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When the surface of a single-crystal monochromator is not parallel to

the diffracting crystallographic planes, the diffracted beam is

generally deviated from the plane of diffraction and the angle

between the diffracted beam and the diffracting planes is different

from the angle between the incident beam and the diffracting planes.

The angular diffraction regions for the incident and diffracted beams

are also different. This is the manifestation of the refraction occurring

during Bragg diffraction. Very simple formulae are presented which

describe this situation in a general case (e.g. for a rotated-inclined

X-ray monochromator). These formulae allow sagittally focusing

monochromators for synchrotron radiation to be easily designed,

based on X-ray diffraction±refraction phenomena. Some important

properties of such types of monochromators are deduced.

Keywords: X-ray diffraction; focusing X-ray monochromators;
X-ray optics.

1. Introduction

From a geometrical point of view, Bragg-case X-ray diffraction on a

symmetrically cut crystal behaves like re¯ections on a mirror. The

angle between the incident beam and the surface of the crystal equals

the angle between the diffracted beam and the surface of the crystal.

This is no longer valid if the surface of the crystal is not parallel to the

diffracting crystallographic planes. Here we can have two extreme

cases. First, the impinging X-ray beam, the normal to the diffracting

planes and the normal to the surface are in one plane. This is the well

known asymmetric Bragg-case diffraction. Second, starting from the

asymmetric case, the surface is rotated around the normal to the

diffracting planes by 90�. Then the plane containing the impinging

beam and the normal to the diffracting planes is perpendicular to the

plane determined by the normals to the diffracting planes and to the

surface. This situation is often called inclined diffraction. If the angle

of rotation is different from 90�, we have a mixture of the asymmetric

and the inclined cases, and here this situation will be called general

asymmetric or rotated-inclined diffraction. (This is an analogy of a

general asymmetric or rotated-inclined monochromator which is

based on this kind of diffraction.)

In asymmetric Bragg-case diffraction, not only the angle between

the incident beam and the surface differs from the angle between the

diffracted beam and the surface, but also the angle between the

incident beam (more precisely the centre of the diffraction region)

and the diffracting crystallographic planes (�B + ��0) differs from the

angle between the diffracted beam and the diffracting planes

(�B + ��h). The angular width !0 of the diffraction region of the

incident beam for a certain wavelength � and the width !h of the

diffraction region of the re¯ected (diffracted) beam are also different.

This is a consequence of the dynamical theory of diffraction on

perfect crystals and the situation is described well by, for example,

Matsushita & Hashizume (1983). The following simple relations are

stated for the asymmetric diffraction between the widths and posi-

tions of the centres of the diffraction regions (crystal functions):

!0 � !sb
ÿ1=2;

!s � 2re�
2P Fhr

�� �� exp�ÿM�� �
=�V sin 2�B;

��0 � �1=2��1� 1=b���s;

��s � re�
2F0r=�V sin 2�B;

!h � !sb
1=2;

��h � �1=2��1� b���s;

�0 � �B ���0;

�h � �B ���h;

b � sin��B ÿ ��= sin��B � ��:

�1�

Here, V is the unit-cell volume, re = e2/mc2, Fhr is the real part of the

structure factor Fh (h stands for MuÈ ller indices hkl), P is the polar-

ization factor, and exp(ÿM) is the temperature factor. The index s

stands for symmetrical diffraction. The angle � is the angle between

the diffracting planes and the surface and is taken as positive for

grazing incidence. The typical values of �� and ! are from fractions

to tens of angular seconds. For the cross sections CS0 and CSh of the

incident and re¯ected beams, it holds that

CSh � CS0=b; �2�
and, together with (1),

!hCSh � !0CS0: �3�
From the above it is seen that in the case of the asymmetric Bragg-

case diffraction the angle between the incident beam (the centre of

the diffraction region) and the diffracting planes is different from the

angle between the diffracted beam (again the centre of the diffraction

region) and the diffraction planes, and their (meridional) difference

�m,asym is given by (HrdyÂ & HrdaÂ , 2000)

�m;asym � ��0 ÿ��h � 2��s tan �B tan�= tan2 �B ÿ tan2 �
ÿ �

; �4�
or simply

�m;asym � �1=2��1=bÿ b���s: �5�
The deviation from the mirror-like behaviour, �asym, was used for

the proposal of the meridional focusing of diffracted synchrotron

radiation on the crystal with a transversal groove on its surface (HrdyÂ

& HrdaÂ , 2000).

In the case of inclined diffraction the situation is different and was

probably ®rst studied by HrdyÂ & PacherovaÂ (1993), and later, with

respect to possible application for focusing, in some of our preceding

papers (HrdyÂ, 1998; Artemiev et al., 2000). It was shown that the

diffracted beam is sagittally deviated from the plane of diffraction

(i.e. the plane determined by the impinging beam and the normal to

the diffracting planes) by an angle �s,incl given by

�s;incl � K tan�; �6�
where � is the angle between the surface and the diffracting planes

(angle of inclination) and K for silicon crystals is given by

K � 1:256� 10ÿ3 dhkl �nm� � �nm�: �7�
It has been shown both theoretically (HrdyÂ, 1998) and experi-

mentally (HrdyÂ & Siddons, 1999) that, owing to the tangential

dependence (6), an X-ray synchrotron radiation beam diffracted on a

crystal with a longitudinal parabolic groove may be sagittally focused.

KorytaÂr, BohaÂcÏek & Ferrari (2000, 2001) suggested that a

substantial increase of this sagittal deviation may be achieved if the

asymmetric diffraction component is present, i.e. in the case of

general asymmetric (or rotated-inclined) diffraction. They also

performed a numerical calculation of this effect taking into account



the exact shapes of surfaces in the reciprocal space. By diffraction on

an asymmetrically cut crystal with a longitudinal W-shaped groove we

have unambiguously proved that this effect exists (KorytaÂ r, HrdyÂ et

al., 2001).

In fact, the sagittal deviation of a beam in the case of rotated-

inclined geometry was studied even earlier (Kashihara et al., 1998;

Yabashi et al., 1999; Blasdell & Macrander, 1994). The results of these

works (including the papers of Korytar), however, are in rather

complicated form and do not allow the focusing properties to be

studied directly.

In this paper a very simple formula for the sagittal deviation of the

beam in the case of general asymmetric (or rotated-inclined)

diffraction is derived which allows sagittally focusing mono-

chromators based on this kind of diffraction to be studied and

designed easily. Some important properties of these monochromators

are also deduced.

2. Derivation of the formula for sagittal deviation of an X-ray beam
for general asymmetric diffraction

Let us consider as a starting position an asymmetrical Bragg-case

diffraction. The situation in the reciprocal space for this kind of

diffraction (Batterman & Cole, 1964) is shown in Fig. 1. P and P 0 are

the starting points of the wave vectors for the incident and the

diffracted wave vectors for the symmetrical diffraction. SpO and SpH

are spheres of radius 1/� centred on the reciprocal space points O and

H. LP = LP 0 = ��s(1/�). For asymmetric diffraction the starting

points for the incident and diffracted wave vectors are P1 and P2,

respectively. Obviously, LP1 = ��0(1/�) and LP2 = ��h(1/�). The

distance P1P2 = AP2/cos� and AP2 = LP1 cos�B + LP2 cos�B. From

this and from (1) it follows that

P1P2 � 2��s cos �B�1=���2� b� 1=b�=4 cos�: �8�
So far we have been working in a plane. To take into account the

rotated-inclined diffraction it is necessary to work in a three-

dimensional space. With a reasonable approximation we can consider

the spheres passing through the points L and Q as planes perpen-

dicular to the plane of the drawing. Similarly, the dispersion surfaces

are taken as hyperbolical cylinders perpendicular to the plane of the

drawing. We have used the same approximation in deriving (6) and it

proved to be good for � up to about 85�. Creating a groove in the

surface of such an asymmetrically cut crystal means that the plane of

the surface is rotated by some angle � about the axis o which is

parallel to the surface (see Fig. 1). It also means that the normal P1P2

to the surface is rotated by the angle � and now it intersects the plane

LP2 (or SpH) at some point P� which is above the point P2 (above the

plane of diagram); thus in Fig. 1 both points coincide. The distance

P2P� = P1P2 tan�. This implies that the diffracted wavevector starts

now at P� and for the sagittal deviation of the diffracted beam it holds

that

�s;r-i � P2P�=�1=��: �9�
In the inclined case (� = 0) the sagittal deviation would obviously be

�s;incl � PP 0 tan�=�1=��; �10�
where PP 0 = 2��s cos�B(1/�). Now it is possible to write the ®nal

formula for the sagittal deviation of the diffracted beam in the

rotated-inclined case,

�s;r-i � �s;incl�2� b� 1=b�=4 cos�: �11�
[We can create the rotated-inclined case differently. Starting from the

asymmetric case, we can rotate the surface about the axis which is

parallel not to the surface as considered above but to the diffracting

planes by a certain angle �. Then we will obtain practically the same

formula as (11); only cos� will be missing.]

The experimental value of the sagittal deviation found by KorytaÂ r,

HrdyÂ et al. (2001) was within the precision of the method, in good

agreement with (11).

From the presented geometrical derivation and by using Fig. 1 it is

obvious that the meridional component �m,r-i of the beam deviation in

the rotated-inclined case equals �m,asym given by (4) and (5). Then

from the above it follows that if the rotated-inclined diffraction is

created in the above-described way, then, if the impinging beam spans

its diffraction region !0, the diffracted beam is deviated in the

meridional direction (from a mirror-like re¯ection) by an angle �m,r-i

given by (5), and the meridional component of the diffracted beam

span is the angular interval !h . At the same time the beam is sagit-

tally deviated from the plane of diffraction by the angle �s,r-i given by

(11), and the sagittal component !s,r-i of the diffracted beam span is

given by (12).

3. Conclusions

From (6) and (11) it is seen that �r-i is proportional to tan� and that

also for the rotated-inclined (or general asymmetric) case the sagittal

focusing of diffracted radiation can be achieved by a longitudinal

parabolic groove. �r-i has its minimal value for b = 1 (symmetrical

case). The increase of the sagittal deviation occurs for both b < 1 and

b > 1, i.e. for the grazing-incidence case and grazing-emergence case,
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Figure 1
Schematic representation of the situation in reciprocal space for asymmetric
Bragg-case diffraction. After the rotation of P1P2 about the axis o parallel with
a surface by an angle �, this line will intersect the sphere SpH at a point P�
which will be the starting point of the diffracted wave vectors for general
asymmetric Bragg-case diffraction. P� is above the plane of the drawing and its
projection onto this plane coincides with P2.
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and is independent of the sign of �. To design the shape of the

focusing parabolic groove the procedure is the same as that described

by HrdyÂ (1998) and HrdyÂ & Siddons (1999), though it is necessary to

replace K with K(2 + b +1/b)/4cos�. We have designed a sagittally

focusing monochromator based on the above theory and have

performed an experiment at the ESRF (Artemiev et al., 2001). The

focusing properties observed were in agreement with our

expectation.

So far the treatment has only been concentrated on the central

beams. As in the pure inclined case (see, for example, Artemiev et al.,

2000), when the incident beam spans the diffracting region !0 then

the diffracted beam spans a certain angle, here !r-i . From the

geometry shown in Fig. 1 and from (1), it follows that

!s;r-i=�s;r-i � !0=��0 � !h=��h: �12�
From (1) it follows that (12) has its maximum value for b = 1. For |� |

approaching �B, the left-hand side of (12) approaches zero. This

means that the sagittal focusing for the rotated-inclined case is

sharper than for the pure inclined case.

The author wishes to express his thanks to N. Artemiev for valu-

able discussions. This research was ®nancially supported by the Grant

Agency of the Academy of Sciences of the Czech Republic

(A1010104/01) and by the Ministry of Industry and Trade of the

Czech Republic (PZ-CH/22).

References

Artemiev, N., Busetto, E., HrdyÂ, J., PacherovaÂ , O., Snigirev, A. & Suvorov, A.
(2000). J. Synchrotron Rad. 7, 355±419.

Artemiev, N., Hoszowska, J., HrdyÂ, J. & Freund, A. (2001). To be published.
Batterman, B. W. & Cole, H. (1964). Rev. Mod. Phys. 36, 681±717.
Blasdell, R. C. & Macrander, A. T. (1944). Nucl. Instrum. Methods Phys. Res.

A, 347, 320±323.
HrdyÂ, J. (1998). J. Synchrotron Rad. 5, 1206±1210.
HrdyÂ, J. & HrdaÂ , J. (2000). J. Synchrotron Rad. 7, 78±80.
HrdyÂ, J. & PacherovaÂ , O. (1993). Nucl. Instrum. Methods, A327, 605±611.
HrdyÂ, J. & Siddons, D. P. (1999). J. Synchrotron Rad. 6, 973±978.
Kashihara, Y., Yamazaki, H., Tamasaku, K. & Ishikawa, T. (1998). J.

Synchrotron Rad. 5, 679±681.
KorytaÂr, D., BohaÂcÏek, P. & Ferrari, C. (2000). Czech. J. Phys. 50, 841±850.
KorytaÂr, D., BohaÂcÏek, P. & Ferrari, C. (2001). Czech. J. Phys. In the press.
KorytaÂr, D., HrdyÂ, J., Artemiev, N., Ferrari, C. & Freund, A. (2001). J.

Synchrotron Rad. 8, 1136±1139.
Matsushita, T. & Hashizume, H. (1983). Handbook of Synchrotron Radiation,

Vol. 1a, pp. 261±314. Amsterdam: North-Holland.
Yabashi, M., Yamazaki, H., Tamasaku, K., Goto, S., Takeshita, K., Mochizuki,

T., Yoneda, Y., Furukawa, Y. & Ishikawa, T. (1999). Proc. SPIE, 3773, 2±13.


