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The problem of error analysis is considered taking into account all
possible correlations and a prior information about the accessible
parameter space. Special attention is paid to the correct determin-
ation of the relative weight of experimental data and thea priori
guess. The applications of statisticalχ2- and F-tests to the fitting
problems are also discussed.
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1. Introduction
Although there exist many textbooks on general data analysis, the
problem of statistical evaluations of the errors is under continuous
discussion within the EXAFS community. Practically all known
programs for EXAFS modelling (IXS, 2000) in some way calcu-
late confidence limits of fitting parameters. However, since there is
no standardized technique for that and since the most part of pub-
lished EXAFS works do not contain any mention of the methods
for estimation of the errors of fitting parameters, the accuracy of
the EXAFS results remains to be a field for trickery.

Recently, the use of Bayesian analysis for XAFS has been ex-
tensively discussed by Krappe & Rossner (2000). Their approach
includes not only the explicit dependence of the function minim-
ized on the fitting parameters but also indirect dependence via cal-
culated quantities (amplitudes, phases, mean free path, etc.). In
addition, for the direct best fitting without Fourier filtration, they
have considered also the truncation error in the EXAFS formula
sum. Having included all this, they apply the Bayesian analysis in
which the most important problem is to correctly determine the re-
lative weight of experimental data and thea priori guess given by
the regularization parameterα. They proposed, following Turchin
et al. (1971), two different prescriptions for that. In this paper we
propose an alternative formulation for one of them and show that
the other is met only near the singularity point. To do this, we re-
peat briefly the standard Bayesian arguments with focusing on the
problem ofα determination.

We also discuss the grounds and usage of the statistical tests
which can be and have been misused. The special attention was
focused on that where and how one can embellish the results and
artificially facilitate the statistical tests to be passed.

2. Errors in determination of fitting parameters
Let for the experimental curved, defined on the mesh ofL
nodes with errorsεi , there exists a modelm that depends onN-
dimensional parameter vectorp. In EXAFS fitting problems asd
may serveχ⒧k⒭, filteredχ⒧k⒭, or χ⒧r ⒭. The problem is to find the
parameter vector̂p that gives the best coincidence of the experi-
mental and model curves. Introduce the figure of merit, theχ2-
statistics:

χ2 � Nind

L

L

∑
i�1

⒧di � mi⒭2
ε2

i

ÿ (1)

where Nind is the number of independent experimental points
(Stern, 1993). The variateχ2 follows the χ2-distribution with
Nind � N degrees of freedom.

Let us now derive the expression for the posterior distribution
for an arbitrary fitting parameterpj :

P⒧pj d⒭ � @ dp ô� j P⒧p d⒭ÿ (2)

whereP⒧p d⒭ is the joint posterior probability density function for
all valuesp, and the integration is done over allp except forpj .
According to Bayes theorem,

P⒧p d⒭ ² P⒧d p⒭Pprior⒧p⒭ÿ (3)

Pprior⒧p⒭ being the joint prior probability for allp. Assuming that
Nind out of L valuesd � m are independent and normally dis-
tributed with zero expected values and the standard deviationsεi ,
the probabilityP⒧d p⒭, so-called likelihood function, is given by
P⒧d p⒭ ² exp

��χ2�2�. The expansion ofχ2 in terms ofp near
the minimum,χ2

0, (∇pχ
2 � 0) which is reached at p� p̂ yields:

P⒧d p⒭ ²  �1
4

N

∑
kÿl�1

Hkl ∆pk∆pl

!ÿ (4)

where∆pk � pk� p̂k, and the HessianH components (the second
derivatives ofχ2) are calculated by the fitting program atχ2 � χ2

0.
Now, we should define the prior probability. Let the parameter

pk is known to lie within the range of the sizeSk. Then the prior
probability can be expressed as:

Pprior⒧p α⒭ ² αN�2 exp

 �α

2

N

∑
kl�1

Akl⒧∆pk⒭2
!ÿ (5)

where Akl � δkl S�2
k . The rationale of this prior is that it max-

imizes the information theory entropy�? Pprior ln Ppriordp un-
der the constraints

?
Ppriordp � 1 and�pkpl 
prior � δkl S2

k . In
other words, this prior introduces minimum information in addition
to the approximate knowledge of the sizesSk. The regularization
parameterα specifies the relative weight of the prior probability; at
α � 0 there is no prior information, atα } ± the fitting proced-
ure gives nothing and the posterior distribution coincides with the
prior one. In the expression (5)α appears as known value. Really,α
should yet be determined. This problem will be considered below.

Finally, for the posterior probability density functions we have:

P⒧pj dÿα⒭ ² @ dp ô� j α
N�2 exp

 �1
2

N

∑
kÿl�1

gkl ∆pk∆pl

!ÿ (6)

wheregkl � αδkl S�2
k � Hkl�2. The matrixH should be gener-

alized, as was done by Krappe & Rossner (2000), to account for
the inaccuracies of the calculated scattering amplitudes and phases
and truncation errors.

Now, if α would be known, the standard errors of the fitting
parameters could be readily obtained:

⒧δpj ⒭2 ùùù �⒧∆pj ⒭2
post�
? ⒧∆pj ⒭2P⒧pj dÿα⒭dpj?

P⒧pj dÿα⒭dpj
� N

∑
i�1

e2
i j

λi
ÿ (7)

whereλi andei are the eigenvalues and corresponding eigenvectors
of the matrixg.

The only problem that remains to be solved is to determine the
regularization parameterα. It should be noticed that on the one
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hand,α specifies the relative weight of the prior information, on
the other, it makes the matrixg to be positively defined. In gen-
eral, the matrixH is not positive, especially whenN is great and
several ill-conditioned directions in the parameter space appear, or
when the model and experimental curves differ essentially. Thus,
the regularization guarantees that allλ’s in Eq. (7) are positive and
essentially not zeros.

In the modern Bayesian methods,α is itself determined by
Bayesian arguments that maximize the posterior probability ofα
given the data (Turchin & Nozik, 1969):

P⒧α d⒭ � @ dpP⒧αÿp d⒭ � @ dpP⒧α⒭P⒧p αÿd⒭. (8)

Using a priorP⒧α⒭ � α�β (usually a Jeffreys prior withβ � 1 is
used (Jeffreys, 1939)), one obtains the posterior distribution:

P⒧α d⒭ ² ⒧λ1 . . . λN⒭�1�2αN�2�β . (9)

Having found the maximum of this distribution, one obtains the
most probable value ofα, αmp. Then by Eq. (7) one finds the
Bayesian errors of fitting parameters. We have found (the proof
would take much space here) that atα � αmp

�χ2
post� χ2
0 � N

∑
ikl�1

Hkl

2
eik eil

λi
� 2βÿ (10)

and this condition appears to be independent ofN andεi (and any
pre-factor in the definition of theχ2). Eq. (10) can be considered
as the equivalent equation for the maximization ofP⒧α d⒭.

Further, it is easy to verify that atα � 0, and if H is posit-
ively defined (so called well-posed case) i.e. if the bare likelihood
is normalizable then

�χ2
post� χ2
0 � N. (11)

The increase ofα narrows the posterior distribution, therefore the
posterior average ofχ2 � χ2

0 decreases and is always less thanN
(see Fig. 1, solid line). For the ill-posed case, when the matrixg
is not positively defined, Krappe & Rossner (2000) proposed the
condition�χ2
post � L which we can generalize (for the filtered
EXAFS also) as�χ2
post � Nind. We have reservations about the
rationality of this condition. (i) This condition follows from the
Eq. (11) only whenχ2

0 � Nind � N. In practice, very frequently
χ2 function is not only greater than the medianNind � N but even
does not obey theχ2 distribution law (see the next section). (ii)
This condition can be met only near the singularity point, where�χ2
post sharply changes from�± to �±, and we wish to pay
attention to this latent circumstance. Furthermore, (iii) at thatα the
matrixg is not yet positively defined (see Fig. 1), and the posterior
distribution is divergent.

Returning to the maximization of the posterior probability
P⒧α d⒭, we point out that if we would choose a uniform prior
for α, i.e. with β � 0, as in Ref. (Krappe & Rossner, 2000), the
r.h.s. of Eq. (10) would be zero and the finite solution can be found
only for the ill-posed case near the singularity point, as seen from
Fig. 1. Thus, both prescriptions proposed in Ref. (Krappe & Ross-
ner, 2000) are not general because for a well-posed case they give
only trivial solutionsα � 0 andα � ±. For general case, the
regularization parameter should be found from Eq. (9) or Eq. (10)
with nonzeroβ.

Finally, we discuss briefly the usage of the prior information
and give some example results. Very often in the Bayesian applic-
ations, the matrixA is considered as the unit matrix (Krappe &

Rossner, 2000). Of course, this significantly simplifies the analysis
since A and H commute. However, such matrix does not corres-
pond to any feasible information, it just makes the matrixg, with
appropriateα, to be positively defined. Contrarily, the prior prob-
ability (5) not only regularizes possibly ill-conditioned directions
but also expresses the prior knowledge about the accessible para-
meter space. In our example fitting of the Fourier filteredχ⒧k⒭ . k2

with N � 7, we have found the errors of the first coordination
sphere radius: neglecting all correlations,δ⒧a⒭r1 � ⒧2�Hr1r1⒭1�2 �
7.6 . 10�3 Å; calculating all correlations and not including prior
information (by Eq. (7) withα � 0),δ⒧b⒭r1 � 3.0 .10�1 Å; includ-
ing the prior information thatr1 lies withinù�0.2Å from the crys-
tallographically determined distance (by Eq. (7) withα � αmp)
δ⒧c⒭r1 � 4.8 . 10�3 Å. Though, as well-known, theseδ’s are dir-
ectly dependent onεi , we do not discuss here the problem ofεi
determination and theδ’s are given for the comparison between
themselves.
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Figure 1
The posterior average ofχ2 � χ2

0 as a function ofα for two example
fittings: solid line for a well-done fitting, dashed line for a bad fitting
with initially (at smallα) ill-determined matrixg.

3. Statistical tests in fitting problems

3.1. χ2-test
Introducing the statistical functionχ2, we assumed that it fol-

lows theχ2 distribution withν � Nind � N degrees of freedom.
However for this would be really so, one should achieve a sufficient
fitting quality. This “sufficient quality” could be defined as such
that the variate (1) obeys theχ2 distribution law, that is this variate
does not fall within the tail of this distribution. Strictly speaking,
the following condition must be met:

χ2 � ⒧χ2
ν⒭ðÿ (12)

where the critical value⒧χ2
ν⒭ð for the specified significance levelð

may be calculated exactly (for evenν) or approximately (for odd
ν) using the known formulas (Abramowitz & Stegun, 1964).

Notice, that the choice of the trueεi here also plays a cardinal
role. However, it is important here that one would not use the over-
estimated values which facilitate to meet the requirement (12). For
example, one could obtain the overestimatedεi , having assumed
the Poisson distribution law for the detectors counts when the ac-
tual association between the probability of a single count event and
the radiation intensity is unknown.
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Figure 2
On the choice between two different models on statistical grounds.
Cited from Ref. (Menushenkov & Klementev, 2000).

Thus, the exaggerated valuesεi tell about a quality fitting, but
give the large errors of fitting parameters. The understatedεi lead to
the would-be small errors, but make difficult to pass theχ2-test (i.e.
to meet the condition (12)). We are aware of many works the au-
thors of which do not describe explicitly the evaluation process for
the errors of EXAFS-function extraction and do not report their ex-
plicit values. However, by implication it is seen thatεi were chosen
(not calculated) as low as possible to scarcely (withð � 0.9�0.95)
pass theχ2-test; as a result, very impressive errors of the structural
parameters were obtained.

3.2. F-test
Let there is a possibility to choose between two physical mod-

els depending on different numbers of parametersN1 and N2
(N2 � N1). Which one of them is more statistically important? For
instance one wish to decide whether a single coordination sphere
is split into two.

Let for the two models the functionsχ2
1 andχ2

2 obey theχ2-
distribution law withν1 � Nind� N1 andν2 � Nind� N2 degrees
of freedom, correspondingly. From the linear regression problem
(near the minimum ofχ2, the likelihood function is expressed by
(4) and is identical in form to that of the linear regression problem)
it is known that the value

f � ⒧χ2
1 � χ2

2⒭�⒧ν1� ν2⒭
χ2

2�ν2
(13)

obeys the Fisher’sF-distribution law with⒧ν1� ν2ÿ ν2⒭ degrees of
freedom if exactlyr � ν1� ν2 parameters in the second model are
linearly dependent, that is if exist ther � N2 matrix C of rank r
and the vectorc of the dimensionr such thatCp � c. In order for
the linear restrictions on the second model parameters to be absent,
the value f shouldnot follow the F-distribution, that is it should
be greater than the critical value⒧Fν1�ν2ÿν2⒭ð for the specified sig-
nificance levelð: f � ⒧Fν1�ν2ÿν2⒭ð, or

χ2
2 � χ2

1

 ⒧Fν1�ν2ÿν2⒭ð ν1� ν2

ν2
� 1

!�1

. (14)

Notice, that the expression (14) means the absence of exactlyr lin-
ear restrictions on the second model parameters. Even if (14) is
realized, the less number of linear dependencies are possible. If,
for instance, the splitting of a single coordination sphere into two
does not contradict to theF-test (14), some of the parameters of

these two spheres may be dependent, but not all. This justifies the
introduction of a new sphere into the model EXAFS function.

Thus, having specified the significance levelð, one can answer
the question “what decrease ofχ2 must be achieved to increase the
number of parameters fromN1 to N2?” or, inside out, “what is the
probability that the model 2 is better than the model 1 at specified⒧N1ÿχ2

1⒭ and⒧N2ÿχ2
2⒭?”

Notice, that since in the definition forf the ratioχ2
1�χ2

2 appears,
the actual values ofεi become not important for theF-test (only if
they all are taken equal to a single value).

Consider an example of the statistical tests in the fitting prob-
lem. In Fig. 2 are shown the experimental curve withNind � 11.8
and two model curves withN1 � 4 and N2 � 7. The underly-
ing physical models were described in Ref. (Menushenkov & Kle-
mentev, 2000); here only the number of parameters is of import-
ance. Let us apply the statistical tests. Through the fitting pro-
cedure for the model 1 we have:ν1 � 11 � 4 � 7, χ2

1 �
16.8 � 14.1 � ⒧χ2

7⒭0.95, for the model 2:ν2 � 11� 7 � 4,
χ2

1 � 5.3 � 9.5 � ⒧χ2
4⒭0.95. That is the first model does not pass

theχ2-test. Further,f � 2.89 � ⒧F3ÿ4⒭0.84, from where with the
probability of 84% we can assert that the model 2 is better than the
model 1.

In the EXAFS analysis theF-test has long been in use (Joyner
et al., 1987). However, the words substantiating the test are of-
ten wrong. The authors of Refs. (Filipponi & Cicco, 1995; Micha-
lowicz et al., 1999) even claimed that the valuef from Eq. (13)
mustfollow theF-distribution, although then in Ref. (Michalowicz
et al., 1999) there appears the correct inequality (14).

4. Conclusion
Though the analysis methods described in this paper are quite
standard, they contain several bottlenecks or contradictory points.
We have tried to clarify the problem of the regularization parameter
determination in the Bayesian approach as well as the grounds for
the statistical tests.
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