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Under some general hypothesis, this paper proposes a theoretical
model, showing that a gaussian distribution is generally a good ap-
proximation of the experimental distribution of the absorption coef-
ficient. This result is confirmed experimentally by usage of appro-
priate statistical tests.
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1. Introduction
In the statistical analysis of EXAFS results, as for any statistical
study, the estimation of numerical quantities from experimental re-
sults (for instance, the distance between the absorbing atom and the
atoms of its first coordination shell) relies on the hypothesis that
the different experimental values are derived from random vari-
ables; the knowledge of the distribution function of these random
variables is required to construct some reliable estimators.

Usually, it is assumed in EXAFS analysis that these random
variables are normal (gaussian) (see, for instance, Vlaicet al.,
1999; Filiponi, 1995; Krappe & Rossner, 1999). With this hypoth-
esis, the natural estimator to use is then the least-squares estimator,
either weighted or unweighted by the error bars (the former being
preferable, as it corresponds to the maximum likelihood estima-
tor). But, as far as we could see, no experimental verification or
theoretical justification of this hypothesis has yet been proposed.

We already showed that, if the absorption coefficient follows a
normal distribution, then any subsequent quantity used in EXAFS
analysis can also be modelled by a normal distributed random vari-
able (Curis & Bénazeth, 2000). Hence, in this paper, we only ver-
ify that, both theoretically and experimentally, this hypothesis of a
normal distribution of the absorption coefficient� is acceptable.

2. Theoretical model
As biological samples measurements are performed by transmis-
sion or by fluorescence technics, we developed our model only for
that two methods – but it may extend for other methods. In both
cases, the quotient of two experimental values is used, so we will
begin with a generic model for this quotient. After that, we will in-
troduce the model for fluorescence experiments, and then for trans-
mission experiments.

2.1. Preamble: the exact law of the quotient of two indepen-
dant normal random variables

Let X1 and X2 be two independant random variables, follow-
ing a gaussian law, such thatE(X1) = �1;V(X1) = �

2
1 and

E(X2) = �2;V(X2) = �
2
2, whereE(X) is the expectation ofX

andV(X its variance. We now consider the random variableZ de-
fined byZ = X

Y . The problem is to determine the law ofZ. Since
it is possible for the denominator to cancel, it is necessary to use
a slightly extended concept of real random variables, which take
their values not only inRbut inR= R[ f�1;+1g.

As presented in Brard (1966), in this conception the classical
results extend in a very simple, intuitive way; the main difference
is that, if FX is the cumulated distribution function of the random
variableX, lim

�1
FX = p(X = �1) and lim

+1
FX = 1� p(X = +1).

In the case of the quotientZ considered,p(Z = �1) = p(Z =
+1) = p(Y = 0) = 0, so in practice there is no difference with
the classical case.

A classical result (Saporta, 1990) then gives the distribution
function fZ of Z knowing the distribution functiong(x; y) of (X;Y)
(so thatg(zy; y) quantifies the probability that(X;Y) = (zy; y), that
is p(Z = X

Y = z)).

fZ(z) =
Z
+1

�1

jyjg(zy; y)dy

If X andY are independant, one can writeg(zt; t) = fX(zt) fY(t).
In the case of a normal distribution, the definition offZ then be-
comes:

fZ(z) =
1

2��1�2z2
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This integral may be exactly computed, giving the exact distri-
bution function of the quotientZ; the resulting expression being
quite long and complex, we do not present it here. But the knowl-
edge of the expression allows a comparison between the exact law
and the law estimated from the error propagation theorem, which
predicts thatZ may be modelled by a random variable following a
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2
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. The main result

is that the variableZ does not have any mean nor variance – this
result is particularly evident when�1 = �2 = 0, since in that case
Z follows a Cauchy law. Some graphical comparisons (see fig. 1)
show that the approximation is valid only if the probability that
both X andY change of sign is negligible – that is, for instance,
that p(Y < 0) is negligible if E(Y) = �2 > 0, which can be
converted into a condition on the quotientsj�1j

�1
and j�2j

�2
that must

be both greater than 3, for classical usage. The exact value will of
course depend on the accuracy level desired; the presented condi-
tion corresponds to the classical 3� interval that contains 99,6%
of the values and that must not contain 0. If one can estimate the
values of� and�, this result can be used as a rule-of-thumb to
determine if the experimental quotient follows, or not, a gaussian
distribution.

2.2. Distribution for fluorescence experiments
In fluorescence experiments, the absorption coefficient� is de-

rived from the intensity before the sampleI0 and the intensity of
the fluoresced beamI f by the relation� =

I f
I0

.
The general model for the statistical distribution of the number

of photons detected is a Poisson law, with very large hypothesis.
With usual intensities, the average number of photons detected is
very high – this means that the Poisson law may be accurately ap-
proximated by a gaussian law. In that case, we are in the scope
of the model developed in the preamble (assuming thatI f and I0
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are independant random variables – note that this hypothesis is not
in contradiction with the fact thatE(I f ) = f (E(I0)), whereE(X)
denotes the expectation ofX).
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Figure 1
Comparison of the exact distribution function of a quotient of two in-
dependant gaussian random variables (continuous line) and of the dis-
tribution function of the corresponding gaussian estimated by the er-
ror propagation theorem (squares). Upper: numerator can take positive
or negative values with significant probabilities. The error propagation
model does not apply. Lower: numerator and denominator have negligi-
ble probababilities to take negative values, the error propagation model
applies.

Also because of the high counting rate, the probability forI f

and I0 to be negative (or, in the Poisson law model, to vanish) is
negligible. Consequently, the results presented above are applica-
ble: one can approximate safely the distribution of� by a gaussian
distribution.

Note that this model does not apply correctly for the preedge re-
gion, in which the counting rate forI f is very small (ideally null):
the approximation of the Poisson law by a gaussian law is not cor-
rect, and even if it were correct, the probability to vanish is not
negligible: the approximation of the real distribution of the quo-
tient by a gaussian law is not correct. Anyway, the preedge region
is useless in EXAFS analysis, so this is not really a problem for
daily analysis.

2.3. Distribution for transmission experiments
In transmission experiments, the absorption coefficient� is de-

rived from the intensity before the sampleI0 and the intensity after
the sampleI1 by the relation� = ln I0

I1
.

As for fluorescence, the high counting rate in detectors allows
the modelization of the Poisson law by a gaussian distribution, with
a negligible probability to be non-positive. In that case, the quotient
I0
I1

can be approximated by a gaussian law, as stated previously. The
problem is now “what is the exact distribution ofY = ln X whenX
is a random variable following a gaussian law?”

The fact thatX can take some negative values makes the correct
definition ofY difficult. One can imagine three ways to handle that
problem:

– usingY = ln jYj;
– usingY = 0 (arbitrarly) ifX � 0;
– using the generalized real random variables withY = �1 if

X � 0.
As the introduced gaussian variables are models for non-

negative Poisson laws, and since the probability of counting no
photon is negligible, one can expect the three methods to give the
same results. For mathematical convenience, we choosed the third
model to do computations. In that case, the density function ofY is
given by

fY(y) =
1p
2��

exp

�
y� (ey �m)2

2�2

�

wherem is the expectation ofX and�2 its variance.
As in the quotient case, the comparison of the exact distribution

above and of the gaussian distribution obtained by the error prop-
agation theorem shows that the approximation by a gaussian law
is usable only if the probability forX to be negative is negligible.
Since it is the case in X-rays absorption experiments, it is theoret-
ically funded to use the gaussian distribution as a model for the
probability distribution of the absorption coefficient�.

3. Experimental verification
The theoretical model presented in the previous section gives hints
that a model of gaussian distribution for the experimental values
used in XAS is reasonable. Anyway, many experimental effects
may arise that make questionable the above hypotheses: if the Pois-
son law for the photons couting rate is generally accepted, the elec-
tronic treatments of the signal after detection may transform the
distribution. Even if classical statistical theorems, like the central
limit theorem, state that one can expect gaussian laws for the re-
sult of such processes (and, in that case, the above model is still
correct), the complexity of these effects conducted us to exper-
imentally test the normality of the distribution of the absorption
coefficient.

Many statistical tests exist to check the hypothesis of the normal
distribution for a set of experimental values (Csorgoet al., 1973).
We chose, to perform our tests, the Kolmogorov-Smirnov test, with
the tabulated values computed to take into account the fact that both
mean and variance are unknown (Saporta, 1990; Lilliefors, 1967),
since it is one of the most powerful tests.

We used two kinds of experiments to check the normality of
the experimental values. First, we fixed the energy of the incident
beam and recorded a set of about 100 values of the absorption coef-
ficient. Second, to be closer of the real experimental conditions, we
recorded a set of 98 spectra of the same sample (a zinc complex,
studied at K-edge on the D44 beamline of DCI, LURE (France)),
in the same conditions. To limit the time of acquisition, we just
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recorded the XANES part of the spectrum. We then selected all
points at the same energy and applied to them the Kolmogorov-
Smirnov test.

In both cases, the result of the test is that the distribution is gaus-
sian to the 5% signification level.

4. What about systematic errors?

To evaluate the effect of systematic errors on the statistical model,
we can consider a simple model of the measure. Let�exp(E; t) be
the experimental measured value and�(E) the real value. One
can always write, for a fixed energy value, that�exp(E; t) =
�(E)+Æ�(E; t)+"(E; t), whereÆ�(E; t) accounts for the system-
atic effects and"(E; t) is a stationary random process that accounts
for statistical errors. After experiments, we know a set of values
of �exp(E; t) for certain values oft. One can imagine three cases,
depending on the behaviour ofÆ�(E; t) with time. First,Æ�(E; t)
does not depend of time. In that case, all the statistical model de-
veloped above and in Curis & B´enazeth (2000) applies – but the
average values are not the expected value, there is a bias. Second,
Æ�(E; t) varies quickly with time, but does not vary in average.
This case is similar to the previous one. Third,Æ�(E; t) varies with
time. In that case, it is not possible to do any statistics without cor-
rection for that effect, because�exp(E; t) is no longer a stationary
random process, and so average is not defined: no statistical model
can apply.

5. Conclusion

Both the theoretical model presented above and the usage of clas-
sical statistical tests on experimental data justify the model of a
gaussian distribution for the absorption coefficient at a given, fixed,
energy. With the error propagation model we introduced in Curis
& Bénazeth (2000), it follows that each point of the experimental

spectrum at any stage of the treatment follows a normal distribu-
tion (crude EXAFS spectrum, filtered EXAFS spectrum, Fourier
transform real or imaginary part – butnot the modulus).

This result validates all the error analysis procedures that relies,
more or less implicitly, on this hypothesis - and, in particular, the
use of estimators like the least-squares, as maximum likelihood es-
timators (the exact kind of estimator depending on the statistical
dependances between the experimental points), to estimate the pa-
rameters’ values by fitting.

It also provides the distribution model indispensable to develop
tools, like the Monte-Carlo methods, to estimate the uncertainties
on fitted parameters with no other hypothesis than the experimental
distribution function. The use of the Monte-Carlo methods needs
much less hypotheses than the usual methods, so we are currently
working on this method to check its suitability in EXAFS. Since
this work is still in development, we will present its results else-
where.
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