data analysis

Statistical evaluations in fitting where Njng is the number of independent experimental points
(Stern, 1993). The variatg? follows the x2-distribution with
prObIems Ning — N degrees of freedom.
Let us now derive the expression for the posterior distribution
for an arbitrary fitting parameteg; :
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whereP(p|d) is the joint posterior probability density function for
all valuesp, and the integration is done over allexcept forp;.
According to Bayes theorem,

The problem of error analysis is considered taking into account all

possible correlations and a prior information about the accessible P(pld) o« P(d|p)Pprior(P) ®3)

arameter space. Special attention is paid to the correct determijg- . . . . .
gtion of the Eelative F\)/veight of experimgntal data and aheriori Forior (p) being the joint prior probabilty for afp. Assuming that

Th licati i istic dE he fitti Ning out of L valuesd — m are independent and normally dis-
guess. The app |cat_|ons of statistiogi- and F-tests to the fitting tributed with zero expected values and the standard deviatipns
problems are also discussed.

_ o the probabilityP(d|p), so-called likelihood function, is given by
Keywords: error analysis ; statistical tests. P(d|p) x exp(—xz/z). The expansion of? in terms ofp near
the minimum,x3, (Chx? = 0) which is reached at g p yields:

1. Introduction

1 N
Although there exist many textbooks on general data analysis, the P(dlp) o (fz Z HklApkApl>’ (4)
problem of statistical evaluations of the errors is under continuous k1=t

discussion within the EXAFS community. Practically all known \yhereAp, = px — Pk, and the Hessiahl components (the second
programs for EXAFS modelling (IXS, 2000) in some way calcu- gerivatives ofy?) are calculated by the fitting programet = X%-
late confidence limits of fitting parameters. However, since there is Now, we should define the prior probability. Let the parameter

no standardized technique for that and since the most part of puby, is known to lie within the range of the si&. Then the prior
lished EXAFS works do not contain any mention of the methOdi}robability can be expressed as:

for estimation of the errors of fitting parameters, the accuracy o
the EXAFS results remains to be a field for trickery. N/2 a N 2

Recently, the use of Bayesian analysis for XAFS has been ex- Pprior(Pla) o o exp<f§ Z Al (Apk) )v ®)
tensively discussed by Krappe & Rossner (2000). Their approach KI=1

includes not only the explicit dependence of the function minim-yyhere A, = 4y Sc2. The rationale of this prior is that it max-
ized on the fitting parameters but also indirect dependence via calmizes the information theory entropy J Porior IN Poriordp un-
culated quantities (amplitudes, phases, mean free path, etc.). Hbr the constraintg Poriordp = 1 and (PkPi)prior = 5kl3§- In
addition, for the direct best fitting without Fourier filtration, they other words, this prior?ntroduces minimum in?ormation in addition

have considered also the truncation error in the EXAFS formulq0 the approximate knowledge of the siZ&s The regularization

sum. Having mgluded all this, they.apply the Bayesian gnalysns ”barametea specifies the relative weight of the prior probability; at
which the most important problem is to correctly determine the re-

. . . o ) « = 0 there is no prior information, at — oo the fitting proced-
lative weight of experimental data and theriori guess given by

. > 7 ure gives nothing and the posterior distribution coincides with the
the regularization parametar They proposed, foIIowm_g Turchin prior one. In the expression (6)appears as known value. Really,
et al. (1971), two different prescriptions for that. In this paper we

| e f ation f f th d sh h should yet be determined. This problem will be considered below.
propose an alternative formu at!on orone o them an S ow that Finally, for the posterior probability density functions we have:
the other is met only near the singularity point. To do this, we re-

peat briefly the standard Bayesian arguments with focusing on the N/2 1 N

problem ofa determination. P(pj|d, @) 0</dp¢j0¢ / exp(—z Z gkIApkApl)» (6)
We also discuss the grounds and usage of the statistical tests kI=1

which can be and have been misused. The special attention SSiheregq = adiqSc2 + Hy/2. The matrixH should be gener-

focused on that where and how one can embellish the results ang.
artificially facilitate the statistical tests to be passed. \:ﬁzed, as was done by Krappe & Rossner (2000), to account for

the inaccuracies of the calculated scattering amplitudes and phases
and truncation errors.

2. Errors in determination of fitting parameters Now, if a would be known, the standard errors of the fitting
Let for the experimental curvel, defined on the mesh of parameters could be readily obtained:

nodes with errorg;, there exists a modeh that depends oilN-

dimensional parameter vectpr In EXAFS fitting problems asl s _ 2 J(2p))2P(pjld, c)dp _ o &

may servex (k), filtered x(K), or x(r). The problem is to find the (9Pi)” = {(APj)“)post = TP |da)dp va )
parameter vectop that gives the best coincidence of the experi- S : =

mental and model curves. Introduce the figure of merit,¥8e  where); ande are the eigenvalues and corresponding eigenvectors

statistics: . of the matrixg.
2 _ Nind (di — my)? @ The only problem that remains to be solved is to determine the
X L g2 ’ regularization parameter. It should be noticed that on the one
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hand,« specifies the relative weight of the prior information, on
the other, it makes the matrixto be positively defined. In gen-
eral, the matrixH is not positive, especially wheN is great and

Rossner, 2000). Of course, this significantly simplifies the analysis
since A and H commute. However, such matrix does not corres-
pond to any feasible information, it just makes the madgixvith

several ill-conditioned directions in the parameter space appear, @ppropriaten, to be positively defined. Contrarily, the prior prob-
when the model and experimental curves differ essentially. Thusbility (5) not only regularizes possibly ill-conditioned directions

the regularization guarantees that’dfl in Eq. (7) are positive and
essentially not zeros.

In the modern Bayesian methods, is itself determined by
Bayesian arguments that maximize the posterior probability of
given the data (Turchin & Nozik, 1969):

Plald) = [ dpP(a,pld) = [ dpP(@)P(Plasd). (@
Using a priorP(a) = a7 (usually a Jeffreys prior witl# = 1 is
used (Jeffreys, 1939)), one obtains the posterior distribution:

©

Having found the maximum of this distribution, one obtains the
most probable value ofy, amp. Then by Eq. (7) one finds the
Bayesian errors of fitting parameters. We have found (the proo
would take much space here) thatat amp

P(a|d) oc (Ar--- An) Y2aN/28,

H
2 2 Hki €k &il
(X“)post— X5 A 2 N

=28, (10)

and this condition appears to be independertl@nde; (and any
pre-factor in the definition of thg?2). Eq. (10) can be considered
as the equivalent equation for the maximizatiorPéé|d).

Further, it is easy to verify that at = 0, and if H is posit-
ively defined (so called well-posed case) i.e. if the bare likelihooc
is normalizable then

(x*)post— x4 = N. (11)
The increase ofv narrows the posterior distribution, therefore the
posterior average of2 — X% decreases and is always less tinan

but also expresses the prior knowledge about the accessible para-
meter space. In our example fitting of the Fourier filtexg#) - k2
with N 7, we have found the errors of the first coordination
sphere radius: neglecting all correlation)ry = (2/Hr,r,)%2 =

7.6 - 1073 A; calculating all correlations and not including prior
information (by Eq. (7) withe = 0), 5®)r; = 3.0-101 A; includ-

ing the prior information that; lies within 1+0.2A from the crys-
tallographically determined distance (by Eq. (7) with= amp)
§©r, = 4.8-10-3A. Though, as well-known, thesgs are dir-
ectly dependent osj, we do not discuss here the problemepf
determination and thé’s are given for the comparison between
themselves.
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Figure 1
The posterior average of? — x3 as a function ofx for two example

(see Fig. 1, solid line). For the ill-posed case, when the matrix fittings: solid line for a well-done fitting, dashed line for a bad fitting
is not positively defined, Krappe & Rossner (2000) proposed thdVith initially (at smalla) ill-determined matrig.

condition <X2>post = L which we can generalize (for the filtered
EXAFS also) as(x2>post = Nijng. We have reservations about the
rationality of this condition. (i) This condition follows from the
Eqg. (11) only whenxg = Ning — N. In practice, very frequently
x?2 function is not only greater than the medibipg — N but even
does not obey the? distribution law (see the next section). (ii)

3. Statistical tests in fitting problems

3.1. 2-test
Introducing the statistical functiog?, we assumed that it fol-

. - : . ; 2 distributi ithy — N
This condition can be met only near the singularity point, wherdoWs thex< distribution withu = Ning — N degrees of freedom.

(x?)post sharply changes from-co to —oo, and we wish to pay
attention to this latent circumstance. Furthermore, (iii) at éhtite
matrix g is not yet positively defined (see Fig. 1), and the posterio
distribution is divergent.

Returning to the maximization of the posterior probability
P(«|d), we point out that if we would choose a uniform prior
for o, i.e. with 8 = 0, as in Ref. (Krappe & Rossner, 2000), the

However for this would be really so, one should achieve a sufficient
fitting quality. This “sufficient quality” could be defined as such

(that the variate (1) obeys thé distribution law, that is this variate

does not fall within the tail of this distribution. Strictly speaking,
the following condition must be met:

X2 < (320 (12)

r.h.s. of Eq. (10) would be zero and the finite solution can be foundvhere the critical valug¢y2 ), for the specified significance levél
only for the ill-posed case near the singularity point, as seen fronrmay be calculated exactly (for even or approximately (for odd

Fig. 1. Thus, both prescriptions proposed in Ref. (Krappe & Ross
ner, 2000) are not general because for a well-posed case they gi
only trivial solutionsae = 0 and« oo. For general case, the
regularization parameter should be found from Eq. (9) or Eq. (10
with nonzerog.

Finally, we discuss briefly the usage of the prior information

) using the known formulas (Abramowitz & Stegun, 1964).
veNotice, that the choice of the trug here also plays a cardinal
role. However, it is important here that one would not use the over-
pstimated values which facilitate to meet the requirement (12). For
example, one could obtain the overestimatgdhaving assumed
the Poisson distribution law for the detectors counts when the ac-

and give some example results. Very often in the Bayesian applidual association between the probability of a single count event and

ations, the matrixA is considered as the unit matrix (Krappe &

the radiation intensity is unknown.
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0.8 T, T T T T these two spheres may be dependent, but not all. This justifies the

introduction of a new sphere into the model EXAFS function.
Thus, having specified the significance le¥ebne can answer
the question “what decrease pf must be achieved to increase the
number of parameters frofd; to N>?” or, inside out, “what is the
probability that the model 2 is better than the model 1 at specified
(N1, x%) and(Ng, x3)?"
Notice, that since in the definition fdrthe ratioxf/xg appears,
the actual values af; become not important for the-test (only if
filtered data — they all are taken equal to a single value).
- ——— model 1 i Consider an example of the statistical tests in the fitting prob-
‘H ____________ model 2 lem. In Fig. 2 are shown the experimental curve wWithy = 118
08— v T and two model curves wittN; = 4 andN, = 7. The underly-
) 4 6 8 10 12 14 16 ing physical models were described in Ref. (Menushenkov & Kle-
kA mentev, 2000); here only the number of parameters is of import-
ance. Let us apply the statistical tests. Through the fitting pro-
cedure for the model 1 we havey = 11— 4 = 7, X1 =
168 > 141 = (X7)095: for the model 2vp, = 11— 7 = 4,
=53<95= (X4)0 o5 That is the first model does not pass
thex -test. Further,f = 2.89 = (F34)0.84, from where with the
Thus, the exaggerated valugstell about a quality fitting, but ~ probability of 84% we can assert that the model 2 is better than the
give the large errors of fitting parameters. The undersiatedid to ~ model 1.
the would-be small errors, but make difficult to passtRetest (i.e. In the EXAFS analysis th&-test has long been in use (Joyner
to meet the condition (12)). We are aware of many works the auet al, 1987). However, the words substantiating the test are of-
thors of which do not describe explicitly the evaluation process foten wrong. The authors of Refs. (Filipponi & Cicco, 1995; Micha-
the errors of EXAFS-function extraction and do not report their ex-lowicz et al, 1999) even claimed that the valdefrom Eqg. (13)
plicit values. However, by implication it is seen thatwvere chosen =~ mustfollow the F-distribution, although then in Ref. (Michalowicz
(not calculated) as low as possible to scarcely (With0.9—0.95) et al, 1999) there appears the correct inequality (14).
pass the¢2-test; as a result, very impressive errors of the structural
parameters were obtained. 4. Conclusion

0.4

Figure 2
On the choice between two different models on statistical grounds
Cited from Ref. (Menushenkov & Klementev, 2000).

Though the analysis methods described in this paper are quite
3.2. F-test i i i
standard, they contain several bottlenecks or contradictory points.
Let there is a possibility to choose between two physical modwe have tried to clarify the problem of the regularization parameter
els depending on different numbers of parametsfsand N2  determination in the Bayesian approach as well as the grounds for
(N2 > Nz). Which one of them is more statistically important? For the statistical tests.

instance one wish to decide whether a single coordination sphere This work was supported by RFBR (99-02-17343) and Program
is split into two. “Superconductivity” (99010). | thank the Program Committee for
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distribution law withvy = Njpng — Ny andv, = Ning — N degrees nce
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