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A surface pro®le retrieval technique from multiple X-ray total

re¯ection images taken at various distances with full coherent

illumination is demonstrated. An experiment was performed using

the 1 km-long BL29XU beamline at the SPring-8 facility, Japan.

Obtained results are compared with results from the optical

metrology technique (Fizeau's interferometer). Good agreement

between X-ray and optical methods proves the validity of the current

approach. Meanwhile, the sensitivity of the X-ray technique is several

times higher than that of the standard one. This technique is well

suited to the needs of characterizing grazing optics for new-

generation X-ray sources.
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1. Introduction

Rapid progress in the development of advanced X-ray sources has led

to increasing concern about the performance and limitations of

available optics. The high-quality photon beams produced by new-

generation X-ray sources impose rigid requirements on the quality of

the optical components that comprise current experimental set-ups.

One of the factors limiting the performance of any optics is the

surface roughness. Surface topographic errors are generally viewed as

the sum of two independent components, ®gure and ®nish (Church &

Takacs, 1993). While both affect the performance of optics, the

former, ®gure, is of primary interest for X-ray imaging techniques

using grazing-incidence mirrors (Schelokov et al., 1996; Souvorov et

al., 1997; Rommeveaux & Souvorov, 1999).

Unfortunately, the technology to manufacture and measure large

and smooth optical surfaces did not progress as rapidly as the

demands (Takacs, 1986; Assou®d, 2001). The standard metrology

instruments used to characterize grazing-incidence optics include a

long trace pro®ler and a ®gure interferometer. It is beyond the scope

of this article to compare the numerous types of instruments used to

measure surface roughness. The performance and limitations of these

instruments can be found elsewhere (for example, see Bennett &

Mattsson, 1989). In particular, their ability to measure the ®gure error

of long (more than 0.1 m) and smooth (less than 1 mrad slope error)

surfaces is poor due to a low signal-to-noise ratio. A fundamental

obstacle that limits the performance of conventional techniques is the

wavelength of radiation used to probe the surfaces. The shorter the

wavelength, the greater the momentum transfer, and consequently

the larger the phase modulation generated by a rough surface. X-ray

wavelengths are on the same order of magnitude as the roughness of

a state-of-the-art surface. Thus, until only recently, the usage of X-ray

interferometry techniques was limited due to the lack of X-ray

coherence. New synchrotron facilities (like SPring-8, APS and

ESRF), however, have removed this limitation. Today it is feasible to

perform various types of X-ray interferometric measurements with

radiation wavelengths shorter than 1 AÊ .

The aim of this article is to demonstrate a novel technique for

measuring surface waviness with extremely high sensitivity and

decent precision, which is based on the numerical retrieval of the

surface topology from multiple total re¯ection images taken at

various distances with coherent X-ray illumination.

2. Theoretical framework

One issue in generating images of a rough surface with partially

coherent X-rays can be considered to be part of the more global

problem of scattering at a rough surface. One can distinguish several

conditions that simplify this consideration. Firstly, imaging of a rough

surface with hard X-rays (10±30 keV) is possible only at a glancing

incidence angle, i.e. a few milliradians. Owing to this geometrical

factor, the image contrast is only sensitive to the longitudinal

roughness, and is composed of well pronounced one-dimensional

fringes perpendicular to the incidence plane. Thus, the problem can

be reduced from a two-dimensional issue to a one-dimensional one.

Secondly, because the optical transfer function in free space can be

considered as a spatial frequency low-pass ®lter (Goodman, 1996),

X-ray images are primarily formed from the contributions of

roughness spatial frequencies localized in the low- and medium-

frequency range (coherent specular re¯ection). In general, this indi-

cates that the surface image is sensitive to roughness spatial wave-

lengths in the region spanning from a few centimetres down to a

fraction of a millimetre. Together with the paraxial approximation of

wave propagation in free space (Goodman, 1996), this facilitates

numerical treatment of the problem.

An additional simpli®cation can be achieved if the incident wave is

considered as a plane monochromatic wave with linear polarization.

In the case of hard X-rays, this approximation is supported by the

high natural angular collimation (about 10±20 mrad) and linear

polarization of synchrotron radiation generated at modern facilities,

as well as by the longer distances from the source to the experimental

set-up (more than 50 m).

The necessity of large distances is also dictated by requirements

imposed on the high spatial resolution of the set-up. Longer distances

lead to a greater coherence, and improved spatial resolutions for

imaging set-ups (Pogany et al., 1997).

It has been shown that the chromaticity of incident radiation

induces a smaller effect on the resolution than does the spatial

coherence (Pogany et al., 1997). Thus, the incident wave from a

standard double-crystal monochromator is suf®cient to be regarded

as quasi-monochromatic.

The more or less general scattering problem cannot be exactly

solved. Therefore only approximate analytic approaches to this

problem exist. Two techniques have been most widely used: pertur-

bation theory and the quasi-classical approximation, also known as

the Kirchhoff approximation (Holliday, 1987; SaÂnchez-Gil & Nieto-

Vesperinas, 1991; SaÂnchez-Gil et al., 1995). In this work, the

Kirchhoff-tangent plane approximation will be used in describing the

problem (Voronovich, 1999). It is built on the assumption that wave

re¯ection at each point of the surface acts as if the surface coincides

with the tangent plane at each point. The value of the ®eld and its

normal derivative at the surface are then easily expressed through the

incident ®eld. The scattered ®eld is determined using the Helmholtz

formula.

Let us consider the diffraction geometry shown in Fig. 1. An

incident �-polarized plane wave with a wavevector situated in the
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XZ-plane is scattered at a one-dimensional wavy surface h�x�with the

mean plane lying in the XY-plane,

Ein � exp ik0xÿ iq0z� �: �1�
The scattering amplitude is then given by (Voronovich, 1999, ch. 5.1)

S k; k0� � � R
dx<�x� q� q0 � kÿ k0� �h0x

� �
� exp ÿi kÿ k0� �xÿ i q� q0� �h�x�� �

; �2�
and the re¯ected wave is expressed as

Esc � �4��ÿ1
R �dk=q� S�k; k0� exp�ikx� iqz�; �3�

where k0 = K cos �0, q0 = �K2 ÿ k2
0�1=2 are the components of the

incident wavevector, k, q = �K2 ÿ k2�1=2 are the components of the

re¯ected wavevector, K = 2�=�, �0 is the glancing angle, � is the

incident wavelength and <�x� is a local re¯ection coef®cient,

<�x� � sin �x ÿ sin2 �x ÿ 2�
ÿ �1=2

sin �x � sin2 �x ÿ 2�
ÿ �1=2

; �4�

where �x = �0 � arctan h0x, h0x = dh�x�=dx and � is the refractive index

decrement. Here, absorption is not taken into account.

Let the re¯ected wave be recorded at a distance L from the centre

of the surface, in a plane perpendicular to the direction of beam

propagation (see Fig. 2). Equation (3) can then be rewritten as

Esc � �4��ÿ1 exp ik0x� iq0z� �

�
Z

d� �S���=q� exp i�
�

sin �0

ÿ i
L sin �0 ÿ � cos �0

2K sin �0

�

sin �0

� �2
" #

;

�5�
where � = kÿ k0 and � is a coordinate in the image plane that is

directed downwards.

It can be seen from (5) that the second term in the exponent

introduces an asymmetry into the wave ®eld distribution. This

becomes more pronounced when the distance L is comparable with

the surface length. This term arises in the scattering geometry where,

owing to a small grazing incidence, the surface is positioned almost

parallel to the incident and specular re¯ected beams, while intensity is

measured in the plane normal to the re¯ected beam. Thus, the

distance from points on the surface to the observation plane may vary

signi®cantly. This term can be labelled as a geometrical factor.

The scattering surface can also be classi®ed as compact (enclosing

some ®nite volume) or incompact (in®nite in space). The most

common theoretical approach is to consider an incompact surface

that is on average planar and illuminated with a plane wave, or a

compact surface illuminated with a Gaussian beam. This allows the

elimination of surface-edge scattering effects. In grazing-incidence

experiments, however, neither of these cases is valid, and the edge

effects must be taken into account. Strictly speaking, the Kirchhoff

approximation cannot be considered accurate in the vicinity of

surface edges. It generally, however, provides reasonable estimates.

The goal of this work lies not only in the direct modelling of rough

surface images but, additionally, in modelling inverse scattering,

i.e. the deterministic retrieval of a surface's topology from its images.

The retrieved surfaces, in turn, are intended to serve as feedback to

the polishing technology. At this stage of the work, we are interested

in developing techniques to characterize smooth planar surfaces that

are suitable as high-quality X-ray optical elements for modern X-ray

sources.

At grazing incidence, a substrate with a slightly rough surface will

exhibit similar behaviour to that of a random phase screen. In small-

amplitude perturbation theory, the surface is considered to be suf®-

ciently smooth when the following conditions are ful®lled,

K h�x��� �� sin �0 � 1; �6�

h0�x��� ��� 1: �7�
For hard X-rays, condition (6) is valid for |h| � 60 AÊ . Taking into

account the high speci®cation parameters of planar X-ray mirrors

(®nish error �h ' 1±2 AÊ , ®gure error �h0 ' 1±2 mrad), both conditions

are more than satis®ed.

Under these conditions, the problem can be analytically solved

(Rommeveaux & Souvorov, 1999). The obtained solution is similar to

the solution of the `transport of intensity' equation (Gureyev, 1999),

provided the object is perfectly transparent. Differences arise from

the geometry; contrary to normal incidence, at grazing incidence the

object is arranged almost parallel to the incident beam while an image

is taken perpendicular to it. This introduces strong asymmetry

between sections of the image situated on opposite sides of the

optical axis, which is very well pronounced at short object-to-image

distances. The primary limitation of the obtained solution is that it

relies on a single image, taken at a short distance. In the case of an

image corrupted with noise (for example, phase-amplitude noise in

the incident beam), the retrieved pro®le will be distorted. Addi-

tionally, inherent limitations con®ne the applicability of this model.

Therefore, a more general approach must be achieved, which is

realised by employing a numerical model.

The use of iterative methods is one of the most common approa-

ches to the phase problem. Most of these methods are based on ideas

from the Gerchberg±Saxton algorithm (Gerchberg & Saxton, 1972;

Fienup, 1982). Applied to a purely phase object, it can be said that

Figure 1
Scattering geometry.

Figure 2
Sketch of the experimental set-up.



this algorithm also performs phase retrieval based on a single

intensity measurement. Any additional intensity measurements are

redundant for the conventional Gerchberg±Saxton algorithm. As a

rule, however, additional information is important in solving the

inverse problem. Moreover, with respect to the grazing-incidence set-

up, the geometrical factor, mentioned earlier in connection with

equation (5), prevents the use of fast Fourier transforms in compu-

tations.

In the case of normal incidence, a technique of iterative phase

retrieval from a set of images taken at various distances was

successfully implemented using visible-light optics (Ivanov et al.,

1992), electron microscopy (Coene et al., 1992) and X-ray holography

(Cloetens et al., 1999). Suppose there are several intensity distribu-

tions I 0
n recorded at distances Ln, n = 1, . . . , N. A functional J can be

introduced,

J � PN
n� 1

R
In ÿ I 0

n� �2 d�
h i

; �8�

where In is a simulated intensity. The inverse problem can then be

formulated as the retrieval of surface parameters, which minimize the

functional J. The intensity pro®les of 256 points were extracted from

the experimental images. Here, the discrete wavelet transform coef-

®cients of the surface function were used as the optimization para-

meters. Compactly supported biorthogonal spline wavelets were used

for decomposition and synthesis of the surface pro®le. The optimal

wavelet type was selected by trial and error in searching for better

convergence of the iterative algorithm. The total number of ®tting

coef®cients, however, was reduced to 144 in accordance with an

effective spatial frequency bandwidth that will be discussed further.

The MATLAB software package (The MathWorks Inc.), complete

with the Wavelet and Optimization toolboxes, was used to perform

numerical simulations. The advantages of using wavelet decomposi-

tion over others, such as Fourier transforms or polynomial expansion,

are in the use of real coef®cients, the fast numerical transform

procedures and the numerical stability of the method.

3. Experiment and results

Experiments were performed at the 1 km-long beamline, BL29XUL,

at the SPring-8 facility (Ishikawa et al., 2001). The beamline was

designed to facilitate the application of various imaging and diffrac-

tion techniques that exploit coherent properties of the X-ray beam. It

is equipped with the SPring-8 standard in-vacuum undulator, which

provides a photon ¯ux of greater than 5 � 1010 photons mmÿ2

(15 keV) at the end station. The scattering geometry was situated in

the vertical plane. The beamline source parameters in the vertical

plane are as follows: electron beam dimension �V = 10.1 mm, diver-

gence �V 0 = 1.75 mrad.

There are two basic parameters that limit spatial resolution in the

current set-up, namely the coherence of incident radiation and the

detector resolution. The incident undulator radiation can be

described as a Gaussian beam to a good approximation. Its coherence

is dependent on the phase-space distribution of electrons in a storage

ring (Kim, 1986). When the electron beam parameters fall far from

the diffraction limits, the coherence can be described using common

sense by a Gaussian function. However, as the parameters approach

the diffraction limits, which is the case for the new-generation

sources, discrepancy from the Gaussian function can be observed

(CoõÈsson, 1995; Takayama et al., 1998). The undulator diffraction

limits or, in other words, the single photon beam parameters are a

spatial dimension �R = ��L�1=2=4� and an angular divergence

�R0 = ��=LU�1=2, where � is the wavelength and LU is the length of the

undulator. When applied to BL29XUL, this gives �R = 1.5 mm and

�R0 = 4.3 mrad at E = 15 keV (� = 0.83 AÊ ) and LU = 4.5 m. It can be

seen that spatial dimensions of the irradiating area �V remain much

greater than its limit �R, and �V 0 is signi®cantly smaller than �R0 . This

indicates that at BL29XUL a well collimated relatively large electron

source is available. In this case, the coherence width is only de®ned by

the electron beam spatial size. Thus, the spatial resolution of the set-

up is de®ned by the `geometric unsharpness' effect or the penumbra,

and can be evaluated as �L = �L1=L0��S where L0 is the

source-to-object distance, L1 is the object-to-image distance and

�S = ��2
V � �2

R�1=2. For example, taking L0 = 1000 m, L1 = 1 m and

�S ' 10 mm, one obtains �L ' 0.01 mm.

To acquire images of the sample substrates, an X-ray zooming tube

(C5333, Hamamatsu Co.) was used (Matsumura et al., 1998). The

zooming tube is a two-dimensional X-ray detector operational in the

energy range 4±20 keV, with a highest spatial resolution less than

�D < 0.5 mm. The magni®cation factor is tunable and can be easily

changed from 10 to 200. The observable area is about 2.5 mm in

diameter and can be easily searched at different magni®cations for a

region of interest by means of de¯ecting coils. The tube functions in

the following manner: an X-ray image projected on the CsI photo-

cathode is converted into a photoelectron image. In turn, the

photoelectron image is magni®ed using the zooming coil assembly

and focused on a microchannel plate (MCP). The magni®ed image is

then intensi®ed by the MCP, and transferred onto the phosphor

screen that is monitored by a CCD camera. Owing to the massive

magnetic coils, the zooming tube has large dimensions (�1 m length

and 0.4 m by 0.4 m width by height) and a heavy weight (�140 kg).

This makes it inconvenient to handle around the experimental set-up.

Thus, a special support table was designed which provides ®ne two-

dimensional alignment around an optical axis and precise positioning

along the axis. Its design enables angular correction of the tube axis in

all three planes within a range of several degrees.

Two substrates were examined. The substrates were fabricated at

the Ultra Precision Machining Centre of Osaka University, Japan.

The objective of this research centre is to establish new ultraprecision

machining and thin-®lm technologies that can be used to produce

perfect surfaces. The two processes mainly involved in substrate

preparation are plasma chemical vaporization machining (CVM)

(Mori et al., 1993; Mori, Yamamura & Sano, 2000; Mori, Yamauchi et

al., 2000) and elastic emission machining (EEM) (Tuwa & Aketa,

1974; Mori et al., 1987, 1988, 2001). EEM exhibits an excellent

®guring performance, where atomic-level ¯atness is easily obtained

without any crystallographic damage. Plasma CVM has been

proposed as a precise and effective preprocess for EEM ®nishing. The

substrates were cut out of Si bulk in the form of rectangular disks of

length 100 mm, width 50 mm and height 10 mm. The surface was

oriented along the (001) crystallographic planes. Working lengths of

the machined surfaces varied around 90 mm.

A sketch of the experimental set-up is shown in Fig. 2. The ®rst

substrate was set at glancing angle � = 1.74 mrad with incident energy

E = 15 keV. The second was set at � = 1.2 mrad with E = 20 keV. As

discussed above, the ultimate spatial resolution of the set-up is

de®ned uniquely by the detector resolution. Taking into account the

small sample aperture at grazing incidence (maximum 1 mm), and the

longer distance to the beamline end station (L0 = 1000 m), the inci-

dent wave can be well represented as a plane monochromatic wave

(divergence < 1 mrad) with linear polarization. Energies and angles

were chosen using the following considerations. The optical transfer

function can be considered as a linear ®lter acting on transmitted

frequencies (Goodman, 1996). In the case of grazing incidence, the

maximum contribution to the image contrast comes from the
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roughness spatial wavelength around � = �2�L�1=2= sin �0. Contrary to

the normal-incidence geometry, there is an additional parameter, the

glancing angle, which can be used to change scattering conditions. To

achieve maximum momentum transfer or maximum phase contrast in

the scattered wave Q = 2K�h sin �0 (�h is the roughness RMS), the

glancing angle must be kept close to the critical angle. In turn, the

critical angle sin �c = �2��1=2 is almost linearly proportional to the

incident radiation wavelength � (� ' �2). Thus, the effective spatial

wavelength at the critical angle is � = C�2L=��1=2, where C is a

constant. Thus, the sensitivity of the set-up, with respect to the high

spatial frequencies of roughness, may be improved while maintaining

the phase contrast at a maximum by reducing the distance to the

surface L and increasing the incident radiation wavelength �. Simi-

larly, to see better low spatial frequencies, the distance L must be

increased and the wavelength decreased.

For each substrate, a set of images (N = 17) was obtained separated

by �L = 50 mm, starting from a minimal gap L1 = 170 mm between

the surface centre and the photocathode of the zooming tube. In

accordance with the above speculations, the upper limit of the

roughness spatial frequencies that effectively contribute in image

formation can be de®ned as �min = ��L1�1=2= sin �0 (Souvorov et al.,

1997). This gives �min = 2.2 mm and �min = 2.7 mm for the ®rst and

second substrates, respectively. Images were taken with a magni®-

cation factor M = 60 to ensure pixel sizes of 0.2 mm. The total spatial

resolution of the detector was �d = 0.6 mm. As an example, one of the

original images is shown in Fig. 3.

After extracting intensity pro®les from the images, the inverse

scattering algorithm was applied. A perfectly ¯at long surface was

taken as the starting point. An iterative procedure was continued

until no further improvement was observed. The length of the

re¯ecting area automatically shrinks to correspond with the recorded

images. The ultimate difference between simulated and measured

intensities, averaged over all images, varied within ��I ' 3±5%

depending on the measurement set. An example of the original

intensity distribution and a simulation is shown in Fig. 4(a). The

simulated intensity curve is shifted downwards by 0.2 to enhance

clarity of the comparison. The experimental intensities varied up to

�I ' 19%. The differential intensity Idif = Iexp ÿ Isim between

experimental and simulated data is shown in Fig. 4(b). The standard

deviation of the intensity discrepancy is ��I = 3.5% over the total

re¯ection area. This discrepancy can be attributed to noise in the

original images. Unfortunately, the presence of coherent noise results

in poor divergence of the algorithm. It took several hours and

thousands of iterations to obtain the ®nal results. The algorithm

works three to ®ve times faster with numerically simulated images.

The coherent noise is generated by all optical elements installed

upstream from the sample position. The main source of noise,

however, lies in the vacuum windows. In the case of normal incidence,

in¯uence from the vacuum windows can be reduced by taking images

immediately after an object or in the object plane. In the case of

grazing incidence, this is dif®cult as the object is elongated along the

optical axis. In addition, the mirror ¯ips up and down in a re¯ected

beam.

For the ®rst substrate, its central section was investigated by means

of the Fizeau's interferometer prior to the experiment. The inter-

ferometer was calibrated within �1 nm accuracy over a 150 mm

longitudinal range. Some environmental instabilities, however,

generated �0.5 nm ¯uctuations in the measurements. Therefore, the

accuracy of the expected slope measurement was limited to 1 mrad. A

comparison of surface pro®les (actually, residuals after removing the

second-order ®tting curve) obtained with the optical interferometer

and by X-ray topography is shown in Fig. 5. Good agreement between

the two pro®les is observed. The surface-height standard deviation

measured with the interferometer is ��i�h ' 5.3 AÊ , while when

measured with X-rays is ��x�h ' 5.5 AÊ . The difference in surface

heights between the two measurements has a standard deviation of

��h ' 3 AÊ . Figure error of the optically measured pro®le is

�sl ' 1.1 mrad. This agrees well with the expected slope-measurement

accuracy. The X-ray measurements, however, give �sl ' 0.8 mrad,

already an improvement to the resolution of the optical method.

While the optical measurements were performed at the limit of

resolution, the X-ray technique maintains potential for improvement.

For the second substrate, images were taken at two sample posi-

tions: normal and inverted, i.e. when the sample was inverted by 180�

Figure 3
Example of an X-ray image taken at a distance L = 0.43 m from the substrate
centre. An incident X-ray beam is re¯ected up in the vertical direction. Surface
waviness generates one-dimensional fringes perpendicular to the incidence
plane.

Figure 4
(a) An intensity pro®le (solid line) of an image taken at a distance L = 0.68 m
from the mirror compared with simulation (dashed line). The simulated plot is
shifted downwards by 0.2 to make the comparison more clear. Intensity
variation generates �I ' 19%. (b) Differential intensity Idif = Iexp ÿ Isim

between experimental and simulated data. The intensity discrepancy is
��I = 3.5% over the total re¯ection area.



around the axis perpendicular to the surface. The substrate was

oriented so that both measurements covered an almost identical

sample area (�0.1 mm lateral error in positioning). The retrieved

surface pro®les are shown in Fig. 6. Within the central �20 mm area,

height standard deviations at the normal and inverted position are

��1�h ' 1.7 AÊ and ��2�h ' 2.4 AÊ , respectively. The difference in surface

heights between two measurements has a standard deviation of

��h ' 1.3 AÊ . Apart from a discrepancy at one of the edges, the

obtained pro®les correlate well with each other.

4. Conclusions

The presented results provide straightforward evidence of the very

high sensitivity of X-rays to waviness in the surfaces of grazing-

incidence optics. Sensitivity with the conventional metrology tech-

nique can be compared on the basis of the signal-to-noise ratio. For

X-ray measurements, the ratio between intensity variation �I ' 19%

and noise (discrepancy) ��I ' 3% comprises a factor of six. For

optical metrology, what is measured directly is a slope error. Thus, the

ratio of the measured ®gure error �sl ' 1.1 mrad with the measure-

ment accuracy � ' 1 mrad provides a ®gure of merit of the method.

By this means, it can be said that the X-ray metrology technique is at

least six times more sensitive to the smooth waviness of surfaces than

optical metrology. This factor can be further increased if coherent

noise in the X-ray incident beam is decreased. A similar ratio can be

obtained starting from a different approach. The phase shift between

two surface areas at different heights h1 and h2 can be evaluated as

�' = 2K�h sin �, where � is an incident angle, �h = h2 ÿ h1 and

K = 2�=�. With visible light, the maximum phase difference is

achieved at normal incidence �'o = 2Ko�h. With X-rays, however,

the maximum is achieved at a critical angle �'x = 2Kx�h sin �c.

Assuming a laser wavelength of �o = 632 nm, an X-ray wavelength of

0.1 nm and a critical angle of about 2 mrad, the ratio between the

phases in X-ray and optical measurements will be �'x=�'o =

��o=�x� sin � ' 12. This obtained ratio is two times higher than that

inferred from the current experimental measurements, thus leaving

signi®cant room for improvement of the technique.

Taking into account the high demand for new technologies for

fabricating and characterizing high-performance grazing-incidence

X-ray optics, the advanced technique is well suited to modern

requirements. First, it is based on measurements performed with

`high quality' X-rays, i.e. coherent X-rays. This is the radiation that

modern X-ray optics must be designed for. Secondly, it provides a

straightforward measure of the quality of an optical surface, i.e. if the

re¯ected beam is uniform within some statistical ¯uctuations then the

quality of the surface is superior to what is required. The good

agreement found with optical metrology supports the appropriate-

ness of this method. The authors believe that this technique will

enable measurement of not only planar but pro®led surfaces as well.
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