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Short X-ray pulses in a Laue-case crystal
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The short X-ray pulses coming out of a SASE FEL (self-ampli®ed

stimulated-emission free-electron laser) have stimulated a closer

inspection of the response of a crystal re¯ection to them. After a

short collection of formulae taken from the dynamical theory of

X-ray diffraction, the response to a �-pulse re¯ected by a Laue-case

monochromator crystal is investigated. In contrast to the already

discussed Bragg-case monochromator, a two-dimensional analysis is

required.
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1. Introduction

The X-ray beam emerging from a free-electron laser (FEL) has a

rather special time structure. The numbers given here are valid for

the XFEL, which is part of the linear collider project TESLA

currently being proposed by DESY (1997). A similar project pursuing

these synchrotron radiation sources in the X-ray regime, sometimes

called fourth-generation sources, is planned in Stanford, USA

(SLAC, 1998).

At TESLA-XFEL, every 200 ms a bunch train is released over

1 ms that consists of 11315 bunches of length 180 fs. These bunches

are subdivided in turn into bursts of coherent radiation with an

average length of 0.1 fs. The r.m.s. spot size at the exit of the sources is

estimated to be of the order of 25 mm. Thus the X-rays are coherent

within cells with a transverse diameter of 50±60 mm (2.35 � r.m.s.

value) and a very thin longitudinal dimension of 0.03 mm. The r.m.s.

angular divergence is roughly 1 mrad, so that, after several hundred

metres, the transverse diameter of these cells is of the order of several

hundred mm, whereas diffraction in a crystal takes place in a layer

thickness called the extinction length, which is of the order of 10 mm.

The re¯ection of short X-ray pulses has been studied by several

authors (Wark & He, 1994; Chukovski & FoÈ rster, 1995; Tomov et al.,

1998; Wark & Lee, 1999; Shastri et al., 2001a,b). In this paper, the

time-dependence of X-ray diffraction is considered by describing the

input radiation as an integral over plane waves, then the results of the

dynamical theory are used for steady-state plane waves, and ®nally

the time-dependent output radiation is obtained by Fourier back-

transform, thereby following the approach of Shastri et al. (2001a).

Time-dependent fundamental equations such as the time-dependent

Takagi±Taupin equations (Chukovski & FoÈ rster, 1995) are not used.

In the symmetric Bragg case all re¯ected waves are parallel when

the incident waves are parallel. In contrast, the re¯ected waves in the

symmetric Laue case are divergent, even if the incident waves are

parallel. This is due to refraction as, in the symmetric Laue case,

re¯ecting net planes and the crystal surface are perpendicular to each

other.

2. Description of the calculation

Although the calculation approach has already been given by Shastri

et al. (2001a,b), we recall the formulae for the sake of completeness

and clari®cation.

An arbitrary scalar wave may be considered as an appropriate

superposition of plane waves, as plane waves represent a complete set

of orthogonal functions,

Ein�~r; t� � R d3k
R

d� ~E�~k; �� exp�2�i~k~rÿ 2�i�t�: �1�

This generalized description of a wave must ful®l the wave equation,

which means that there must exist a dispersion relation � � j~kj � c in

the medium, here a vacuum. In order to proceed from this general

assumption, we have to restrict ourselves further. In view of the fact

that the ®rst crystals are several hundreds of metres downstream of

the source, we may consider the incoming beam as planar. All inci-

dent components of the ~k-vector are parallel to each other. Never-

theless, the treatment must be carried out in two dimensions because

of refraction. We further restrict ourselves to incident waves whose

amplitude does not depend on its position on a plane perpendicular

to the beam direction (justi®ed by the very large transverse dimen-

sion of the incident beam compared with the longitudinal dimension).

Finally, we simulate the short pulse by a �-function,
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where ~K0
0 is chosen in such a way that it exactly ful®ls the Bragg

condition. If we want to know the output of a crystal re¯ection, we

have to compute its effect in � space for each plane wave, a task

already solved by the dynamical theory, and transform the result back

to the real space. We may take the steady-state solutions from the

dynamical theory as we restricted ourselves to transversely unbound

waves. Regions close to the boundary of the beam cannot be inves-

tigated this way. Also, cases where the density of photons is so high

that a signi®cant part of the re¯ecting atoms are ionized cannot be

investigated this way as this would require time- and space-depen-

dent Fourier coef®cients. Fortunately, at least with unfocused beams,

this is not the case.

The measurable output signal is proportional to the intensity,

which is de®ned as the square modulus of the electric ®eld, thus any

phase factor (e.g. owing to a shift of the origin) cancels.

For practical calculations we include the relation between power

¯ow and electric ®eld because the output signal considered in this

paper is given as the square modulus of the electric ®eld E, whereas

the output of a FEL undulator is often given as the peak power ¯ow.

The power ¯ow S of an electromagnetic wave (energy per time per

area) is related to the electric ®eld (voltage per length) by

S � "0=�0� �1=2E2; �3�

where the reciprocal value of the root is known as the vacuum

impedance which, in practical units, is 377 
.

We choose for the symmetric Laue case a coordinate system (x, z),

where the x-axis is parallel to the surface of the crystal and the z-axis

points into the crystal (in the ®gures, to the left and to the bottom,

respectively). The origin of the spatial coordinate system lies on the

entrance surface. The incident wavevector has a negative x-compo-

nent and a positive z-component. Consequently, the central re¯ected

wavevector has the opposite x-component and the same z-compo-

nent, where k = j ~K0
0j denotes the length of the mean wavevector in a

vacuum,



K0
0x � ÿk sin �;

K0
0z � k cos �;

K0
hx � k sin �;

K0
hz � k cos �:

�4�

Considering a quasi-monochromatic wave with mean wavenumber k,

Snellius' law requires the tangential components of wavevectors at a

boundary to be constant.

The re¯ected wavevector inside the crystal, starting on the so-

called dispersion surface, is found by the intersection of the disper-

sion surface and the surface normal through the point of the wave-

vector outside the crystal. The re¯ected wave behind the crystal is

again found by the surface normal of the back side (which is identical

to that at the entrance surface with a plane parallel crystal). For

clarity, only wavevectors outside the crystal are shown in Fig. 1. As

usual in the dynamical theory, the end points of the wavevectors on

the reciprocal lattice points are kept ®xed, whereas the starting points

move on a circle for constant length (circles are approximated by

their tangents as �k=k is very small). It follows in our case with a

wavevector length change �k (see Fig. 1; we have to keep in mind

that we are looking at the starting points of the k-vectors, hence

positive changes of the k-vectors go towards the right or upwards in

the ®gure, although the coordinate system is de®ned oppositely),

K0x � K0
0x ��K0x � K0

0x ÿ�k sin �;

K0z � K0
0z ��K0z � K0

0z ��k cos �;

Khx � K0
hx ��Khx � K0

hx ÿ�k sin �;

Khz � K0
hz ��Khz � K0

hz � ��k=cos ���1� sin2 ��:

�5�

The change in wavevector magnitude may be interpreted as a

nominal change ��0 = �ÿ�B in the incident angle. By differ-

entiating Bragg's law a positive �k results in a negative ��B,

�k � ÿk cot ���B: �6�

However, as we assume the incident angle to be constant, ��0 =

ÿ��B must hold, which means a change in the normalized incidence

parameter,

y � ÿ��0 sin 2�

j�hj
� ÿ 2 sin2 �

kj�hj
�k � ÿ 2 sin2 ��e

cos �

��

c
; �7�

where

�e � cos �=�kj�hj�; �8�

�h is the Fourier component of the dielectric susceptibility, usually

complex to include absorption effects, and �e is the PendelloÈ sung

length, in the Bragg case it becomes the extinction length. If y was a

free parameter, it would also depend on ��B and ��. In particular,

y = 0 de®nes a plane symmetric to the reciprocal vectors ~K0
0 and ~K0

h.

Negative values of y occur on the left-hand side of the symmetry

plane and positive ones occur on the right-hand side (right and left

with respect to Fig. 1). However, we are interested in a special

manifold of y de®ned by the incident wave. Therefore, y depends on

�� only.

�� and ��B must not be confused. �� measures the angular

deviation of the re¯ected wavevector from a central ~K0
h vector,

whereas ��B measures the deviation from the centre of the re¯ec-

tion curve of a particular wavevector with magnitude k��k.

The amplitude of the re¯ected wave is now simply the sum of all

corresponding plane waves with appropriate magnitude and phase,

contained in R���. The dynamical theory has been treated by

numerous authors in the past; for instance, in the article by Bonse &

Graeff (1977) we ®nd

R� y� � i' �h=� �h

ÿ �1=2
exp iahT � iAy� � S� y;T�; �9�

with the notation

' � �h��h

ÿ �1=2� �� �h� �h

ÿ �1=2��;
ah � �k�0=cos �;

A � �T=�e;

S � y;T� � sin A y2 � '2
ÿ �1=2

h i
= y2 � '2
ÿ �1=2

;

�10�

taking the origin at the entrance surface. T is the thickness of the

crystal and A is the dimensionless thickness parameter used in the

dynamical theory. Part of the abbreviations have a physical meaning:

' depends on the phase difference between the Fourier components

�h and � �h. For a centrosymmetric structure it is close to 1, if

absorption is small. ah describes refraction. R(y) includes the

generation of two wave ®elds inside the crystal and their interference

at the back already. The necessary transformation from R�y� to R���
can be made with the help of equation (7).

The general expression (1) is now formulated for our special case

of an incident wave (2),

E�x; z; t� � R d�R��� exp 2�i Khx���x� Khz���zÿ �t
� �� 	

: �11�

That there is no further weighting of the plane waves is due to the fact

that we assume a �-function in time as an incident wave where all

plane waves are present in the spectrum with equal weight.

In order to facilitate the look-up of tabulated integrals we

formulate the integral in terms of y. Extracting the central plane wave

and the geometrical functions into a constant factor C, leaving only

the differences, which are speci®ed above, and expressing � by y using

(7), Khx��� and Khz��� by y using (5)±(7), the integral (11) becomes
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Figure 1
A change of the length of the incident wavevector �k, but keeping its
direction, causes a change in the re¯ected wavevector both in length and
direction. The position of the re¯ected vector without changing its direction is
also indicated. Note the difference between �� and ��B.
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E�x; z; t� � C

Z
dy exp�iAy� S� y;T� exp �i y

cos �

�e sin2 �

��
� x sin �ÿ z

1� sin2 �

cos �
� ct

� ���
: �12�

We have to solve an integral of the formR
dy exp�i�y� S� y;T�; �13�

which is formally the same task as solving the integral for an incident

spherical wave, the result of which is well known, ®rst obtained by

Kato (1961a,b). In tables of Fourier transforms (e.g. Sneddon, 1951),

we ®nd the relation

�2��ÿ1=2

Z1
ÿ1

sin b a2 � x2� �1=2
h i

a2 � x2� �1=2
exp�i�x� dx �

��=2�1=2
J0 a b2 ÿ �2

ÿ �1=2
h i

; �14�

where J0 is the Bessel function of the zeroth order and j � j < b.

Outside this range the integral vanishes. By making the following

substitutions, a � ', b � A, we can identify � to be

� � A� � cos �

�e sin2 �
x sin �ÿ z

1� sin2 �

cos �
� ct

� �
: �15�

For convenience we set

� � Aÿ ��=�e� z0; �16�

z0 � cos �

sin2 �
ÿx sin �� z

1� sin2 �

cos �
ÿ ct

� �
; �17�

and obtain

J0 ' A2 ÿ �2
ÿ �� � � J0 '��=�e� z0 2T ÿ z0� �� �1=2

n o
: �18�

Finally, the re¯ected amplitude is, again neglecting constants,

E�x; z; t� � J0 '��=�e� z0�2T ÿ z0�� �1=2
n o

; �19�

for z > T and 0 � z0 � 2T.

3. Results and discussion

Let us now inspect the characteristics of the intensity distribution.

The Bessel function is constant at a ®xed time t for any combination

(x, z), where x and z form straight lines, which are parallel to

z � sin � cos �� �= 1� sin2 �
ÿ �� �

x: �20�
Note that these lines have a positive inclination. They run from the

lower left to the upper right corner, whereas the planes perpendicular

to the re¯ected wavevector, normally expected to contain the wave

front, run from the upper left to the lower right corner.

An incident pulse which crosses the origin O at t = 0 has traversed

the crystal after a time

t � � � T=c cos �: �21�
The distribution of the re¯ected wave at the time � just behind the

crystal (z = T) is

E�x;T; �� � J0 ' �=�e� � T2 ÿ x2 cot2 �
ÿ �1=2

h i
; �22�

shown in Fig. 2. The well known PendelloÈ sung fringes structure may

be seen, already known from an incident spherical wave, especially

the strong spikes at the edges, known as the `hot margins'.

For the same time � [see equation (21)], intensity occurs along

lines, the inclination of which is given by (20). A snapshot of the

intensity is shown in Fig. 3. Only the re¯ected intensity is shown, the

forward-re¯ected intensity is omitted. As a guide to the eye, the

present position of the incident pulse is also indicated. As the image

extends to in®nity, it looks very similar for all times. A shift in time is

simply a shift of the tip of the intensity distribution along the surface

to the right.

The re¯ected intensity is con®ned to two limiting parallel lines,

which means that no (longitudinal) broadening occurs when the

re¯ected wave travels outside the crystal, as is normal in a non-

dispersive medium.

Two ®ndings are quite unusual: (i) the lines of constant intensity, as

seen by the snapshot, are no longer perpendicular to the ~K-vector;

(ii) the intensity con®ned to two limiting lines requires that, after a

certain characteristic time, which will be given below, each atom in

the crystal stops to oscillate after the complete passage of the incident

Figure 2
The intensity pro®le of the re¯ected wave just behind the crystal when the
incoming pulse leaves the crystal. The vertical axis would extend to 1, but is
truncated to enhance the central region. The horizontal axis is the parameter
z0 which runs from 0 to 200 mm, whereas the real coordinate x runs from 25.08
to 25.08 mm. Parameters used for the calculation: diamond 111 re¯ection,
wavelength = 1 AÊ , crystal thickness T = 100 mm; see text for details.

Figure 3
Snapshot of re¯ected and incident beams for a ®xed time (white indicates high
intensity). Note that the inclined line which represents the incident pulse
travels in the 0-direction whereas the fringe structure travels in the
h-direction. Also indicated are the boundaries of the crystal; values are the
same as those given in Fig. 2.



pulse. This is in contrast to the Bragg case where, after the passage of

a short pulse, there is always, at least theoretically, some energy left in

oscillating atoms inside the crystal (see Shastri et al., 2001a,b).

An observer at a ®xed position behind the crystal will see the

intensity in a time interval that is easily calculated from (17), recalling

that z0 is restricted to the interval [0, 2T ],

�t � 2T sin2 �=�c cos ��; �23�
a result already found by Shastri et al. (2001a). However, their

treatment did not involve the refractive effects in Laue geometry.

In Fig. 4 we try to give a physical interpretation of the result.

Consider the incident pulse, although in®nitely wide in the transverse

direction, to be composed of many pencil beams. Two of them are

drawn in Fig. 4, namely 1 (pulse arriving at entrance) and 2 (pulse

arriving at exit). The intensity distribution of pencil beam 1 is shown

at three different times. When the pencil beam 1 hits the surface of

the crystal it excites, as usual, two wave®elds with slightly different

k-vectors inside, which travel in all directions within the Borrmann

triangle OKL. Assume the intensity distribution of the wave®elds to

be a � pulse too. Circles indicate the pulse position in the margins

(OL and OK) and in the centre (OO0) at the different times. These

re¯ected � pulses lie again on straight lines as the group velocity of

these wave®elds depends strongly on their direction. For instance, in

the centre of the re¯ection the wave®elds travel parallel to the net

planes and have a much lower group velocity than those travelling in

the margins. This can be seen by recalling that the group velocity is

given by d�=dk. In the centre of the re¯ection the dispersion is no

longer determined by the circles around the reciprocal lattice points

but by their intersection. This intersection point moves faster than the

circles themselves, and the `density' of dispersion surfaces in the

centre is lower with changing k-value. Thus, the group velocity at the

centre is c cos � and all wave®elds within the Borrmann triangle

reach the exit surface at the same time. There, the local wave®elds

decompose and, according to their relative phase, form the well

known PendelloÈ sung pattern. At that moment the triangle KLM is

®lled with oscillating atoms only. Behind the crystal the re¯ected

intensity travels along ~Kh and the tip of the intensity distribution of

the whole pulse moves to the right (M to M0 inside the crystal and K

to K0 0 behind).

In order to provide some practical numbers, we consider a parti-

cular re¯ection, namely the 111 re¯ection from a diamond crystal,

wavelength � = 1 AÊ , because this re¯ection is that most likely to be

used for further monochromatization of the output radiation of a

FEL undulator.

Numerical values of the Fourier coef®cients are (Stepanov, 2001)

�0 � ÿ9:56� 10ÿ6 � i �5:0� 10ÿ9�;
�h � ÿ3:47� 10ÿ6 � i �3:5� 10ÿ9�: �24�

The Bragg angle is � � 14:08�. Half of the PendelloÈ sung length �e in

the symmetric Laue case is 27.95 mm. The time interval when inten-

sity is present in the re¯ected beam with a 100 mm-thick diamond

crystal amounts to �t = 40.7 fs.

By making the crystal thinner and thinner, one could make the

pulse width narrower and narrower. The integrated re¯ectivity with

varying thickness starts from zero (kinematic region) and oscillates

around an average value owing to the PendelloÈ sung effect (see, for

example, Pinsker, 1978). The maximum re¯ectivity is reached at

A = 1.22 which, for the re¯ection above, corresponds to T = 10.9 mm

and �t = 4.4 fs. This time resolution is comparable with the Bragg

case but still shows the double structure. Making such a thin crystal is

certainly a technical challenge but would help a lot with the heat load

that a monochromator must cope with in an XFEL beam. As one of

the referees pointed out, the sample in timing experiments should be

tilted in such a way that the re¯ected beam arrives at the same time

on the sample surface.

The author is very grateful to C. Malgrange, G. Materlik and

H. Schulte-Schrepping for elucidating and helpful discussions.
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Figure 4
Physical interpretation of the result (see text).


