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A new method for extracting the post-edge background�0 is pro-
posed, the method of Bayesian smoothing. A further evolution of
the smoothing spline method is considered as well. Both techniques
are capable to take into account prior information about the pecu-
liarities on the�0. In addition, since the Bayesian approach works
in terms of the posterior probability density functions, it contains a
natural way to determine the errors of the�0 construction, which
has always been an unresolvable problem for any other method.
Even with use of the prior information, which narrows the poste-
rior probabilities, the errors of�0 are shown to be larger than the
experimental noise.

Keywords: post-edge background ; Bayesian methods.

1. Introduction

The most difficult procedure in extracting EXAFS from the mea-
sured absorption is the construction of�0, since one cannot defi-
nitely distinguish the environmental-born part of absorption from
the atomic-like one. All methods for determination of the post-edge
background are based on the assumption of its smoothness, and
the only criterion for its validity is the absence of low-frequency
structure in EXAFS�(k) � kw, i.e. the small absolute value of the
Fourier transform (FT) at lowr. In the present paper we consider
a further evolution of the smoothing spline method and propose a
new method of Bayesian smoothing.

2. Smoothing spline

Owing to the fast algorithm and easy program realization, the ap-
proximation of�0 by a smoothing spline has become widespread.
Let N+1 experimental values of�i are defined on the meshEi (ex-
trapolated pre-edge background already subtracted). The smooth-
ing spline�0 minimizes the functional

J(�0;�) =

Z Emax

Emin

[�00

0 ]
2 dE+

1
�

NX
i=0

[�0i � �i ]
2
: (1)

The smoothing parameter (or regularizer)� is a measure of com-
promise between the smoothness of�0 and its deviation from�.
The optimal regularizer should lead to�0 containing only low-
frequency oscillations and, hence, to� containing only structural
oscillations. The formulation of a new criterion for the optimal�

was considered by Klementev (2000b).
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Figure 1
On the smoothing spline method. (a) Absorption coefficient�, prior
function p(E), calculated byFEFF8 (dots) and various post-edge back-
grounds, (b) Module of FT of EXAFS functions obtained with these
backgrounds. Solid lines —�0(E) and FT obtained with use of the prior
function; dashed lines — dittos without prior function. The regularizer
� is the same for both cases.

Let us assume that�0(E) is approximately known in advance.
Denote this prior function asp(E). Now we will tend the second
derivative of the sought�0(E) not to zero (at the specified devia-
tion of �0 from�) but to the second derivative ofp(E). The sought
�0(E) is now minimizes the functional

J�(�0;�) =

Z Emax

Emin

[�00

0 � p00]2 dE+
1
�

N+1X
i=0

[�0i � �i ]
2
: (2)

As seen, in fact there is no need to knowp(E) itself, its second
derivative is sufficient. Introducing ˜�0i = �0i � pi , one obtains:

J�(�0;�) =

Z Emax

Emin

[�̃00

0 ]
2 dE +

1
�

N+1X
i=0

[�̃0i � (�i � pi)]
2

= J(�̃0;�i � pi): (3)
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Figure 2
Extraction of EXAFS from the measured absorption using the Bayesian
smoothing. Prior functionp(E) for the atomic-like absorption is drawn
on (a) by dots. Solid lines —�0(E) and FT obtained with the use of the
prior function; dashed lines — dittos without prior function. The dot
line on (b), seen in the low-r region only, is obtained without additional
requirement for�0(E) to pass through a point immediately beforeE0.
The regularizer� is the same for all cases and equals to the optimal one
found for the smoothing spline.

Thus, the problem is reduced to the preceding one in which in-
stead of initial data�i the difference�i � pi is used. The sought
�0 is found from the smoothed ˜�0 as�0i = �̃0i + pi . Fig. 1 shows
an example1 of the atomic-like absorption approximation by the
smoothing spline with and without the use of the prior function
which was calculated byFEFF8 program (Ankudinovet al., 1998)
using self-consistent potential calculations with the ground state
exchange correlation potential and the simple cubic perovskite
structure. The calculated background was then multiplied by a con-
stant factor to match the step height. Additional features due to
possible multielectron excitation channels should be added to the
p(E), if known. However, we do not intend to discuss here the
validity of the prior function, we just demonstrate how the prior
knowledge can be used for EXAFS post-edge background removal.
As seen, we cannot subtract the calculated background directly, but
we can incorporate this function into the EXAFS analysis by the

procedure described above. Also seen that the use ofp(E) has led
to disappearance of the spurious peak atr < 1Å and to consider-
able correction of the first shell signal.

3. Bayesian smooth curve

The method of Bayesian smoothing is ideologically similar to the
smoothing spline method, but has one global advantage: Within no
other existent approach one can define and determine the errors of
the �0 construction. Since the Bayesian smoothing method finds
the posterior distributions for all�0i , one can find not only average
values but also standard deviations and any desirable moments. In
addition, within the framework of the method it is possible (before
the post-edge background construction) to deconvolve� with the
monochromator resolution curve. The weakness of the method is
its low speed. On a modern PC the curve drawn throughN � 500
points is smoothed for a few minutes.

Detailed formalism of the Bayesian smoothing, though quite
simple, would take several pages, so we cannot give explicit ex-
pressions here, but refer to the e-print (Klementev, 2000b). To de-
termine �̄0i and Æ�0i one should find eigenvalues and eigenvec-
tors of a special five-diagonal squareN � N matrix. In Fig. 2 the
Bayesian smoothing was done on the mesh ofN = 536 experi-
mental points above absorption edge, with and without the prior
function described in the preceding section. In addition, we de-
manded from the Bayesian curve in Fig. 2 to pass through a point
nearest at left toE0 (for this, the five-diagonal matrix should be
slightly changed, again see e-print (Klementev, 2000b)); this re-
quirement practically does not affect�0, but affectsÆ�0i in the low-
k region (see below). The regularizer was equalized to the optimal
value found for the method of smoothing spline. As seen, we have
obtained completely the same EXAFS function as that given by
the previous method. So, the only thing that warrants such a slow
method is that it gives the errors of the�0 construction.
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Figure 3
Errors of�(k) extraction by the method of Bayesian smoothing without
(a) and with (b andc) prior information specifying the second deriva-
tive. The curvec uses the additional information that�0(E) passes
through a point immediately beforeE0. Solid line with the filling —
the envelope of�(k) (not weighted). Dashed line — the noise level es-
timated from FT.

1 Here for examples is used the spectrum at the BiL3 absorption edge for Ba0:6K0:4BiO3 at 50 K recorded in transmission mode at D-21 line (XAS-13) of
DCI (LURE, Orsay, France) using the Si(311) monochromator. Energy step� 1 eV, counting time 1 s.
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4. Errors of �0 construction and noise

For the correct subsequent fitting of the EXAFS signal, one should
determine, ideally, all sources of errors. While some of them are
quite transparent, others even cannot be defined, for instance, the
errors of�0 construction. One may argue that the errors of�0 are
not as important since are of low frequency and presumably are
outside (inr-space) the region of EXAFS analysis. This may be
true only if one performs fitting of the�(r) or filtered�(k). But
many researchers try to fit the entire�(k) function, together with
possibly undetermined slow varying background. This is the first
reason why we have to know the errors of�0. The second, and
the main, reason is that the�0 drawn is not the atomic background
itself but an artificial representation of it. Therefore, even if our
�0 is of zero frequency, considerable spectral range (especially the
signal from the first shell) may be distorted by this representation.
Speaking of the errors of�0 construction, we mean the deviation
of our artificial�0 from the real background. The real background
must benearly a middle line of the oscillating part of� with the
second derivative which is eithernearly small or nearly close to
the second derivative of the prior function. The Bayesian analysis
gives errorsÆ�0i within which lie all such functions, and, among
them, the real post-edge background. Thus, the errorsÆ�0i are very
important because they account for possible deviation from the true
atomic background.

Having determined ¯�0i andÆ�0i (this is done simultaneously via
N�N matrix inversion), we express the errors of�(k) extraction as
"i = Æ�0i=�̄0i . For our example spectrum they are shown in Fig. 3
by dots. As seen, the introduction of the prior information has sig-
nificantly diminished the errors"i . This is quite natural, since any
decrease of our ignorance about�0 should narrow the posterior dis-
tribution of�0i for all i. Of course, this concerns the experimental
information as well:"i are the smaller (among equal-length spec-
tra) the more measured pointsN the spectrum has.

Near the hanging ends of the spectrum, the errors of�0 construc-
tion are, as expected, significantly larger than in the inner area. The
ends should be deleted after�(k) extraction or treated in a different
way: we can take into account another information that the atomic-
like absorption must coincide with the total absorption (minus pre-
edge background) at energiesE < E0. As seen (curvec in Fig. 3,
in this case the left spectrum end is saved for further analysis.

It is quite reasonable to demand that the errors of�0 construction
were less than the EXAFS signal (the envelope of�(k) in Fig. 3).
For the Bayesian curvea this range is 0� k <� 14Å�1, for the
Bayesian curvesb andc this range is wider: 0� k <� 16Å�1.

Another factor that limits the spectrum length is the presence of
noise. To determine the noise is a straightforward task forr-space,

where EXAFS signals at highr have clearly noise character. As-
suming noise ink-space andr-space,nk andnr , to be constant, via
Parseval’s identity one obtains (Newvilleet al., 1999):

n2
k = n2

r
�

dk
2w+ 1

k2w+1
max � k2w+1

min

: (4)

where asnr the mean value ofjFT[�(k) � kw]j serves, usually over
the range 15< r < 25Å. This noise is smaller than the signal for
all the spectrum (see Fig. 3).

Practically all programs for EXAFS spectra processing (IXS,
2000) to estimate the noise use the Fourier analysis. But then it is
the noise that they use as uncertainties"i of �(k) determination in
the definition of�2-statistics:

�
2 =

Nind

M

MX

i=1

[(�exp)i � (�mod)i ]
2

"2
i

: (5)

It would be more correct to consider as"i the larger from the two:
the noise and the errors derived from the�0 construction. In our
case (and as a rule) the latter are noticeably greater.

It is well-known that understated"i lead to uncertainties in fit-
ted parameters that are much too small. When the fitted parameters
happen to conflict with the data of other experimental techniques,
often vague ‘systematic errors’ are mentioned. We believe that the
errors of�0, always neglected, contribute essentially to systematic
errors, and here we have shown how this contribution can be deter-
mined.

Note finally, that all the stages of EXAFS-function extraction
and its uncertainty estimations are realized in the freeware program
VIPER (Klementev, 2000a).
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