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In real systems, inelastic processes remove photoelectrons from the

elastic scattering channel. This reduces the amplitude of the EXAFS.

Traditionally the discrepancies between experimental and theoretical

amplitudes were treated by including two semi-empirical reduction

factors in the data analysis. Some inelastic effects may, however, be

modelled more rigorously using a complex exchange and correlation

potential, for example the Hedin±Lundqvist (HL) potential used in

most EXAFS data-analysis programs. In this paper a systematic study

of the effects of the HL potential on the calculated EXAFS

amplitudes is presented. Expressions are derived whereby the

EXAFS amplitudes may be examined in the presence of an arbitrary

complex potential independently to the rest of the EXAFS signal.

These results are used to study the effects of the HL potential on

EXAFS data analysis in detail.

Keywords: EXAFS; inelastic processes; exchange and correlation
potential; EXAFS data analysis.

1. Introduction

The extended X-ray absorption ®ne structure, or EXAFS, is the ®ne

structure observed in the X-ray absorption coef®cient as a function of

energy. This ®ne structure, beginning immediately above the edge

and extending up to 1000 V or more beyond an absorption edge,

contains information on atomic arrangements, bond lengths and

coordination numbers.

Interpretation of the EXAFS may be based on a simple equation

(Lee & Pendry, 1975) obtained using the plane wave approximation.

The single-electron single-scattering expression for the EXAFS

function, ��k�, is,

�i�k� �
X

j

s2
oeÿ2rj=�

Njj fj�k; ��j
kr2

j

sin�2krj � 2�j�k; r� �  j�: �1�

Equation (1) describes the EXAFS due to scattering by shells of Nj

atoms at a distance rj from the absorbing atom. fj�k� is the back-

scattering amplitude from each of the Nj neighbours whilst the

reduction factors eÿ2rj=� and s2
o account for discrepancies between the

predicted and experimentally measured amplitudes.

These discrepancies arise because only elastically scattered

photoelectrons contribute to the primary channel EXAFS. With a

real scattering potential, the reduction factors are needed to account

for effective absorptions from the photoelectron beam due to various

inelastic scattering processes. The mean-free-path term, eÿ2rj=�,

accounts for losses from inelastic scattering events at neighbouring

atoms and in the medium in-between, whilst the constant amplitude

reduction factor, s2
o, otherwise known as AFAC, approximates the

intrinsic losses, those due to multiple electron excitations at the

absorbing atom. Traditionally, the factor VPI in the mean-free-path

term, � � k=VPI , is approximated by the canonical value of 4 eV

given by LEED calculations whilst the constant amplitude reduction

factor is taken to be � 0:7.

Most modern EXAFS data-analysis programs use a complex

exchange and correlation potential to model inelastic effects, for

example the Hedin±Lundqvist (HL) potential (Hedin & Lundqvist,

1969) used in the standard Daresbury package EXCURV98 (Binsted,

1998) and in the equivalent American program, FEFF (Zabinsky et

al., 1995). This potential gives rise to complex phase shifts in equation

(1) and in the more accurate curved-wave (Gurman et al., 1984) forms

of the theory typically used in data analysis, and therefore includes

some, if not all, of the reduction effects.

The HL potential is only designed to model the so-called extrinsic

losses, those usually approximated by the mean-free-path term. In

this case, EXAFS data analysis should be performed with a default

value of AFAC of approximately 0.7 (see, for example EXCURV92).

However, some years experience by EXAFS users at Daresbury

demonstrated this value of AFAC to be too low. It was believed that

the HL potential was overestimating the extrinsic losses and there-

fore, accidentally, including some of the weight of the intrinsic losses

from multiple excitations at the absorbing atom. This led to the

default value of AFAC being set to unity in the current issue of

EXCURV (EXCURV98). The accuracy of the HL potential has been

the subject of much discussion in the XAS community over recent

years (Fujikawa et al., 2000; Newville et al., 1993; Tyson et al., 1992),

although as yet we are not aware of any viable alternatives to its use

for routine data analysis.

In this paper we present a systematic examination of the EXAFS

amplitudes produced by the imaginary part of the HL potential. We

demonstrate that this potential does indeed overestimate the

extrinsic losses, and that the HL potential gives good agreement with

the total losses from the elastically scattered photoelectron wave in

the EXAFS range of photoelectron energies. This agreement is,

however, somewhat fortuitous and we therefore conclude that, whilst

the HL potential is good enough at present, some thought should be

given to improving the modelling of inelastic processes in future

issues of EXCURV and other data-analysis programs.

The paper is broadly split into two sections. In the ®rst, we brie¯y

detail the method used to calculate the EXAFS amplitude in the

presence of the HL potential. In the second, we calculate the losses

generated by the HL potential using this theory and compare them

with the historically used EXAFS loss factors: a constant amplitude

reduction factor, s2
o, and a mean free path term, eÿ2rj=�.

This paper expands upon and clari®es a short note in the confer-

ence proceedings of XAFS X (Roy & Gurman, 1999). In the ®nal

results obtained here we have used SI units of electron volts and

AngstroÈ ms. In the theory section, however, we use Hartree units for

simplicity.

2. Theory

2.1. The EXAFS amplitudes

In principle we could use a program such as EXCURV98 to

investigate the effects of the HL potential on the EXAFS amplitudes.

The full EXAFS could be calculated both using the HL potential and

using a real scattering potential such as the X� potential, and the

amplitudes compared. However, the two potentials give ®ne structure

of a different phase which makes a direct comparison problematical.

Instead we choose to calculate the effect of the imaginary part of the

HL potential on the EXAFS in the ®rst Born approximation. This

gives the amplitude diminution directly.

Standard single electron EXAFS theory may be developed within

the muf®n tin approximation using the Hartree photoelectron Green

function, Go�r; r0�,

J. Synchrotron Rad. (2001). 8, 1095±1102 # 2001 International Union of Crystallography � Printed in Great Britain ± all rights reserved 1095

research papers



research papers

1096 Roy and Gurman � Hedin±Lundqvist potential in EXAFS data analysis J. Synchrotron Rad. (2001). 8, 1095±1102

Go�r; r0; !� � ÿ{k
X

lm

e{�l h
�1�
l �kr0� � eÿ{�l h

�2�
l �kr0�

� �
� h

�1�
l �kr�e{�l Y�lm�r̂�Ylm�r̂0�; r > r0 > rmt

� ÿ{k
X

lm

h
�1�
l �kr�e{�l Rl�kr0�Y�lm�r̂�Ylm�r̂0�;

r > rmt > r0

� ÿ{k
X

lm

Rl�kr0� 1
2

Rl�kr� ÿ {Xl�kr�� �

� Y�lm�r̂�Ylm�r̂0�; rmt > r > r0; �2�
where Rl�kr� and Xl�kr� are the regular and irregular scattering

solutions to the SchroÈ dinger equation in the presence of the atomic

potential whilst the free space wavefunctions have been de®ned in

terms of the spherical Hankel functions, h
�1�
l �kr� and h

�2�
l �kr�. The

muf®n tin radius is rmt; ! � 1
2 k2, and we have taken the continuum

scattering state wavefunctions to be

 �k; r� �
X

lm

2�{lei�l ei�l h
�1�
l �kr� ÿ eÿi�l h

�2�
l �kr�

� �
� Ylm�r̂�Y�lm�k̂�; r > rmt; �3�

 �k; r� �
X

lm

2�{lei�l Rl�kr�Ylm�r̂�Y�lm�k̂�; r < rmt; �4�

where �l are the partial wave phase-shifts.

The extended X-ray absorption ®ne structure may be evaluated

from the Green function in many different ways (Gurman et al.,

1984). In this paper we use the Hartree Green function to examine

the photoelectron ¯ux. The photoelectron ¯ux is directly related to

the X-ray absorption coef®cient and hence the EXAFS function by

��!� � 8�!S

cE2
o

; �5�

where S is the photoelectron ¯ux through a sphere of radius r, centred

on the absorbing atom, ! is the X-ray energy, and cE2
o is the rate of

energy transport in the X-ray beam.

The photoelectron ¯ux may be calculated in the usual fashion from

the photoelectron wavefunction,

	 � Gc�r; r0�H 0�r0��o�r0�: �6�
In equation (6), we have chosen to examine the photoelectron

wavefunction far from the absorbing atom, thus r > rmt > r0. �o�r�, a

well de®ned atomic initial state of energy !o, is zero outside of the

central atom muf®n tin, the Green function is evaluated at an energy

!ÿ j!oj and, in the dipole approximation, the perturbation, H 0�r0�,
due to the presence of the X-ray beam is simply Eo� � r0.

In the presence of a single scattering atom, the relevant Green

function, Gc, becomes

Gc�r; r0� � Go�r; r0� �Go�r; r1�T�r1; r2�Go�r2; r0�; �7�
where T�r1; r2� is the T matrix of the scattering atom and r is greater

than r1 and r2 which are in turn larger than the muf®n tin radius and

hence r0. Then, using standard results from the many derivations of

the EXAFS function available, we ®nd the photoelectron ¯ux to be

given by,

S � kE2
o

6

X
l

A�l; lo�jhRljrj�lo
ij2ÿ1� ��k��: �8�

A�l; lo� is the angle factor of Gurman (1983), whilst ��k� is the

EXAFS function of equation (1), or a more accurate equivalent. The

X-ray absorption coef®cient from a single initial state of angular

momentum lo is therefore given by

��!� � 2�k!

3c

X
l

A�l; lo�jhRljrj�lo
ij2ÿ1� ��k��

� �o�!�
ÿ
1� ��k��; �9�

where the sum over l is over the possible angular momenta of the ®nal

state. This is the standard result for the X-ray absorption coef®cient

in the absence of inelastic scattering. Finally, the backscattering factor

fj�k; �� from equation (1) is found to be

fj�k; �� � ÿ
2�

{k

X
L

�ÿ1�L�2L� 1��1ÿ e2{�L � � j fj�k; �� je{ : �10�

In this paper we are interested in the EXAFS function in the presence

of an arbitrary energy-dependent imaginary part of the potential. We

treat this imaginary part as a small perturbation on the system. Then,

to ®rst order in the imaginary part of the potential, VI , the Hartree

Green function becomes,

G1�r; r0� � Go�r; r0� ÿ {Go�r; r1�VI�r1�Go�r1; r0�; �11�

where the Green function, Go�r; r0�, has r0< rmt and r > rmt whilst

Go�r1; r0� has both r1 and r0 inside the muf®n tin. We assume that

r1 > r0 as the initial state, �lo
, will always be highly localized whilst

the imaginary part of the potential, VI , is zero toward the centre of

the atom (this shall be demonstrated in section 3). This means that

the double integral in equation (6) will only be signi®cant in the

regions where r1 > r0. Also, within the muf®n tin approximation, VI is

spherically symmetric so that the angular integrals over the directions

of r1 simply reduce to the orthogonality integrals for the spherical

harmonics.

The perturbed Green function always has the same functional form

as Go whether or not r and r0 are inside or outside the muf®n tin. For r

and r0 outside the muf®n tin the Green function will simply be

multiplied by a numerical factor �1ÿ 1
2 khRljVI jRli� whilst with either

r or r0 or both inside the muf®n tin the perturbed Green function can

be written as Go�1ÿ 1
2 khRljVI jRl ÿ {Xli�. We shall see later that the

{hRljVI jXli term may be ignored. However, for the moment, including

this term, we may rewrite equation (11) for the perturbed Green

function as

G1�r; r0� � ÿ{k
X
l;m

e{�
0
l h
�1�
l �kr�Y�lm�r̂�Rl�kr0�Ylm�r̂0�; �12�

where we have subsumed the factor �1ÿ k
2 hRljVI jRl ÿ {Xli� into the

phase shifts making �l complex. In equation (12), �0l is the perturbed

phase shift. To ®rst order,

�0l ' �l ÿ
1

2
hRljVI jRl ÿ {Xli: �13�

This is, of course, an approximate form for the perturbed phase shifts;

however, using this form we can reproduce the textbook expression

for the loss of ¯ux from an isolated atom (Bransden & Joachain,

1983). We therefore believe that this approximation is a good one.

Using result (13) for the perturbed phase shifts we may easily

calculate the EXAFS in the presence of the imaginary potential by

following the standard derivation of the EXAFS. From equation (1)

we can see the effect on the EXAFS of perturbing the phase-shifts.

We can also calculate the elastic contribution to the absorption

coef®cient. Writing the perturbed backscattering factor as f 0j �k; �� we

have



�el � �o�1ÿ khRljVI jRli� 1� 2Re
X

j

i�ÿ1�l
2kr2

j

e2{�krj��0l �f 0j �k; ��
" #

: �14�

The total absorption must be the same regardless of whether or not

there is an imaginary part to the potential, as, in both cases, we must

satisfy the Thomas±Reiche±Kohn sum rule. Thus, we may write the

total X-ray absorption coef®cient as,

�tot � � � �el�1� �� � �inel; �15�
which gives the EXAFS as

� � 1ÿ 2khRljVI jRli� � �ÿ1�l
kr2

j

sin�2krj � 2�l �  � j f 0j �k; �� j: �16�

The perturbed backscattering factor may be written as

f 0j �k; �� �
i

2k

X
L

h
1ÿ �1ÿ khRLjVI jRLi�e{��LÿhRLjVI jXLi�

i
� �ÿ1�L�2L� 1�: �17�

This is a corrected version of the mis-printed equation (3) in Roy &

Gurman (1999). The irregular solution to the SchroÈ dinger equation

only appears in the exponential in the above equation. It merely

alters the phase of the backscattering factor, f 0j �k; ��. However,

compared with the phase shifts, the radial matrix element hRLjVI jXLi
is always small. This is because the imaginary part of the HL

potential, VI , is approximately constant over much of the region of

the atom. Thus, as RL and XL are orthogonal, the matrix element

hRLjVI jXLimust be small. From Fig. 1 we can see that for most of the

energy range investigated hRljVI jXli is much less than 1% of the

phase shifts. The neglect of this term in the calculation of the EXAFS

amplitude is therefore valid.

Thus, in the presence of an imaginary part to the potential the

EXAFS amplitude is given to ®rst order in VI by

Al � 1ÿ 2khRljVI jRli
f 0j ���
fj���

�����
�����: �18�

In the above equation we can identify two parts to the amplitude

reduction: 2khRljVI jRli comes from the central atom muf®n tin;

khRljVI jRli is the ¯ux lost from the elastically scattered photoelec-

tron wave originating from an isolated atom. In EXAFS, of course,

the photoelectron wave encounters the central atom potential twice,

once on the way out and once on the way back in. The j f 0j ���=fj���j
term is the reduction to the EXAFS amplitudes caused by inelastic

excitations at the scattering atoms.

2.2. The HL potential

The HL potential was originally developed to model exchange and

correlation effects in a uniform electron gas (Hedin & Lundqvist,

1969). This model goes beyond the Hartree Fock theory by using a

single plasmon pole (SPP) form of the dielectric function to calculate

the electron self energy. The SPP dielectric function approximates all

the inelastic electron±electron interactions as plasmons. The weight

of the plasmon absorptions is adjusted so as to approximate the total

of the actual plasmon excitations plus particle±hole excitations. Tyson

et al. (1992) argue that this adjustment of the weight of the plasmon

excitations should lead to good results for the total (plasmon plus

single particle) extrinsic inelastic excitations. It does not include the

intrinsic effects due to the appearance of the core hole. This may

easily be seen since the HL losses go to zero at very high photo-

electron energies whereas the core hole effects tend to a constant loss

in this limit [see discussion of equation (22) below].

The HL potential was ®rst applied to EXAFS calculations within

the local density approximation by Lee & Beni (1976). Its calculation

is a standard problem. Here we simply quote the result for the

imaginary part of the potential,

VI�r;Ei� � ÿ
!2

p

2k

Z qmax

o

dq

q!q

Z x1

ÿ1

� xÿ
1
2 q2 � !q

kq

� �
dx; �19�

where Ei � !ÿ j!oj is the photoelectron energy, !p is the plasma

frequency of an electron gas of density n, !2
p � 4�n. In the local

density approximation both the electron density and hence !p

depend on r. The q-dependent plasmon excitation frequency is

!2
q � !2

p � 1
3 q2k2

f � 1
4 q4, and qmax � k� kf where 1

2 k2
f = Vo�r� � Ef is

the kinetic energy at the Fermi level. Vo�r� is the atomic potential and

Ef is the thermodynamic Fermi energy. The imaginary part of the

exchange and correlation potential is only non-zero for electrons with

energies greater than that needed to excite a local plasmon,

Ei ÿ Ef > !q. Below this energy the incident electrons are not

energetic enough to excite a plasmon and so, in the single plasmon

pole approximation, inelastic scattering events are impossible.

3. Results

In this section we use equation (18) to examine the effects of the HL

potential on the EXAFS amplitudes for a number of different

elements. Primarily we look at silicon, copper and silver as experi-

mental data is available for these three elements, which cover a wide

range of atomic number and K-edge energies. Fig. 2 shows the

imaginary part of the HL potential calculated for silicon, copper and

silver.

For all elements, the imaginary part of the HL potential is zero at

small r. In this region of high electronic density the incident photo-

electron is insuf®ciently energetic to excite a plasmon. As soon as the

density falls suf®ciently for plasmons to be excited, VI cuts in almost

immediately to its maximum value. At larger incident photoelectron

energies, VI obviously cuts in at lower radii; however, for large Ei the

imaginary part of the potential is generally smaller in the outer

regions of the atomic muf®n tins. The energy dependence of the

imaginary part of the HL potential is shown for bromine in Fig. 1 of

Lee & Beni (1976).
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Figure 1
The matrix element hRljVI jXli divided by the phase shift �l at l � 0 (solid
line), l � 1 (dashed line) and l � 2 (dotted line).
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The imaginary part of the HL potential looks very similar for the

three very different elements: silicon, copper and silver. The electron

mean free paths for these elements will therefore also be very similar

as has long been found experimentally.

The radius at which the HL potential cuts in moves slightly

outward as we go up in atomic number. This is because the electron

density is larger close to the nucleus for elements with higher atomic

numbers. The corresponding plasmon excitation frequency is there-

fore higher and so we have to move further from the centre of the

atom before it becomes possible to excite a plasmon with a photo-

electron of given energy.

It is instructive to examine the average imaginary part of the HL

potential. This can be calculated simply from,

VAVG�k� �
3

r3
mt

Z rmt

o

VI�r; k�r2dr: �20�

In Fig. 3 we plot the average imaginary part of the potential against k

for copper. The imaginary part of the potential has an average value

of approximately 4.8 eV over most of the range of energy appropriate

to EXAFS data analysis. This is close to, but slightly higher than, the

canonical value of 4 eV generally used to account for the extrinsic

losses in LEED calculations for example (Pendry, 1974). The average

imaginary part of the HL potential is also very similar for all atoms.

This is a consequence of describing the atoms as shells of varying

electron density.

Fig. 3 also shows that the average potential falls off with increasing

photon energy above the edge. This can also be deduced from

equation (19). We only obtain a contribution from the delta function

if,

1
2 q2 � !q

kq

���� ����<1: �21�

Taking the limit of high photoelectron energy so that k becomes very

large and 1
2 k2>>!p we ®nd that we will always obtain a contribution

from the delta function provided that q < k and q > !p=k. Then, at

high k,

VI �
!2

p

2

Z k

!p
k

dq

kq!q

� !p

k

1

2
log

kqc

!p

 !
� !p

3q2
c

" #
; �22�

where, to a ®rst approximation, we have approximated !q with its low

q limit (of !p) below qc and with its high q limit of 1
2 q2 above qc. We

can see that equation (22) for VI will obviously go to zero as k

becomes very large. As VI is designed to model only the extrinsic

photoelectron scatterings this is correct.

In Figs. 4(a) and 4(b) we compare the measured k3 weighted

EXAFS for crystalline silicon to best-®t theoretical curves calculated

with (a) the X� potential including an amplitude reduction factor of

Figure 2
The imaginary part of the HL potential in eV, at k = 15AÊ ÿ1. Calculated for
silicon (solid line), copper (dotted line) and silver (dashed line).

Figure 3
The average imaginary part of the HL potential plotted as a function of k for
copper.

Figure 4
Clockwise from the top left: (a) A comparison between the measured k3-
weighted EXAFS for crystalline silicon (solid line) and a ®tted EXAFS
spectrum calculated using the X� potential with correction factors (dashed
line). (b) A comparison between the experimental silicon spectrum (solid line)
and the EXAFS calculated using the HL potential with no additional
correction factors (dashed line). (c) The two calculated EXAFS spectra from
above shown against the EXAFS calculated using the X� potential with no
correction factors (dashed line). The HL potential result is the solid line and
the X� result with an amplitude correction is the dotted line. (d) The
approximate result for the EXAFS amplitude calculated using equation (18)
compared with a result obtained by taking the ratio of the amplitudes of
equivalent peaks from the EXAFS plotted in (c) calculated using the HL
potential and the X� potential with no correction factors (circles). The crosses
show the same ratio for the EXAFS calculated using the X� potential with and
without correction factors.



0:7� 0:1 and a constant imaginary potential of ÿ4� 0:2 eV, and (b)

the HL potential. Here the mean free path ��k� � k=VPI so that, with

a constant imaginary potential, VPI , the mean free path varies as
����
E
p

as usual. In reality s2
o will obviously have some energy dependence

(Roy et al., 2001), but in this traditional method of data analysis s2
o is

always approximated by its constant high-energy limit.

The silicon spectrum [published by Gurman & McGreevy (1990)]

was measured on beamline 3.4 of the CLRC Daresbury laboratory.

Pre- and post-edge background was subtracted using polynomial ®ts

(EXBACK) and the background-subtracted spectra ®tted using

EXCURV98 using three shells with ®xed coordination number. The

interatomic distances and Debye±Waller factors obtained are shown

in Table 1. The ®t using the X� potential gives a ®t index of 39.2. The

HL potential gives a slightly better match to experiment, with a ®t

index of 37.6. In both ®ts the default EXCURV value for the core-

hole lifetime of 0.43 eV was used, whilst the experimental resolution

of �0.1 eV was considered small enough to be neglected.

The experiment and theory diverge at low energies where multiple

scattering becomes more important, but between approximately 3

and 14 AÊ ÿ1 both theoretical approaches give reasonable ®ts to

experiment. It is noticeable that at low k the X� potential result is

killed by the correction factors whilst the HL potential gives much

larger magnitudes and a much more satisfactory match to experi-

ment. In this region the ad hoc correction factors applied to the

EXAFS amplitudes in the X� calculation greatly overestimate the

inelastic losses. This accounts for the better ®t index obtained using

the HL potential.

Fig. 4(c) compares the two theoretical calculations described above

to a third calculation performed using the HL potential without any

amplitude corrections applied. This succinctly shows the problem

with all real potential calculations of the EXAFS: namely amplitudes

which are much too large.

Finally, in Fig. 4(d), we demonstrate the accuracy of the approx-

imate result from equation (18) in estimating the EXAFS amplitudes

in the presence of an imaginary potential [equation (18)]. The solid

line shows the calculated amplitude from equation (18) whilst the

circles are obtained by dividing the amplitudes given by the HL

potential with those found using the X� potential with no corrections.

These two calculations give results for the ®ne structure which are

slightly out of phase, therefore, to obtain a rough estimate of the

effect of the imaginary part of the HL potential on the amplitude of

an exact calculation we have compared the results of the two calcu-

lations at corresponding peaks. The circles are the ratios of these

amplitudes at successive peaks, whilst the crosses show the corre-

sponding ratio of peak heights between the lossless X� calculation

and the X� calculation with added correction factors. The differing

real parts of the HL and X� potentials give slightly different scat-

tering strengths for each of the shells which further complicates the

situation, but we have ignored this effect in these plots. From the

plots it is apparent that all three sets of amplitudes are roughly

consistent in the region primarily of interest to EXAFS data analysis,

whilst the amplitudes given by the ad hoc correction factors to the X�
potential appear to be tending to zero at low energies.

Figs. 5, 6 and 7 show the major results of this paper. We plot the

EXAFS amplitude as a function of photoelectron wavevector in

J. Synchrotron Rad. (2001). 8, 1095±1102 Roy and Gurman � Hedin±Lundqvist potential in EXAFS data analysis 1099

research papers

Table 1
Interatomic distances and Debye±Waller factors.

Shell N RHL (AÊ ) RX� (AÊ ) �2
HL (�10ÿ4) �2

X� (�10ÿ4)

1 4 2.36 � 0.02 2.34 � 0.02 45 � 15 45 � 10
2 12 3.86 � 0.05 3.84 � 0.05 135 � 50 130 � 40
3 12 4.50 � 0.05 4.52 � 0.05 140 � 80 200 � 50

Figure 5
Calculated and best-®t EXAFS reduction factors plotted against photoelec-
tron wavevector for silicon. The black line gives the calculated result, the solid
band shows the extent of the error in the best-®t EXAFS amplitude.

Figure 6
Calculated and best-®t EXAFS reduction factors plotted against photoelec-
tron wavevector for copper. The black line gives the calculated result, the solid
band shows the extent of the error in the best-®t EXAFS amplitude.

Figure 7
Calculated and best ®t EXAFS reduction factors plotted against photoelec-
tron wavevector for silver. The black line gives the calculated result, the solid
band shows the extent of the error in the best-®t EXAFS amplitude.
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inverse AngstroÈ ms. The origin of the plots has been set at k = 2 AÊ ÿ1,

approximately at the position of the edge. The photoelectron wave-

vector is not zero at the X-ray absorption edge because of the ®nite

Fermi energy.

The EXAFS amplitude is calculated using equation (18) for three

very different elements: silicon, copper and silver. This is then

compared with known values of the empirical parameters, s2
o�k� and

eÿ2rj=��k�, ®tted using the real X� potential for the three elements with

the data analysis program EXCURV98, in the same way as described

previously for silicon. The best-®t values of s2
o and the effective

constant imaginary potential, VPI , were found to be (Gurman, 1999)

s2
o = 0:70� 0:1 for copper and s2

o = 0:67� 0:15 for silver. The VPI

values used were:ÿ4.0 eV� 0.2 eV for copper andÿ6.3 eV� 0.2 eV

for silver where the quoted uncertainties are 2� errors. In the ®gures

the solid band shows the product of the ®tted vales of s2
o and eÿ2rj=��k�

within the limit of experimental error whilst the black line gives the

calculated EXAFS amplitude [equation (18)]. Below a k of about

3 AÊ ÿ1 the historically used EXAFS reduction parameters exhibit

unphysical behaviour. Using a constant imaginary part to the

potential we obtain a zero mean free path at low k and hence an

EXAFS amplitude of zero. This is obviously incorrect as, below, the

minimum electron excitation energy in the system there cannot be

any inelastic scatterings and hence the EXAFS amplitudes should be

unity. This was a known problem in older data analysis.

At low X-ray energies above the edge the calculated amplitude

using the HL potential is unity. This is correct. At low energies the

photoelectron is insuf®ciently energetic to excite a plasmon anywhere

in the atomic muf®n tin. The energy at which the amplitude begins to

deviate from unity corresponds to the plasmon frequency in the

region of low electronic density toward the edge of the muf®n tin. In

an atomic calculation this cut-in energy would be that of the most

weakly bound atomic orbital. The rapid cut-in of the amplitude

reduction is a feature of the HL potential. This occurs because the

majority of the imaginary part of the HL potential comes from the

region of almost constant electronic density toward the edge of the

muf®n tin spheres.

At high k the HL potential overestimates the EXAFS amplitudes.

The HL potential models the extrinsic loss effects and so, like the

mean-free-path term, it will disappear at high energies. From Figs. 5, 6

and 7 it is clear that the calculated amplitudes are still increasing at

k = 15 AÊ ÿ1. The HL potential itself varies as 1=k at large k, and, as

the radial wavefunctions, Rl�kr�, are also proportional to 1=k at high

energies, the EXAFS amplitudes given by the HL potential will

obviously tend to unity. However, using the sudden approximation

we can show that the intrinsic loss parameter, and hence the total

amplitude reduction, should tend to a constant value of about 0.7 at

high photoelectron energies (Rehr et al., 1978; Roy & Gurman, 1997).

The difference arises because the HL potential does not include a

contribution from the core hole.

The losses obtained from the HL potential agree reasonably well

with the total reduction given by the semi-empirical reduction

parameters. The HL potential must therefore overestimate the losses

produced by the mean-free-path effects alone. Over the range of a

typical EXAFS spectrum, 3 to 14 AÊ ÿ1, the calculated reduction

parameters lie within the error range of the best-®t experimental

data. The correlation between the calculations and the ®tted

empirical parameters can be measured in this region using the

R-factor,

R �
P jAexpt ÿ AtheoryjP jAexptj

� 100%: �23�

We ®nd R = 4:9% for silicon, R = 6:5% for copper and R = 10:4% for

silver. These uncertainties are much lower than those observed in the

best ®t parameters for the various elements: 15:5% for silicon, 16:1%

for copper and 24:4% for silver, which suggests that the reduction

given by the HL potential is equivalent to that produced by the semi-

empirical reduction parameters.

EXCURV98 was also used to ®t values for the adjustable para-

meter, s2
o, using the HL potential. We found values of s2

o�k� =

0:92� 0:10 for silicon, s2
o�k� = 1:05� 0:05 for copper and s2

o�k� =

1:02� 0:05 for silver. These values are all consistent with unity which

suggests that additional amplitude ®tting parameters should not be

used when data ®tting using the HL potential. It would appear that

the HL potential gives extremely good results for EXAFS calcula-

tions, albeit accidentally.

Fitting the amplitude reduction parameter for a number of

elements we obtain the points shown in Fig. 8. These points exhibit

some scatter but are generally much larger than the values of s2
o which

we would expect to obtain using the X� potential and a mean-free-

path term. We therefore conclude that the HL potential signi®cantly

overestimates the extrinsic losses to the EXAFS amplitude. Empiri-

cally, the HL potential includes most, if not all, of the contribution

from the intrinsic loss events.

We believe this conclusion may be tentatively generalized to

molecular and ionic compounds. Fig. 8 demonstrates that the HL

potential gives good results for a number of different atomic systems,

whilst the general experience of EXAFS users is that this potential

gives reasonable amplitudes for a range of different compounds:

hence the success of the major programs FEFF and EXCURV which

use the HL potential. Tyson et al. (1992) ®nd good EXAFS ampli-

tudes using the HL potential with no corrections for intrinsic effects

for the molecular systems SF6, GeCl4 and Br2, whilst Amiss &

Gurman (1999) come to the same conclusion for a biological system.

To study in detail the effect of anisotropic charge densities we would

have to move beyond the muf®n tin approximation. Schemes for full

potential calculations have been proposed (see, for example, Natoli et

al., 1986) but the calculations by Tyson et al. (1992) suggest that the

differences between a full potential treatment and the muf®n tin

approximation are small.

To summarize, the HL potential was designed to model the

extrinsic loss effects. However, using equation (18) or the Daresbury

program EXCURV98 we ®nd that the imaginary part of the HL

Figure 8
The amplitude reduction factor obtained by ®tting EXAFS spectra using the
HL potential with the Daresbury program EXCURV98. Plotted as a function
of atomic number.



potential signi®cantly overestimates the losses produced by the

extrinsic effects alone. Instead it seems to, qualitatively, reproduce

the total losses to the EXAFS amplitude even though the average

imaginary part is consistent with the constant potential of ÿ4 eV

obtained from LEED experiments. The reason for this is the shape of

the imaginary part of the HL potential. The average value would

correctly account for the extrinsic losses; however, the HL potential

emphasizes the middle and outer regions of the muf®n tin as opposed

to the region near to the nucleus where r2Rl�r� is small anyway and

therefore overestimates the losses. This can be immediately seen from

a calculation of the energy-dependent mean free path obtained from

the HL potential.

In Fig. 9 we plot the mean free paths for aluminium obtained from

three different calculations and compare to data reproduced from

Penn (1987). In an isolated atom the loss of photoelectron ¯ux is

related to the mean free path by exp�ÿrmt=��k�� where � is the

relevant mean free path for ¯ux. Equating this expression to the ¯ux

loss caused by the imaginary part of the HL potential we can

immediately obtain an expression for the mean free path given by the

HL potential,

�HL�k� �
ÿrmt

log�1� khRljVI jRli�
: �24�

In terms of a constant imaginary potential the ¯ux mean free path can

be written ��k� = k=2VPI .

In Fig. 9 we can see that the HL potential gives a mean free path

that is much shorter than that found experimentally. The average part

of the HL potential, however, reproduces the experimental results to

much better accuracy and gives magnitudes for the mean free path

comparable with those obtained from a constant imaginary potential

of ÿ4 eV. Thus the HL potential will give good results for free

electrons injected into the material which see the average potential.

The mean free path for both the HL potential and the average HL

potential goes to in®nity below the minimum plasmon excitation

energy where no inelastic scattering events are possible.

To emphasize this result, the radially dependent HL potential is

incorrect. It predicts values for the mean free path of internally

produced photoelectrons which are much too small. The average HL

potential, on the other hand, gives values which agree tolerably well

with experiment. It is the constant density, r independent, imaginary

part of the HL potential (equivalent to the average HL potential)

that, for example, Rehr & Albers (2000) have claimed to give good

agreement with the experimentally found mean free paths.

Extensions to the HL potential incorporating a proper treatment

of the core-hole and multiple electron excitations, have been

proposed [see, for example, Fujikawa et al. (2000); Natoli et al.

(1990)], and have even been used for data analysis (Wu et al., 1996).

However, the implementation of these methods is still far from

routine and we are unaware of any practical alternatives to the use of

the HL potential for data ®tting at present.

4. Conclusion

In this paper we have presented a systematic study of the effect of the

imaginary part of the Hedin±Lundqvist exchange and correlation

potential on the calculated EXAFS amplitude. An expression has

been derived whereby the amplitudes given by an imaginary potential

may be evaluated independently of the full EXAFS function. These

amplitudes are then compared with ®tted values for the EXAFS

amplitude reduction parameters obtained from experimental data

using EXCURV98.

We ®nd that the HL potential overestimates the losses to the

EXAFS due to the ®nite photoelectron mean free path alone.

However, it happens to give excellent agreement with the total

experimental losses in the energy range of most EXAFS data

analysis.

Empirically the HL potential seems to account for all of the losses

to the EXAFS amplitudes. It should therefore not be necessary to use

the amplitude ®tting parameters s2
o and VPI when data ®tting using

this potential.

However, the HL potential is `merely a phenomenological model

that happens to work for the EXAFS' (Tyson, 1991); by no means

does it rigorously describe all the processes contributing to the

inelastic scattering of the photoelectron. Effectively the HL potential

underestimates the mean free path of the photoelectron leading to

some ad hoc inclusion of the intrinsic effects. It is therefore possible

that some further ®tting of the amplitude using the variable para-

meters will be necessary when using the HL potential for EXAFS

calculations.

References

Amiss, J. & Gurman, S. J. (1999). J. Synchrotron Rad. 63, 387±388.
Binsted, N. (1998). EXCURV98. Computer Program for EXAFS Data

Analysis. CLRC Daresbury Laboratory. (http://srs.dl.ac.uk/xrs/Computing/
Programs/excurv97/e61.htm.)

Bransden, B. H. & Joachain, C. J. (1983). Physics of Atoms and Molecules,
p. 494. Longman Scienti®c and Technical.

Fujikawa, T., Hatada, K. & Hedin, L. (2000). Phys. Rev. B, 62, 5387±5398.
Gurman, S. J. (1983). J. Phys. C: Solid State Phys., 16, 2987±3000.
Gurman, S. J. (1999). Personal communication.
Gurman, S. J., Binsted, N. & Ross, I. (1984). J. Phys. C: Solid State Phys. 17,

143±151.
Gurman, S. J. & McGreevy, R. L. (1990). J. Phys. Condens. Matter, 48, 9463±

9473.
Hedin, L. & Lundqvist, S. (1969). Solid State Phys. 23, 2±181.
Lee, P. A. & Beni, G. (1976). Phys. Rev. B, 15, 2862±2883.
Lee, P. A. & Pendry, J. B. (1975). Phys. Rev. B, 11, 2785±2811.
Natoli, C. R., Benfatto, M., Brouder, C., Ruiz Lopez, M. F. & Foulis, D. L.

(1990). Phys. Rev. B, 42, 1944±1968.
Natoli, C. R., Benfatto, M. & Doniach, S. (1986). Phys. Rev. B, 34, 4682±4694.
Newville, M., Livins, P. & Yacoby, Y. (1993). Phys. Rev. B, 43, 14126±14131.

J. Synchrotron Rad. (2001). 8, 1095±1102 Roy and Gurman � Hedin±Lundqvist potential in EXAFS data analysis 1101

research papers

Figure 9
The energy-dependent mean free path in AÊ plotted against k in AÊ ÿ1 for
aluminium. The solid line is that obtained from the imaginary part of the HL
potential. The dashed line is calculated from the average imaginary part of the
HL potential, the dotted line is that given by a constant imaginary potential of
ÿ4 eV and the diamonds are data reproduced from Penn (1987).



research papers

1102 Received 15 February 2001 � Accepted 16 April 2001 J. Synchrotron Rad. (2001). 8, 1095±1102

Pendry, J. B. (1974). Low Energy Electron Diffraction. London: Academic
Press.

Penn, D. R. (1987). Phys. Rev. B, 35, 482±486.
Rehr, J. J. & Albers, R. C. (2000). Rev. Mod. Phys. 72, 621±654.
Rehr, J. J., Stern, E. A., Martin, R. L. & Davidson, E. A. (1978). Phys. Rev. B,

17, 560±565.
Roy, M. & Gurman, S. J. (1997). J. Phys. IV France Colloq. C2, 151±152.
Roy, M. & Gurman, S. J. (1999). J. Synchrotron Rad. 6, 228±230.

Roy, M., Lindsay, J., Louch, S. & Gurman, S. J. (2001). J. Synchrotron Rad. 8,
1103±1108.

Tyson, T. A. (1991). PhD thesis, Stanford University, USA.
Tyson, T. A., Hodgson, K. O., Natoli, C. R. & Benfatto, M. (1992). Phys. Rev.

B, 42, 5997±6019.
Wu, Z., Benfatto, M. & Natoli, C. R. (1996). Phys. Rev. B, 54, 13409±13412.
Zabinsky, S. I., Rehr, J. J., Ankudinov, A. L., Albers, R. C. & Eller, M. (1995).

Phys. Rev. B, 52, 2995±3009. http://leonardo.Phys.washington.edu/feff/


