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An application program to calculate various characteristics of

synchrotron radiation, called SPECTRA, is described. The program

does not need any other commercial software and is equipped with a

full graphical user interface which makes data input quite easy.

Equations on synchrotron radiation from arbitrary-®eld sources in a

near-®eld region are derived, as are simpli®ed expressions for ideal

devices using a far-®eld approximation. Effective numerical methods

implemented in SPECTRA to reduce computation time are

explained, and several examples are presented.
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1. Introduction

In the construction of a beamline at a synchrotron radiation (SR)

facility, the understanding of the light source is important in order to

design various components to be installed in the beamline. The power

distribution of SR is important for the design of the front-end

components. A knowledge of the photon-beam emittance (size and

divergence) is necessary for ray-tracing of optical elements such as

monochromators and mirrors. Spectral evaluation up to very high

energy (�300 keV) regions is necessary for designing components

for radiation shielding.

In addition to information on the light source necessary for

construction of the beamline, other photon-beam properties should

be estimated for an accurate analysis of experimental data recorded

at the beamline. For example, the degree of polarization should be

known in order to analyze experimental data obtained using a

polarized photon beam, and a pro®le of the energy spectrum of the

undulator radiation (UR) provides information on electron-beam

performances such as the emittance and coupling constant.

We have developed a computer code called SPECTRA to calculate

the SR properties mentioned above. It can calculate properties of SR

emitted from devices with arbitrary magnetic ®elds. For wigglers and

bending magnets, the well known SR expressions are used. For UR,

the so-called far-®eld approximation can be used for fast computa-

tion. For more accurate evaluation of SR, expressions on SR in a

near-®eld region are used for numerical computation. In this case,

properties of SR emitted from both the ideal- and arbitrary-®eld

devices can be calculated.

To compute SR properties, many parameters concerning the

electron beam, SR source and sampling range on the photon energy

and observation position should be speci®ed. In SPECTRA, a

graphical user interface is adopted to help the user to specify the

many parameters to be used in the computation.

The purpose of this article is to inform the SR users of the details

and usefulness of SPECTRA. In the following sections, analytical

expressions on SR, numerical methods implemented in SPECTRA

and examples of computation obtained for various sources are

described.

2. Equations on SR

In this section, analytical expressions on SR are derived. All equa-

tions are written using SI units.

2.1. SR in the near-®eld region

The scalar and vector potentials generated by an electron moving

along an arbitrary trajectory (LieÂnard±Wiechert potential) are given

by (Landau & Lifshits, 1971; Jackson, 1975)

' �r; t� � e

4�"0�Rÿ v � R=c�ret

;

A�r; t� � v

4�"0c2�Rÿ v � R=c�ret

;

with

R � rÿ r0;

where r �r0� is the vector directing from the origin to the observer

(electron), v is the velocity of the electron, e is the electron charge, c is

the speed of light and "0 is the permittivity of a vacuum. The subscript

`ret' denotes that the values in the square bracket should be calcu-

lated at the retarded time t 0 determined by the equation

t 0 � R�t 0�=c � t: �1�
Using the relation between the potentials and the electric ®eld,

E � ÿr'ÿ @A
@t
; �2�

we have
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R 2
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" #
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where

n � R=R:

Using this expression, a power density, or radiated power (dP) per

unit surface area (dS) is calculated as

dP
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� "oc

Z 1
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with

D � 1� � 2 �  2;

� � 
nx ÿ 
�x;

 � 
ny ÿ 
�y;

�5�

where 
 and � are the Lorentz factor and the relative velocity of the

moving electron, respectively.

In order to calculate the spectral ¯ux density, or the number of

photons (dNp) in a relative spectral interval (d!=!) per unit surface

area, the Fourier components of E should be calculated. It is more

convenient to use the Fourier transformation of (2) instead of (3) as

(Chubar, 1995; Chubar & Smolyakov, 1993)

E! � ÿr'! � i!A!: �6�
Using (1), we have
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'! �
e

4�"0

Z 1
ÿ1

1

R�t 0� exp i!t�t 0�� � dt 0; �7�

A! �
e

4�"0c

Z 1
ÿ1

b t 0� �
R�t 0� exp i!t�t 0�� � dt: �8�

Substituting (7) and (8) into (6), we have

E! �
e

4�"0c
F!; �9�

with

F! � i!

Z 1
ÿ1

1

R�t 0� b�t 0� ÿ 1� ic

!R�t 0�
� �

n�t 0�
� �

exp i!t�t 0�� � dt 0:

�10�
The spectral ¯ux density is calculated as

d2Np

dS d!=!
� d2P

h- dS d!
� "oc

h- �
jE2

!j �
�

4�2
jF!j2; �11�

where � is the ®ne structure constant. The Stokes parameters

specifying the polarization properties of the radiation are calculated

as

s0 � jF!xj2 � jF!yj2;
s1 � jF!xj2 ÿ jF!yj2;
s2 � 2 Re�F!xF �!y�;
s3 � 2 Im�F!xF �!y�:

Using (4) and (11), most of the radiation characteristics, such as the

power distribution, energy spectra and degree of polarization, can be

calculated for an electron moving in arbitrary magnetic ®elds.

Let the origin of the coordinates be at the midpoint of the device

generating the magnetic ®elds. In this case, the distance between the

electron and observer, R, is rewritten as

R � �X ÿ x�2 � �Y ÿ y�2 � �Z ÿ z�2� �1=2

' Z ÿ z� �X ÿ x�2 � �Y ÿ y�2
2�Z ÿ z� ; �12�

with

r � �X;Y;Z�; r0 � �x; y; z�;
where we have used approximations

jZ ÿ zj >> jX ÿ xj; jY ÿ yj;
being usually satis®ed in general radiation processes.

The retarded time t 0 is expressed in terms of the electron long-

itudinal position z as

t 0 �
Z z

0

dz

c�z

� 1

c

Z z

0

1� 1� �
�x�2 � �
�y�2
2
 2

" #
dz: �13�

The time t in (10) is therefore expressed in terms of z as

t � 1

2c

z


 2
�
Z z

0

� 2
x � � 2

y

ÿ �
dz� �X ÿ x�2 � �Y ÿ y�2

Z ÿ z

� �
� t0; �14�

where t0 is a constant independent of z and can be omitted when

performing the integration in (10).

2.2. UR in the far-®eld region

Let us consider radiation emitted from an electron moving in an

undulator with completely periodic magnetic ®elds (ideal undulator).

The periodic length and number of periods are assumed to be �u and

N, respectively. If the distance between the electron and observer, R,

is much longer than the length of the undulator, we can apply a far-

®eld approximation to simplify the expressions on SR. In this case, n

is regarded as constant and R is simpli®ed to

R � rÿ n � r0:
The above equation is used to derive a simpli®ed expression of t as

t �z� � 1

2c

z


 2
�
Z z

0

� 2
x�z� � � 2

y�z�
� �

dzÿ 2x�z��x ÿ 2y�z��y � � 2z

� �
� constant;

with

�x � tanÿ1 X=Z� �; �y � tanÿ1 Y=Z� �; � 2 � � 2
x � � 2

y

being angles of observation. In the far-®eld approximation, R is

regarded as a constant except when it is used to calculate t �z�.
Because the magnetic ®eld is completely periodic, the velocity and

position of the moving electron is also periodic. The time t therefore

satis®es the condition

t �z� �u� � t �z� � T; �15�
with

T � 2�=!1;

!1 �
4�c
 2

�u

1

1� �
��2
 �� �
��2 ; �16�


�� �2
 � � 1

�u

Z �u
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�x� �2� 
�y

ÿ �2
h i

dz: �17�

Assuming that R is much longer than the wavelength of radiation

2�c=!, F! is simpli®ed to

F! �
1

R

Z T 0

0

b t 0� � ÿ n� �H t �t 0�� � dt 0; �18�

with

H�t� � i!
XNÿ1

n� 0

exp�i!�t � NT�� � d

dt

XNÿ1

n� 0

exp�i!�t � NT��;

where T 0 is the period in the rest frame of the electron.

Expanding the function H�t� in a Fourier series between t �0� = 0

and t �T 0� = T, we have

H�t� �
X1

k�ÿ1
hk exp ik!1t� �; �19�

with

hk �
1

T

Z T

0

H�t� exp ÿik!1t� � dt � ik!1

T

exp i !ÿ k!1� �NT
� �ÿ 1

i�!ÿ k!1�
;

�20�
where we have made a partial integration to derive (20).

Substituting (19) and (20) into (18), we have

F! �
X1

k�ÿ1

exp 2�i !=!1 ÿ k� �N� �ÿ 1

i�!=!1 ÿ k�T Fk;

with



Fk �
ik

RT

Z T 0

0

b�t 0� ÿ n� � exp ik!1t �t 0�� �
dt 0:

For convenience, we change the variable of integration from t 0 to z to

obtain

Fk �
ik

cRT

Z �u

0

b�z� ÿ n� � exp ik!1t�z�� �
dz: �21�

In order to calculate the ¯ux density and Stokes parameters,

products of components of vector F! should be calculated. For

example, the product F!x F!x is calculated as

F!x F!x �
X1

k�ÿ1
Fkx Fkx

sin�N�!=!1 ÿ k�
��!=!1 ÿ k�

� �2

�
X1

k�ÿ1

X
j 6� k

Fkx Fjx

sin�N�!=!1 ÿ k� sin�N�!=!1 ÿ j �
�2�!=!1 ÿ k��!=!1 ÿ j � :

�22�

Other products are calculated in the same manner.

3. Electron-beam convolution

All equations described in the previous section concern the radiation

emitted by a single electron, or a monochromatic electron beam with

zero emittance. In order to evaluate practical properties of SR, the

effects caused by an energy spread �E=E and ®nite emittance � of the

electron beam should be taken into account.

3.1. Phase ellipse transfer

The effect due to the ®nite electron-beam emittance and energy

spread is described as a beam envelope at the position of observation.

The electron, after emitting radiation, is in general de¯ected by

bending magnets. It is important, however, to know the beam

envelope at the position of observation if the electron beam travels

without any magnetic ®eld, or in a drift space. Assuming the distance

between the light source and observer to be l, the beam envelope � at

the observation position is calculated as

� � � �0 ÿ 2�0l � 1� �2
0

�0

l

� �
� �E

E

� �2

�2
0 � � 0 20 l 2

ÿ �� �1=2

; �23�

with

�0 � ÿ� 00=2;

where �0, �0, � 00 and � 00 are the betatron and dispersion functions and

their derivatives at the position of the light source, respectively. Both

horizontal and vertical beam envelopes are calcuated using (23). The

®nite beam emittance is taken into account by a convolution of the

result for a single electron with a two-dimensional electron distri-

bution function.

3.2. Energy spread

The effect due to the energy spread of the electron beam has

already been described in the previous section. There is another

important effect for the UR calculation: because the energy of the

®rst harmonic is proportional to 
 2, the energy spread of the electron

beam causes a spectral broadening. Its effect is therefore taken into

account by an energy convolution with a Gaussian distribution

function with an root mean square (r.m.s.) width of 2h- !�E=E, where

h- ! is the photon energy. The effect is pronounced especially for UR

energy spectra when the number of periods is very large, e.g. for those

of the 25 m in-vacuum undulator installed at SPring-8, and/or when

the spectral energy range includes very high harmonics.

3.3. General case

Let us consider a function F as functions of X and Y , or the

transverse positions of observation. Assuming the electron distribu-

tion function to be Gaussian, convolution of F with the electron

beam, Fc, is expressed as

Fc�X;Y� � 1

2��x�y

Z 1
ÿ1

dx

Z 1
ÿ1

dy

� F�x; y� exp ÿ �xÿ X�2
2�2

x

ÿ �yÿ Y�2
2�2

y

" #
; �24�

where �x;y is the horizontal and vertical r.m.s. beam envelope calcu-

lated using (23).

In order to obtain a quantity passing though a slit �Fc, Fc�X;Y�
should be integrated over the slit area S,

�Fc �
Z

S

Fc�X;Y� dS � 1

2��x�y

Z 1
ÿ1

dx

Z 1
ÿ1

dy

� F�x; y�
Z

S

dS exp ÿ �xÿ X�2
2�2

x

ÿ �yÿ Y�2
2�2

y

" #
: �25�

If the slit has a rectangular shape, the above equation is simpli®ed to

�Fc �
1

4

Z 1
ÿ1

dx

Z 1
ÿ1

dy F�x; y�

� erf
X2 ÿ x

21=2�x

� �
ÿ erf

X1 ÿ x

21=2�x

� �� �
� erf

Y2 ÿ y

21=2�y

 !
ÿ erf

Y1 ÿ y

21=2�y

 !" #
;

with

X2 � Xc ��X=2; X1 � Xc ÿ�X=2;

Y2 � Yc ��Y=2; Y1 � Yc ÿ�Y=2;

where the slit has a horizontal and vertical aperture �x and �y

located at �Xc;Yc�, and erf�x� is an error function de®ned as

erf�x� � 2

�1=2

Z 1
0

exp ÿx2
ÿ �

dx:

SPECTRA is applicable to slits with rectangular, circular or

doughnut-shaped apertures. All the radiation properties are calcu-

lated with the schemes described above. For an energy spectrum of

UR in the far-®eld region, however, the scheme described in the

following section is applied to speed up the computation.

3.4. UR spectra in the far-®eld region

If N is much larger than unity, the second term in (22) can be

neglected and the radiation can be expanded into harmonics with

multiple energies of h- !1 as

d2Np�X;Y�
dS d!=!

�
X1

k�ÿ1
fk�X;Y� sin N��!=!1 ÿ k�

N��!=!1 ÿ k�
� �2

; �26�

with

fk�X;Y� � �

4�2
jFkj2:

Introducing a delta function, we can modify the above equation as
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d2Np�X;Y�
dS d!=!

� N2
X1

k�ÿ1
fk�X;Y�

Z 1
ÿ1
��!0 ÿ k!1�PN�!; !1; !

0� d!0;

�27�
with

PN !;!1; !
0� � � sin N��!ÿ !0�=!1

N��!ÿ !0�=!1

� �2

: �28�

The convolution of d2Np=�dS d!=!� with the electron beam is

expressed as

d2Np

dS d!=!
� 1

2��x�y

Z 1
0

� d�

Z 2�

0

d'
d2N�� cos '; � sin '�

dS d!=!

� exp ÿ �X ÿ � cos '�2
2�2

x

ÿ �Y ÿ � sin '�2
2�2

y

" #
: �29�

By using (27), (29) is simpli®ed to

d2Np

dS d!=!
� N2Z2

4��x�y

Z 1
ÿ1

d!0

!0
4�
 2c=�u

!0
X1

k>!0=!1

kPN�!; !0=k; !0�

�
Z 2�

0

d' fk �k�!0� cos '; �k�!0� sin'
� �

Gk�X;Y; '; !0�;
�30�

with

Gk�X;Y; '; !� � exp ÿ X ÿ �k�!� cos '
� �2

2�2
x

ÿ Y ÿ �k�!� sin '
� �2

2�2
y

( )
;

�k�!� � Z
4�
 2ck

!�u

ÿ �
��2
 �ÿ 1

� �1=2

:

The integration along � has been replaced by that along !0.
The function PN in the integrand of the above equation has a sharp

peak at ! = !0 and a width proportional to !0=k. In other words, the

width is dependent on the integration variable !0. In SPECTRA, a

replacement of the function PN , i.e.

PN�!;!0=k; !0� ! !0=�k!1�PN�!;!1; !
0�;

is made for fast computation. The coef®cient !0=�k!1� is multiplied to

avoid a discrepancy in area. Equation (30) therefore reduces to

d2Np

dS d!=!
�
Z 1
ÿ1

d2Np1
dS d!=!

� �
!�!0

NSN�!ÿ !0�
d!0

!1

; �31�

with

d2Np1
dS d!=!

� N

4��x�y

4�
 2c=�u

!

X1
k>!=!1

Z 2�

0

d'

� fk �k�!� cos '; �k�!� sin'
� �

Gk�X;Y; '; !�;

SN�x� �
sin N�x

N�x

� �2

:

As is easily understood, d2Np1=�dS d!=!� is the ¯ux density for an

in®nite number of N. Using this scheme, integration along !0 in (30)

reduces to a convolution with a function SN , which enables us to

apply a convolution scheme with a fast Fourier transform algorithm.

4. Numerical method

In SPECTRA, several numerical methods are implemented to save

computation time, which are brie¯y explained in this section.

4.1. Fast computation of F!
Let us consider an integration of the form

G �
Z

g�t� exp i!t� � dt: �32�

Both F! and Fk can be reduced to the above form by changing the

integration variable from z to t. When !t is much larger than unity,

the integrand oscillates rapidly and should be computed many times

for an accurate integration. By integrating (32) by parts n times, we

have

G � ÿ 1

i!

� �nZ
d ng

dt n
exp i!t� � dt ÿ

Xn

k� 1

ÿ 1

i!

� �k
d kÿ1g

dt kÿ1
exp i!t� �

� �
:

Let us consider the integration over the range between t1 and t2. If

g�t� can be approximated by an nth-order polynomial in this range,

d ng=dt n becomes a constant; therefore the ®rst term in the above

equation reduces to

ÿ 1

i!

� �n�1
d ng

dt n
exp i!t1� � ÿ exp i!t2� �� �

;

which means that the integration reduces to a simple summation. It is

expected that the time taken to compute F! based on the above

expression is independent of ! or the photon energy, which is a great

advantage for high-energy regions.

In SPECTRA, the whole region of integration is divided into

several sections within which g�t� is well approximated by a third-

order polynomial. The derivatives up to the third order are deter-

mined by a cubic-spline interpolation method (Stoer & Bulirsch,

1991). The integration G is therefore reduced to

G �
X4

k� 1

ÿ 1

i!

� �k

g�kÿ1��t1� exp i!t1� � ÿ g�kÿ1��tm�1� exp i!tm�1

ÿ �� �
� 1

!4

Xmÿ1

j� 1

g
�3�
j�1 ÿ g

�3�
j

h i
exp i!tj�1

ÿ �
;

where t1 and tm�1 show boundaries of the whole integration range, g�k�

is the kth-order derivative of g, and g
�3�
j shows the third-order deri-

vative of g between tj and tj�1.

4.2. Facile evaluation of the total ¯ux

By integrating (11) over the whole solid angle, the total ¯ux or the

total number of photons emitted per unit time in a relative spectral

interval is obtained. This quantity is frequently used to design

radiation shielding of an experimental hutch. In this case, the spectral

data up to an extremely high energy is necessary, which imposes

calculation of quite high harmonic radiation such as k ' 1000 or

higher, resulting in much computation time. It should be noted,

however, that a sharp peak speci®c to UR is no longer observed in

such a high-energy region and the spectrum is similar to that of

bending-magnet radiation (BR). Therefore, it is expected that

evaluation of the total ¯ux based on an expression on BR will be a

good approximation of that of UR. The linear ¯ux density of BR, a

quantity obtained by integrating the ¯ux density over Y, or the

vertical position of observation, is analytically expressed as

d2NpBM

dX d!=!
� 31=2

2�

�


Z

!

!c

Z 1
!=!c

K5=3��� d�; �33�

where !c is a critical frequency de®ned as

!c � 3
 3c=�2��; �34�



with

� � 
mc=�eB�; �35�
where � is a bending radius and B is the uniform magnetic ®eld of the

bending magnet.

If the magnetic ®eld is not uniform, then (33) cannot be applied.

We have to divide the whole length into many regions and regard the

magnetic ®eld as constant in each region. The ¯ux emitted by an

electron passing through the ith region is expressed as

dNpi

d!=!
� d2NBM

dXd!=!

� �
B�Bi

��iZ;

where Bi and ��i are the magnetic ®eld and change of relative

velocity in the ith region. Summation of dNpi=�d!=!� reduces to the

total ¯ux. The factor ��iZ corresponds to a length of the region over

which the radiation from the ith bending magnet is emitted.

It is easy to show that the above equation can be expressed in an

integral form as

dNp

d!=!
� Z

Z
d2NBM

dX d!=!

� �
B�B�z�

db

dz

���� ���� dz; �36�

with

B�z� � B2
y�z� � B2

x�z�
� �1=2

:

Substituting (33) and considering the reaction between b and B, we

have

dNp

d!=!
� 31=2

2�

�e

mc

Z
dz

!

!c�z�
Z 1
!=!c�z�

K5=3��� d�; �37�

where !c�z� is the critical frequency calculated with B�z�.

4.3. Omission of radial integration

In order to obtain a precise spectrum of UR with ®nite beam

emittance, two-dimensional integration along an azimuthal (') and

radial (�) direction is necessary. As shown in x3.3, the radial inte-

gration can be reduced to an energy convolution. For a precise

calculation, d2Np1=�dS d!=!� should be calculated with ®ne steps of

!. In an energy region of the spectrum composed of high harmonics,

however, the convolution with the SN function changes little the

shape of the spectrum. In such a case, the convolution, or the radial

integration, can be omitted. In SPECTRA, the energy region to omit

the radial integration can be speci®ed to save computation time

without sacri®cing the accuracy of the calculation.

5. Program details

5.1. Types of SR sources

In SPECTRA, SR sources can be classi®ed into four types, i.e.

bending magnets, wigglers, undulators and arbitrary-®eld devices.

The numerical method to be applied depends on the type of the SR

source.

If the SR source is regarded as a bending magnet, the well known

expressions on SR (Schwinger, 1949; Kim, 1986) are applied. In the

case of wigglers, the magnetic ®elds are varied according to the

horizontal observation angle. The undulator includes familiar devices,

such as planar, helical, elliptical and ®gure-8 undulators. In addition,

a device with arbitrary but periodic magnetic ®elds is also regarded as

an undulator.

In fact, the magnetic ®eld of a practical device is not completely

periodic. In such a case, SPECTRA calculates SR properties in the

near-®eld region without any approximation and assumption. Using

this scheme, degradation of peak intensity at each harmonic of UR

can be calculated. Edge radiation, i.e. SR emitted from fringing ®elds

of bending magnets, can also be characterized. Evaluation of edge

radiation is important for estimating performances of an X-ray beam-

position monitor installed in the undulator beamline because it

causes a signi®cant background.

Radiation properties can be calculated as functions of photon

energy and observation position. In the case of undulators, the

K-value (de¯ection parameter) dependence can also be obtained.

5.2. Graphical user interface

In addition to the numerical methods implemented in a computer

code, the user interface which helps the user to input their desired

parameters is very important. SPECTRA adopts a graphical user

interface (GUI) with which the user can specify computation para-

meters, as shown in Fig. 1. Storage-ring, SR-source and sampling

parameters can be edited by the GUI. The storage-ring parameters

include the electron energy, average current, emittance, twiss para-

meters and so forth. The SR-source parameters include a strength

and periodic length of the magnetic ®eld, or the ®eld pro®le data for

arbitrary-®eld devices. The sampling parameters include a computa-

tion range of the photon energy or observation positions, harmonic

numbers of UR and so forth.

For operating-system portability, a Tcl/Tk programming language

has been adopted for building the GUI. Because the main code for

numerical computation is written in a simple C language, SPECTRA

can be executed on almost all of the platforms which Tcl/Tk supports,

such as MS Windows, Macintosh, Linux and other kinds of UNIX.

6. Examples

In this section, examples of computation of various properties of SR

are presented to show the usefulness of SPECTRA. The storage-ring

parameters are shown in Table 1.

6.1. Energy spectrum

First of all, energy-spectrum computations are shown. As an

example, a planar undulator with a periodic length of 32 mm and

number of periods 140 is considered.
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Figure 1
Graphical user interface as a pre-processor of SPECTRA.
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Fig. 2 shows spectra of the total ¯ux, on-axis ¯ux density and partial

¯ux passing through a slit with dimensions of 1 mm � 1 mm located

30 m from the source. The far-®eld approximations are used in this

example. The K value is assumed to be 2.56. The dotted line is the

total ¯ux spectrum evaluated by the scheme described in x4.2. The

difference between the two total-¯ux spectra is small above 10 keV,

indicating the validity of the scheme.

Fig. 3 shows the near-®eld effect on spectra of UR. The K value is

assumed to be 1.34 for the ®rst-harmonic energy to be at 10 keV.

Fig. 3(a) shows on-axis spectra of the angular ¯ux density, i.e. the ¯ux

density normalized by the square of the distance between the light

source and observer, while Fig. 3(b) shows off-axis spectra observed

at �x = 0 and �y � 60 mrad. Comparing the two ®gures, the near-®eld

effect is found to be more remarkable for the off-axis spectra, as is

described by Hirai et al. (1984) and Walker (1988).

Fig. 4 shows effects due to magnetic ®eld errors, which are inevi-

table for a practical device. Fig. 4(a) shows electron orbits in both

transverse directions assuming a permanent-magnet device

composed of magnet blocks whose r.m.s. magnetization error is 1% in

magnitude and 1� in angle. An on-axis spectrum calculated with the

orbit data is shown in Fig. 4(b) together with an ideal case (without

error). The peak, corresponding to harmonics up to the 11th, are

found in each case. The difference is larger for higher harmonics. For

example, the 11th-harmonic (= 49 keV) peak intensity for the error-

®eld case is about half of that of the ideal.

Table 1
Storage-ring parameters used in the calculation.

Electron energy 8 GeV
Natural emittance 6 � 10ÿ9 m rad
Coupling constant 0.3%
Horizontal betatron value 24 m
Vertical betatron value 6 m
Energy spread 0.1%

Figure 2
Energy spectra of the on-axis ¯ux density, partial ¯ux passing through a
1 mm� 1 mm slit located 30 m from the source, and total ¯ux. The dotted line
is the total ¯ux calculated with the scheme described in x4.2.

Figure 3
Energy spectra observed (a) on axis and (b) at �y = 60 mrad calculated with the
near-®eld scheme for various distances between the light source and observer.

Figure 4
Effects due to magnetization errors of undulator magnets. The electron
trajectories are shown in (a) and the energy spectra with and without
magnetization errors are shown in (b).



6.2. Spatial distribution

Next, spatial-distribution computations are shown. As an example,

the so-called edge radiation from fringe ®elds of bending magnets is

considered. Fig. 5 shows a typical magnetic ®eld distribution along the

longitudinal direction generated by two bending magnets. The ¯ux

density calculated with the ®eld distribution is shown as functions of

the horizontal and vertical observation positions in Figs. 6(a) and

6(b), respectively. The photon energy and the distance between the

observer and midpoint of the straight section are assumed to be 5 eV

and 20 m, respectively. The dotted line shows a zero-emittance case.

A clear interference pattern is seen in each direction, while the effect

due to the ®nite emittance is more pronounced for the horizontal

case. The power density, also shown in Figs. 6(a) and 6(b), is found to

have an asymmetry in the horizontal direction due to the difference

in distance from the two bending magnets to the observer.

6.3. Filtering effect

In SR beamlines, several kinds of ®lters are used for various

purposes. SPECTRA can calculate an energy spectrum and power

after passing through a ®lter made of various materials (®ltering). As

an example, let us consider a ®lter made of copper with a thickness of

10 mm. Fig. 7 shows on-axis power densities before and after ®ltering

as functions of the ®rst-harmonic energy when the magnetic ®eld is

varied in order to tune the photon energy. The light source is the

same as that described in x6.1. The dip found at 8.9 keV is due to the

K-absorption edge of Cu. Figs. 8(a) and 8(b) show power densities as

functions of the horizontal and vertical observation positions when

the ®rst-harmonic energy is set at 10 keV. The difference of pro®le

within the range j�x;yj < 0.03 mrad is also caused by the Cu K-edge.

The ®rst-harmonic energy observed at j�x;yj = 0.03 mrad is equal to

8.9 keV in this case.

In SPECTRA, ®ltering material frequently used in SR beamlines,

such as aluminium, carbon and beryllium, are implemented. Other

materials are also available by creating a new parameter set speci-

fying its atomic number, density and mass ratio.

7. Summary

We have described the details of SPECTRA and shown several

examples of computation. It is freely available from the SPECTRA

homepage (http://radiant.harima.riken.go.jp/spectra/index_e.html)

on the SPring-8 web site. It does not require any other commercial

software or libraries. In other words, it is a stand-alone application

program.

Besides several numerical methods described in x4, the expansion

of Fk by Bessel functions (Motz, 1951; Kincaid, 1977; Yamamoto &

Kitamura, 1987) are implemented for a planar, helical and elliptical

undulator in the far-®eld region. Spatial symmetries of radiation from

these devices are also considered, while no symmetries are assumed

for arbitrary-®eld devices because they are not ensured generally.
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Figure 5
A fringe magnetic ®eld distribution generated by two bending magnets.

Figure 6
Edge radiation spatial pro®les along (a) horizontal and (b) vertical axes.

Figure 7
On-axis power densities before and after the 10 mm Cu ®lter as a function of
the ®rst-harmonic energy.
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The computation time depends on the type of the computer and

calculation. For example, the partial-¯ux spectrum calculation shown

in Fig. 2 is performed with 10000 points of photon energy in 17 s using

a computer with a Pentium 750 MHz processor. The calculation of

the on-axis spectrum observed at the point 30 m from the source

shown in Fig. 3 takes about 2 min with 5000 points of photon energy.

The spatial dependence of the power density after ®ltering, as shown

in Fig. 8, is calculated in 11 s with 100 points of observation position.

Finally, let us make a short comparison with other programs.

According to our experiences, the computation time of SPECTRA is

almost equal to those of other programs such as SRW (Chubar &

Elleaume, 1998). It should be noted, however, that SPECTRA is

more user-friendly, especially in the near-®eld computation including

the electron-beam effects. In the case of SRW, the user must try many

sets of parameters such as grid points and spatial range and use post-

processing to obtain a reasonable result, while SPECTRA does not

require such trial and error.
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