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Reconstruction of magnetization density
in two-dimensional samples from soft
X-ray speckle patterns using the multiple-
wavelength anomalous diffraction method
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A non-destructive technique for imaging magnetic domains in thin

®lms and two-dimensional magnetic structures using coherent soft

X-ray scattering and the multiple-wavelength anomalous diffraction

method (MAD) is proposed. The method exploits the strong energy

dependence in the magnetic scattering amplitude for 3d transition

metals near the L2;3 absorption edges and 4f elements near the M4;5

absorption edges. The phase information required in the reconstruc-

tion algorithm is derived from the interference between the charge

and magnetic scattering amplitudes. Magnetic speckle patterns from

the magnetic domain distribution in an arti®cially de®ned Fe thin ®lm

are used to demonstrate this reconstruction algorithm. Circularly and

linearly polarized incident light are examined separately to

investigate the effect of polarization on the capability of the method.

Keywords: reconstruction; magnetization density; speckle;
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1. Introduction

The solution of the phase problem in the structure determination of

crystals using multiple-wavelength anomalous diffraction (MAD) is

well established (Karle, 1994; Hendrickson, 1991). The general idea is

based on the strong wavelength dependence of the anomalous scat-

tering amplitudes. By measuring the intensity at different wave-

lengths around a resonance, one can obtain linearly independent

equations, which can be used to solve the structure factors of the

crystal. This method is similar to the `multiple isomorphous repla-

cement' approach, where the structure factors are changed by

replacing one type of scatterer by another type, instead of changing

the energy around a resonance (Hendrickson, 1991).

MAD uses the fact that the phase information for the structure

factors are in the interference terms between different types of

scatterers. However, using incoherent light limits the applicability of

the method to crystals. The idea of reconstructing the charge density

of non-periodic objects, using coherent incident light and over-

sampling the intensities, was suggested by Sayre (1952, 1980), and has

recently been realised experimentally (Miao et al., 1999). The method

is based on the fact that, under certain constraints, overdetermination

of the Fourier amplitudes of the charge density is suf®cient to ®nd the

phases uniquely.

In the case of imaging a magnetic sample, the same problem of

missing phases arises. To ®nd the non-periodic magnetic structure,

which is in general different from the charge density, one may think

that in principle the same method of oversampling the speckle

pattern can be used. However, scattering of photons by a magnetic

moment is purely a relativistic effect, and therefore is much smaller

compared with charge scattering. Away from any resonance, the total

scattering amplitude is given by Blume (1985),
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where fD is the Debye±Waller factor, r0 is the electron radius, �̂����� is the

polarization unit vector, ~L and ~S are orbital and spin densities, ~K is

the momentum transfer, ~k0 ÿ ~kf , and ~A and ~B are polarization-

dependent factors. As seen in (1), the magnetic part, which is the

second term on the right-hand side, is suppressed by a factor h- !=mc2

compared with the charge scattering term.

When ! is close to a resonance, that is an electric multipole

transition between core and valence levels, a large enhancement in

the sensitivity to the magnetization is observed in certain elements

(Gibbs et al., 1988). The contribution to the resonant exchange

scattering from the electric 2L-pole transition in a magnetic ion is

given by Hannon et al. (1988),
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In the case of dipole transitions only, the total scattering amplitude is
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where ẑJ is the unit vector pointing in the direction of the local

moment of the ion and FLM are the transition matrix elements, which

can be obtained experimentally from the measured absorption

coef®cient �F�e�11 � F
�e�
1ÿ1�, the magnetic circular dichroism (MCD)
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Therefore, the total scattering amplitude can be rewritten in terms of

the charge and magnetic parts of the forward scattering amplitude,
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where f 0chg;mag and f 00chg;mag are determined from MCD and photo-

absorption measurements. Fig. 1 shows these factors for Fe in units of

electron radius (Chen et al., 1995). Note that only the out-of-plane

component of magnetization m̂ is considered in the following simu-

lation; therefore, the second-order term in m̂ has dropped out.

From inspection of (3), it is clear that the missing phase informa-

tion of the Fourier transform of the magnetization can in principle be

found using the interference between charge and magnetic scattering

amplitudes of the magnetic ion. The proposed method is similar to

MAD, except interference between different types of scatterers is

used in MAD. Here, this idea will be demonstrated using small-angle

scattering with coherent soft X-rays.

2. Simulation

The simulated sample is a two-dimensional thin ®lm of Fe or Fe

alloys. The ®lm thickness is chosen such that the easy axis for

magnetization is normal to the plane. The illuminated sample size is

of the order of a few micrometres. Magnetization is assumed to be

uniform along the ®lm thickness, as well as in domains of size much

larger than the nearest-neighbour interatomic spacing.

The incident light is assumed to be a plane wave with the wave-

vector parallel to the sample normal. The scattered intensity is

simulated as observed on a CCD detector several centimetres away

from the sample in the transmission geometry (Fig. 2).

Within the Born approximation, the scattering cross section is

related to the Fourier transform of the scattering amplitude by
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where the � and � components correspond to the polarization states

perpendicular and parallel to the scattering plane de®ned by (k̂0, k̂f )

and ~K is the momentum transfer, ~k0 ÿ ~kf . fi is the scattering ampli-

tude for the scatterer i, which can be represented as in (3). The

photon ¯ux observed in a solid angle �
 is given by

I� ~K� � I0

Atot
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where I0 is the incident ¯ux in photons per second and Atot is the total

illuminated area on the sample.

The charge distribution is taken as uniform on the scale set by the

wavelength (� 2 nm), and the sample is divided into domains of equal

size. The size of the domains is much smaller than the illuminated

area on the sample, but larger than 2 nm. These domains are de®ned

such that the magnetization is uniform within the domain boundaries.

Hence the summation in (5) runs over effective domains rather than

single scatterers, where the scattering from a single domain is

modelled by convoluting the scattering amplitude with the form

factor corresponding to the size and the shape of the domain. In the

case of rectangular domains which have dimensions tx and ty in the

sample plane (transverse plane), this form factor is

F� ~K� � N
sin Kxtx=2� � sin Kyty=2

ÿ �
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ÿ � ; �7�

where N is the total number of scatterers in the domain.

3. Reconstruction

As seen in (5) and (6) in the previous section, the observed intensity

on the detector is proportional to the square of the Fourier transform

of the scattering amplitude. In order to reconstruct the magnetization

density, we need to recover the missing phases of the Fourier

components of the magnetization. The method used is based on the

fact that the atomic scattering factors have very strong wavelength

dependence around speci®c resonances.

This reconstruction technique can be described as follows. First,

the observed intensity can be written in the following form,

I� ~K� / jF1 � F2M� ~K�j2

/ jF1j2 � jF2j2jM� ~K�j2 � F�1 F2M� ~K� � F1F�2 M�� ~K�; �8�
where F1 and F2 are complex coef®cients depending on the charge

density, polarization, momentum transfer and wavelength, and M� ~K�
is the Fourier transform of the magnetization. F1 and F2 can be

calculated for a given charge density with known atomic scattering

factors and scattering geometry. Also, the charge density of the

sample can be determined independently from off-resonant speckle

pattern as demonstrated by Miao et al. (1999).² Consequently, the

only unknowns are the real and imaginary parts of M� ~K�. Obviously it

is not possible to solve for both with only one equation. However, if

the � dependence of M� ~K� for small shifts in the incident energy of
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Figure 2
Scattering geometry.

Figure 1
Fe magnetic scattering factor (a) and charge scattering factor (b) obtained
from MCD and absorption measurements (Chen et al., 1995). The arrows point
to the energies used in the reconstruction, as described in x3. Blue curve: real;
pink curve: imaginary.

² Note that the method which we describe in this paper relies on the
information on charge density in order to ®nd the magnetization. In cases
where this information is missing, one might think that the problem of having
more unknowns, the phase and the amplitude of the charge structure factor,
can be overcome by obtaining more independent equations in the form of (8),
rather than using other methods. However, this idea does not work as the
interference terms between charge and magnetic scattering, written explicitly
in (11), contain only the difference of the phases of charge and magnetic
structure factors. Therefore, they cannot be solved separately. In other words,
the phase information from the charge density is needed to be able to ®nd the
magnetization.
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the order of an electronvolt can be ignored, then, by using the strong

dependence of F1 and F2 on the wavelength, more than one inde-

pendent equation for M� ~K� and M�� ~K� can be obtained simply by

tuning the energy around the resonance.

Since the phase information is derived from the interference terms

in (8), a complication may arise for thin-®lm samples due to the fact

that F1, which is the resonant and non-resonant charge-scattering

contribution, drops very quickly with increasing momentum transfer

for a uniform charge distribution. This makes the last two terms in (8)

very small, thus limiting the ~K range that can be used in the recon-

struction. The phase information is lost when the dependence of

M� ~K� on � for a given pixel becomes comparable with the inter-

ference terms. This dependence can in principle be reduced by

adjusting the sample-to-CCD distance such that it is inversely

proportional to the wavelength. Owing to the fact that the drop in the

charge scattering as a function of the momentum transfer is limited by

the ®nite sample size, the uniformity of the charge density sets a limit

on the sample size that can be imaged for a given resolution.

3.1. Linear polarization

Consider the case where the incident polarization is linear. For

simplicity, the beam direction is chosen parallel to the z axis and the

electric ®eld vector along the y axis. If we represent the scattered

beam direction as ��; '� in polar coordinates, then � and � polar-

ization unit vectors are as follows,

�̂������ � �sin';ÿ cos '; 0�;
�̂������ � �cos � cos '; cos � sin';ÿ sin '�: �9�

Therefore, the scattering amplitude for a single scatterer becomes

f �i � ÿ cos ' � f 0chg � if 00chg��i ÿ i sin 'mi� f 0mag � if 00mag�;
f �i � cos � sin ' � f 0chg � if 00chg��i ÿ i cos � cos 'mi� f 0mag � if 00mag�; �10�
in units of electron radius. �i and mi are the charge and magnetization

of the ith scatterer, respectively. If we take these amplitudes and

substitute them into (5) and (6), we obtain for the intensity,
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where M and Fc are the Fourier transforms of the magnetization and

charge densities, respectively, and A, B, C and D are coef®cients

which depend on the direction and strongly on the wavelength. These

coef®cients can be obtained from the experimentally determined

scattering amplitudes. Normalizing out the constant parts and

keeping only the direction and wavelength-dependent factors,

A� ~K; �� � �1ÿ sin2 � sin2 '� j fchgj2;
B� ~K; �� � �1ÿ sin2 � cos2 '� j fmagj2;
C� ~K; �� � 2 sin2 � sin ' cos ' j fchgjj fmagj sin�'chg ÿ 'mag�; �12�
D� ~K; �� � 2 sin2 � sin' cos ' j fchgjj fmagj cos�'chg ÿ 'mag�;
f 0chg;mag � f 00chg;mag � j fchg;magj exp�'chg;mag�:

Further, the Fourier transforms, M and Fc, can be written down as

follows,
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where the summation runs over the domains, and F� ~K� is the form

factor corresponding to the domain size and shape. mi is the out-of-

plane magnetization component in domain i, and takes values from

ÿ1 to +1. As the magnetization is real, we have the following relation

for its Fourier transform,

M��ÿ ~K� � M� ~K�: �14�
Noting the ~K dependence of the coef®cients, and using the realness of

the magnetization as in (14), we obtain another equation in M,

I�ÿ ~K; �� � A� ~K; ��jFc� ~K�j2 � B� ~K; ��jM� ~K�j2

� C� ~K; ��jFc� ~K�jjM� ~K�j cos�'c ÿ '�
ÿD� ~K; ��jFc� ~K�jjM� ~K�j sin�'c ÿ '�: �15�

From (11), M� ~K� cannot be uniquely identi®ed, but it can be

restricted to lie on a circle in the complex plane. A shift in the energy

around the resonance of a few electronvolts will change the coef®-

cients A, B, C, D, and the intensity I, hence giving an independent

equation for M� ~K�. The solution for the transform of the magneti-

zation is one of the two complex values obtained from these second-

order equations. Therefore, in principle, intensity measurements at

two different wavelengths, with the additional constraint from (15), is

capable of giving a unique solution for the phase of the `magnetic

structure factor'. However, as we mentioned earlier, the coef®cients

C and D in the interference terms are very small owing to the

uniformity of the charge distribution and a sin2� factor from the

polarization dependence, and the two circles lie very close to each

other. In essence, this severely limits the ~K range that can be used in

the reconstruction. In this case, we have to supplement this method

with other techniques such as oversampling. However, linear polar-

ization can be used effectively to image in-plane magnetization in

re¯ection geometry.

3.2. Circular polarization

In the case of circular polarization, keeping the same reference

frame with the beam direction parallel to the z axis, the incident

circular polarization unit vectors in rectangular coordinates are

given by

�̂�����0
��� � 1=21=2�1; i; 0�;

�̂�����0
�ÿ� � 1=21=2�1;ÿi; 0�: �16�

As in the case of linear polarization, ignoring the constant factors, the

coef®cients A, B, C and D depend on ~K and �, and are given by

A� ~K; �� � 1
2 �1� cos2��j fchgj2;

B� ~K; �� � 1
2 �1� cos2��j fmagj2;

C� ~K; �� � ��1� cos2��j fchgjj fmagj sin�'chg ÿ 'mag�;
D� ~K; �� � ��1� cos2��j fchgjj fmagj cos�'chg ÿ 'mag�; �17�

where the upper sign in the expressions for C and D is for left circular

polarization and the lower sign is for right circular polarization.

Comparing (17) with (12), we see that the contribution of the last two

terms of (11) to the intensity is suppressed by a factor of sin2� for the

linear polarized incident light relative to the circular polarization

case.

In the following, a 5 � 5 mm square magnetic sample with out-of-

plane domain pattern is shown in Fig. 3. The thickness of the sample

is 10 monolayers, and is implicitly included in the normalization

constant of the form factor. Coherent incident ¯ux is taken to be

108 photons sÿ1, an assumption based on the undulator source for the



X1B beamline at the NSLS. In the simulations, the sample-to-CCD

distance is 15 cm, and the CCD consists of a 256� 256 array of 24 mm

pixels. For a sample thickness of 10 monolayers, about 104 scattered

photons sÿ1 are recorded on the detector. Also included is a constant

factor to account for the exposure time and the photon to electron±

hole pair conversion in the CCD.

The simulated diffraction images on the CCD detector for left

circular incident polarization at three energies (706.3 eV, 706.7 eV

and 707.0 eV) around the LIII edge of Fe are given in Fig. 4. It is

possible to see the differences in the speckle patterns due to the

magnetic contrast. The reconstruction of the magnetization using

these three wavelengths is given in Fig. 5. As mentioned earlier, in

principle two images are suf®cient to obtain a unique solution for the

Fourier transform of the magnetization, with the addition of the

realness constraint. The third image is used to replace this additional

information. The reason for this is that the realness condition, as seen

in (14), requires identi®cation of the pixel corresponding to ÿ ~K,

given ~K. However, the de®nition of the conjugate wavevector

involves the centre of the diffraction pattern, which carries an error of

the order of the speckle size in the actual experiment, because of the

missing data due to the beamstop. Hence, we try to avoid the use of

(14) as a means of ®nding solutions for the transform of the

magnetization.

Note that in Fig. 5 the reconstructed magnetization varies from ÿ1

to +1. The largest errors are about 15%, with a width of 5%. The

error is due to the fact that a ¯at CCD is used, and that it has pixels of

®nite size. This problem can in principle be avoided by using a

spherical pixel detector.

3.3. Beamstop

As the intensity becomes very high in the centre of the diffraction

pattern, a beamstop is necessary to protect the CCD from radiation

damage. Hence, the information within approximately 1 mrad of the

origin of the reciprocal space is lost. The effect of this loss is

demonstrated in Fig. 6, where the beamstop is taken to be a 5 � 5

square pixel. As can be roughly observed comparing the original

`BNL' image with Fig. 6, setting the Fourier transform to zero at the

centre tends to wipe out the broadest features in the reconstructed

image, such as the total magnetization. This can be observed in the

histogram given on the right-hand side, which shows that both peaks

shift to the left in order to decrease this total magnetization.

A possible method for recovering the lost information would be to

use a modi®ed version of the oversampling technique. In this way, one

would use the method described in this paper for all points in the

momentum space except for the centre region blocked by the

beamstop, and obtain both the phases and the amplitudes in this

region of the diffraction pattern by an iterative algorithm, which uses

®nite illuminated sample size as an additional constraint.

The beamstop may not be a signi®cant problem depending on the

sample that is being examined. To demonstrate this, we have taken

the domain structure of a GdFe2 ®lm from Peters et al. (2000). The

left-hand panel in Fig. 7 is a magnetic force microscope image of the

stripe domains. The centre panel is the simulated speckle pattern, and

the right-hand panel shows the reconstructed magnetization density

for a 10 � 10 pixel beamstop. In this case, the magnetization is more

uniform compared with the `BNL' sample, and most of the infor-

mation in the diffraction pattern is concentrated on a circle that

corresponds to the �110 nm average domain spacing. Therefore,

having a beamstop in the centre does not cause as much loss of

information as in the `BNL' case.

4. Conclusion

A technique for magnetic imaging, analogous to the multiple wave-

length anomalous diffraction method used in crystallography, has

been proposed. The phase information required in the reconstruction

process is provided by the interference between the charge and

magnetic scattering amplitudes of the scatter. Consequently, knowl-

edge of charge density is necessary for the reconstruction of

magnetization density. The proposed reconstruction algorithm was

successfully tested using an arti®cially de®ned magnetic domain

pattern. The effect of polarization and missing information due to the

beamstop are also studied. As expected from the polarization

dependence of the magnetic scattering amplitude, circular polariza-
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Figure 4
Simulated speckle patterns at three different energies. The incident beam has left circular polarization. The intensities are shown on a logarithm scale.

Figure 3
Simulated thin-®lm sample domain pattern. White and black areas correspond
to up-spin and down-spin domains, respectively.
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tion in the transmission geometry is best suited for measuring the out-

of-plane component of the magnetization density, while linear

polarization in the re¯ection geometry is most sensitive to the in-

plane component of the magnetization density. Further, the effect of

the beamstop is found to affect the large length scale features of the

sample preferentially, and can be overcome by an iterative scheme.

Finally, this approach can also explore the interference between the

charge scattering and the linear dichroic part of scattering amplitude,

which could be used in the imaging of some antiferromagnetic

systems.
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Figure 7
GdFe2 magnetic structure with an average domain size of 110 nm, shown in the ®rst image. The simulated speckle pattern shows the diffraction ring corresponding
to the average domain size. The radius of the ring is about 50 pixels. Note that the strong vertical and horizontal features in the diffraction pattern are due to the
square shape of the simulated sample. The last image is the reconstructed magnetization density for a 10 � 10 pixel beamstop.

Figure 5
Reconstructed magnetization density. The histogram underneath shows the
distribution of reconstructed magnetization for each domain.

Figure 6
The effect of a 5� 5 pixel beamstop on the reconstruction. Shown below is the
histogram of the reconstructed values. The magnetization for each domain can
vary between ÿ1 and +1 after the normalization factors are taken out. Note
that the inverse Fourier transform gives values outside this physical range,
which are eventually set equal to +1 or ÿ1.
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