, S. P. & Bauschlicher, C. W. Jr. (1985). J. Chem. Phys. 83, 5735-5742.
- Watanuki, T., Suematsu, H., Kikuchi, K. & Achiba, Y. (2000). Abstract of Conference of Physical Society of Japan, 740.